用户名: 密码: 验证码:
基于映射与双谱的绝缘子信息提取故障诊断的理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文关于输电线绝缘子的场量和电量,深入研究了二个方面:场量数值解误差和减小,绝缘子劣化和污秽的电敏感特征量及诊断。
     场量数值解误差和减小。计算绝缘子场量常采用软件ANSYS,但是ANSYS数值解有误差和只适用于有界场。针对绝缘子静电场ANSYS数值解误差,因难以得到实际绝缘子静电场解析解,研究的文献不多。为此,本文根据构造的单个理想针式绝缘子,对比其解析法和ANSYS解得出结论:负电极曲率半径越小,绝缘子每点电位和电场强度的ANSYS解误差越大;越靠近负尖电极,绝缘子电位和电场强度ANSYS解误差越大。
     针对计算绝缘子串无界静电场,已有若干文献提出若干方法结合ANSYS计算无界场量。为更好地减小误差,本文提出映射与ANSYS相结合,高精度快速计算无界静电场。该方法利用复指数函数将二维无界静电场映射到二维有界静电场,并应用ANSYS计算该有界场,因边值问题相同,有界场某点电位就是无界场映射点电位。实例表明映射结合ANSYS的方法显著提高ANSYS求解二维无界静电场的精度,并加快了计算速度。
     绝缘子劣化和污秽的电敏感特征量及诊断。针对泄漏电流监测绝缘子劣化和污秽的高误判率,本文查阅大量文献后提出高误判率在于未找出仅与被监测状态有关而与其它状态无关的量即敏感特征量。为找出绝缘子劣化和污秽的敏感特征量,本文基于试验采集的单个良好或单个劣化的染污绝缘子在不同污秽、湿度、温度、含谐波市电电压作用下的198+17+78+14个弱起晕泄漏电流时间序列(良好染污绝缘子的198+17个,劣化染污绝缘子的78+14个)的分析处理得出:
     基波电阻是绝缘子劣化的敏感特征量。在198+78个时间序列中,良好和劣化绝缘子基波电阻值范围分别是222.39-2841.93MΩ和0.23-4.97MΩ。
     双谱幅值特征量β是绝缘子劣化的敏感特征量。理论证明双谱强敏感于绝缘子劣化,弱敏感于污秽、湿度和温度;数据验证在198+17+78+14个时间序列中良好和劣化绝缘子双谱幅值特征量β值范围分别是1.2290×10-3-1.5026×10-1和7.5520×10-5-1.2660×10-3。
     波峰因子是轻度污秽敏感特征量;1562.5Hz以上高频电流分量波形因子是重度污秽敏感特征量。这是根据每个泄漏电流时间序列多个时域特征量值对比得出具有实际判别意义的结论。
     双谱幅值特征量β、波峰因子、Shannon熵组成的三维向量是绝缘子劣化的敏感特征向量。该向量使198+78个时间序列分成两个无重叠且远离的区域即绝缘子良好和劣化两个区域,使Euclide距离、灰关联和神经网络三种分类器均能100%诊断在198+78个训练序列和17+14测试序列中的劣化绝缘子。这是根据泄漏电流时间序列多个时域和频域特征量数值在空间定位得出又一具有理论和实用意义的结论。
About the quantities of electrostatics and electricity of insulators, two aspects are in-depth researched and discussed:the calculation and improvement of the error of the discrete value of the quantities of electrostatic field; finding the electrical quantities sensitive either to fault or to contamination and diagnosing insulators.
     First, the calculation and improvement of the error of numerical solution of the quantities of electrostatic field are researched and discussed. Calculating the quantities of the electrostatic field of insulator often uses software ANSYS that has two problems:the error of numerical solution, and only bounded field. To the error of ANSYS solution of electrostatic field of insulator, there are few papers to research because it is difficult to find the analytical solution of the electrostatic field of a actual insulator. Thus a single ideal pin insulator is constructed, and the electric potential and the electric field intensity of any point in insulator are calculated with software ANSYS and analytical method. Two conclusions are reached:the sharper the negative electrode is, the bigger the error of the electrical potential and electric field of any point in insulator are; the more the point in insulator close with negative sharp electrode, the bigger the error of the electric potential of the point is, and the more the point in insulator close with positive electrode or negative electrode, the bigger the error of the electric field of the point is. To calculate the unbounded electrostatic field of insulator strings, some papers present methods so as to apply ANSYS to the unbounded electrostatic field of insulator strings. To decrease error more, this thesis presents that combining map and ANSYS solve unbounded electrostatic field with high accuracy. The method uses a complex exponential function to establish a map between unbounded and bounded electrostatic fields of two-dimension. Then ANSYS is used in bounded fields. As the boundary value problems are same, the electric potential of each point in bounded fields equals the electric potential of each mapping point in unbounded fields. An example indicates that the accuracy obviously increase when solving unbounded field with map and ANSYS.
     Secondly, finding the electrical quantities sensitive either to fault or to contamination and diagnosing insulators are researched and discussed. To the higher incorrect and missing judgement of instruments using leakage current (LC) to diagnose insulator and monitor contamination, having consulted many correlative papers the thesis presents that that the essential reason for higher incorrect and missing judgement is that the instruments have not found the eigenvalue only related to the monitored state and not related to other states. To find the sensitive eigenvalues of both faulty insulator and insulator contamination, based on experimental 198+17+78+14 LC time series(198+17 LC time series belong to perfect contaminated insulators; 78+14 LC time series belong to faulty contaminated insulators) of light discharge of single insulator which is at the state of various dirtiness, humidity, and temperature, and is applied non-sinusoidal voltages at different virtual values, this thesis reachs the following conclusions:
     Fundamental resistance is the sensitive eigenvalue for faulty insulator. By 198+78 LC time series, the scopes of the fundamental resistance of perfect and faulty insulators are 222.39-2841.93MΩand 0.23~4.97MΩ, respectively. The bispectrum amplitude eigenvalueβof LC time series is sensitive eigenvalue for faulty insulators. It is validated in theory that the bispectrum of the LC time series is the eigenvalue sensitive to insulators, but not sensitive to insulator contamination, humidity and temperature. It is validated in datum that by 198+17+78+14 LC time series, the scopes ofβvalue of perfect and faulty insulators are 1.2290×10-3~1.5026×10-1, and 7.5520×10-5~1.2660×10-3. The wave crest factor of LC time series is sensitive eigenvalue for light contaminations. The waveform factor of 1562.5-25000Hz high frequency current component of LC time series is sensitive eigenvalue for heavy contaminations. These conclusions result from the contrast of many quantities of each LC time series, and have practical significance. A three-dimensional vector, which consists of theβof bispectrum, Shannon entropy, and wave crest factor is the sensitive eigenvector for faulty insulator. The eigenvector can divide all the insulators into two regions not only non-overlapping but far apart regions:the region of perfect contaminated insulators; the region of faulty contaminated insulators. Using above a three-dimensional vector as input vector, any of three classifiers, Euclide distance judgment, grey relational analysis of B-mode, and BP artificial neural network, can exactly distinguish between perfect and faulty insulators at various dirtiness, humidity, temperature and the virtual values of the voltage involving harmonics. This conclusion has both academic and practical significances.
引文
[1]西北电力试验研究所.绝缘子运行维护和故障检测方法(英、德、俄、日、美译文集).西安:陕西电机学会、西北电力试验研究所,1986,84-111.
    [2]吴曙笛译.带电线路悬式绝缘子测试器的发展和应用.IEEE协会会报,1981(4):64-67.
    [3]吴光亚,王铁街.防污闪及绝缘子检测论文集.武汉:武汉高压研究所,2001,135-136.
    [4]河北省电力试验研究所.国内带电测试绝缘子的方法及仪表的《科技检索报告》.唐山:河北省电力试验研究所,2001.
    [5]聂一雄,尹项根.绝缘子在线检测方法的探讨.电瓷避雷器,2002(2):3-8.
    [6]闫芷苓.从“现代绝缘子技术”国际会议看绝缘子在线检测.电瓷避雷器,1998(4):10-141.
    [7]王雪,张冠军,严璋.国内高压绝缘子在线检测方法综述.电瓷避雷器,2002(6):3-5,8.
    [8]张斌.劣化绝缘子检测技术的国内外研究现状.电网技术,2006年增刊:275-278.
    [9]卢明,姚德贵,张国民等.劣化绝缘子检测方法的对比分析.电瓷避雷器,2006(5):9-13.
    [10]邬正荣.盘形悬式瓷绝缘子的在线检测.电瓷避雷器,2006(3):10-13.
    [11]朱虎,李卫国,林冶.绝缘子检测方法的现状与发展.电瓷避雷器,2006(6):13-17.
    [12]叶根富,周明,李庚银.绝缘子在线检测方法的比较.电力科学与工程,2007,23(3):37-40.
    [13]Gubanski S M, Dernfalk A, Andersson J, et al. Diagnostic methods for outdoor polymeric insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2007,14(5):1065-108.
    [14]许勇.绝缘子的劣化分析及检测.工程技术,2009(2):17.
    [15]浙江省电力公司编.输电线路绝缘子运行技术手册.2003.
    [16]胡世征.劣化绝缘子的发热及热象特征.电网技术,1997,2l(10):44-46.
    [17]王祖林,黄涛,刘艳等.合成绝缘子故障的红外热像在线检测.电网技术,2003,27(2):17-20.
    [18]张永胜,俞发晖.应用红外热像技术检测瓷绝缘子运行状况初探.青海电力,2003年增刊:40-43.
    [19]何洪英,姚建刚,蒋正龙.基于支持向量机的高压绝缘子污秽等级红外热像检测.电力系统自动化,2005,29(24):70-74.
    [20]谢利英,周羽生.红外监测特高压输电线路绝缘子技术的探讨.绝缘材料,2009,42(3):56-59.
    [21]店攀龙,周羽生,马士英等.特高压输电线路绝缘子红外监测方法.电气时代,2009(1):80-81.
    [22]梁曦东,戴建军,周远翔等.超声法检测绝缘子用玻璃钢芯棒脆断裂纹的研究.中国电机工程学报,2005,25(3):110-114.
    [23]戴利波.紫外成像技术在高压设备带电检测中的应用.电力系统自动化,2003,27(20):97-98.
    [24]陈涛,何为,刘晓明等.高压输电线路紫外在线检测系统.电力系统自动化,2005,29(7):88-92.
    [25]何为,陈涛,刘晓明等.基于紫外脉冲法的非接触式低值(零值).绝缘子在线检测系统,电力系统自动化,2006,30(10):69-73.
    [26]文康珍,文远芳,端木林楠等.基于基波电阻的不良绝缘子检测方法.电网技术,2009年增刊.
    [27]Vaillancourt G H, Bellerive J P, St-Jean M, et al. New live line tester for porcelain suspension insulators on high-voltage power lines. IEEE Trans. on Power Delivery, 1994,9(1):208-219.
    [28]Sandrik P. Measurement of voltage distribution of insulators in 400 kV transmission lines. Electric Engineering,1996(47):33-37.
    [29]李成榕,程养春,陈宇等.电场测量法在线检测合成绝缘子内绝缘缺陷的研究.高电压技术,1999,25(1):39-41.
    [30]安玲,江秀臣,朱宇等.检测劣化绝缘子的新方法——敏感绝缘子法.中国电机工程学报,2002,22(9):108-112.
    [31]江秀臣.直流绝缘子串电压分布的计算.高压电器,1996(2):33-38.
    [32]马学贤,丁一正,王增禄等.330kV线路绝缘子串分布电压的研究.高电压技术,1997,23(3):75-77.
    [33]丁一正,张俊兰,陈雄一等.500kV线路绝缘子串分布电压的现场测量与分析.中国电力,2006,33(2):45-47.
    [34]高博,张亚婷,王清亮等.污秽不均匀性对绝缘子电场的影响.电瓷避雷器,2008(6):13-15,21.
    [35]竹田正敏.不同型式输电线路不良绝缘子检测器.电气计算,1980,64:38-39.
    [36]金洪章.超高压线路用脉冲法检测不良绝缘子的研究.高电压技术,1984,10(4):42-44,29.
    [37]郭琳,黄兴,李成榕.输电线路不良绝缘子检测方法分析.电侧与仪表,1994(8):18-20,48.
    [38]施倩.脉冲电流法检测不良绝缘子分辨率的研究.高电压技术,1998,24(3):44-46.
    [39]程养春,李成榕,郭琳等.地面检测线路不良绝缘子装置的研制.高电压技术,1999,25(3):30-32.
    [40]程养春,李成榕,丁立健等.电晕指纹法地面检测不良绝缘子串的研究.中国电机工程学报,2000,20(4):54-58.
    [41]万收兰,程养春,李成榕.基于人工神经网络的零值绝缘子诊断基于人工神经网络的零值绝缘子诊断.高电压技术,2002,28(6):6-7,10.
    [42]聂一雄,尹项根,刘春等.悬式瓷绝缘子在线检测装置的研究.高压电器,2003, 39(1):53-55.
    [43]张炳达,陈伟乐,曾启明等.放电强度矢量不平衡法识别劣化绝缘子的研究.中国电机工程学报,2003,23(8):130-134.
    [44]Bennoch C J, Judd M D, Yamashita H. System for online monitoring of pollution levels on solid insulators. IEEE International Symposium on Electrical Insulation, 7-10 April 2002:237-240.
    [45]Kurihara S, Arief Y Z, Tsurusaki T. Construction of remote monitoring system for separative measurement of leakage current of outdoor insulators. Proceedings of the 7th international conference on properties and applications of dielectric materials, 1-5 June 2003:401-404.
    [46]张冠军,王雪,莫娟等.高压绝缘子远程在线检测诊断系统的初步研究.高电压技术,2003,29(7):7-9.
    [47]胡岳,江秀臣,仲雁兵.无线通信式低零值绝缘子手持检测仪.高电压技术,2008,34(2):280-284.
    [48]杨金飞,周国庆.一种新的实用的绝缘子监测装置.中国农村水利水电.2008(2):110-111.
    [49]李天云,陈化钢.应用现代时间序列分析理论诊断绝缘子的新方法.高电压技术.1992,2:33-35.
    [50]张宇辉,李天云,冯喜春.基于距离函数的绝缘子故障诊断.东北电力学院学报.1994,14(2):26-30.
    [51]王丽敏,陆履豪,沈连丰.故障高压绝缘子泄漏电信号在线检测技术研究.东南大学学报(自然科学版),2004(11),34(6):824-827.
    [52]Wen Kangzhen, Wen Yuanfang, Lu Jianshuang. Distinguishing between perfect and faulty insulators by bispectrum and classifier. Proceedings of Asia-Pacific Power and Energy Engineering Conference,28-31 March 2010.
    [53]Isaka K, Yokoi Y, Naito K, et al. Development of real-time system for simultaneous observation of visual discharges and leakage current on contaminated DC insultors. IEEE Trans on Electrical Insulation,1990,25(6):153-160.
    [54]Naito K, Mizuno Y, Naganawa W. A study on probabilistic assessment of contamination flashover of high voltage insulator. IEEE Trans on Power Delivery, 1995,10(3):1378-1382.
    [55]J. L. Fierro-Chavez, Ramirez-Vazquez I, Montoya-Tena G. Online leakage current monitoring of 400 kV insulator strings in polluted areas. IEE Proceedings Generation, Transmission & Distribution,1996,143(6):560-564.
    [56]Richards C N, Renowden J D. Development of a remote insulator contamina tion monitoring system. IEEE Trans on Power Delivery,1997,12(1):389-397.
    [57]Habib S E D, Khalifa M. A new monitor for pollution on power line insulators, Part 1:Design. Construction and preliminary tests. Proc. Inst. Elect. Eng., pt. C,1988, 133(2).
    [58]刘金华,周永强,徐滤非等.绝缘子泄漏电流在线监测系统.华中电力,2000(2):8-10.
    [59]蔡伟,李敏,杨颜红.基于遥测技术的绝缘子在线监测系统.高电压技术,2002(7):22-27.
    [60]黄新波,刘家兵,王向利等.基于GPRS网络的输电线路绝缘子污秽在线遥测系统.电力系统自动化,2004,28(21):92-95,99.
    [61]庄燕飞,王巨丰,袁海燕等.线路绝缘子污秽状态在线监测的研究.绝缘材料,2005(4):36-38.
    [62]周建功,邓召春,毛苏春.基于泄漏电流的绝缘子在线监测系统的应用.东北电力技术,2005(1):16-18.
    [63]张朋,王龙华.基于C8051F020的高压绝缘子泄漏电流在线监测.高电压技术,2005,31(11):13-15.
    [64]董新胜,李耀中.变电站绝缘子污秽在线监测模糊报警方式的实现.新疆电力技术.2007(4):1-2.
    [65]王身丽,杜勇.基于泄漏电流500kV绝缘子在线监测系统的应用。2006(12): 24-26.
    [66]王健,王永勤,杜世璧等.高压输电线路绝缘子污秽在线监测系统的研究及应用.电网技术,2007年增刊:18-21.
    [67]衷力翔,盛戈雌,曾奕等.输电线路绝缘子综合在线监测系统.电工技术,2009(2):36-37,39.
    [68]杨文宇,王建渊,魏威.GSM与模糊诊断的绝缘子在线监测.高电压技术,2004,30(7):31-33,68.
    [69]杨敏,邓雨荣,吴荣.绝缘子泄漏电流在线监测装置在广西电网的应用.广西电力,2009(5):8-11.
    [70]蒋作谦,殷国祥,徐守时.高压输电线路上绝缘子的电晕脉冲电流采集系统.高电压技术,1997,23(2):56-58.
    [71]李琦,仁海鹤,郑岗等.变电站绝缘子污秽在线监测系统的设计.西安理工大学学报,2002(18):136-139.
    [72]陈攀,孙才新,米彦等.一种用于绝缘子泄漏电流在线监测的宽频带微电流传感器的特性研究[J].中国电机工程学报,2005,25(24):144-148.
    [73]肖立,姚陈果,孙才新等.USB接口便携式绝缘子泄漏电流检测系统.电瓷避雷器,2005(2):14-18.
    [74]Fontana Eduardo, Oliveira S Campello, Cavalcanti F J M M, et al. Novel sensor system for leakage current detection on insulator strings of overhead transmission lines. IEEE Trans. on Power Delivery,2006,21(4):2064-2070.
    [75]Chen Weigen, Yao Chenguo, Chen Pan, et al. A new broadband microcurrent transducer for insulator leakage current monitoring system. IEEE Transactions on Power Delivery,2008,23(1):355-360.
    [76]申敏.绝缘子泄露电流在线检测与数字信号处理综述.科技资讯.2007年24期.
    [77]李延.绝缘子泄漏电流在线检测与数字信号处理方法的分析与探讨.广东电力,2007,20(12):12-16.
    [78]Karady G, Amarh F. Signature analysis of leakage current for polluted insulators. Proc. IEEE Transmission and Distribution Conf, Apr.1999,2:806-812.
    [79]Teguar M, Abimouloud A, et al. Influence of discontinuous pollution width on the surface conduction. Frequency characteristics of the leakage current.2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2000,1: 211-214.
    [80]陈耀高,邓敏,林力辉.高压绝缘子在线监测系统简析.电网技术,2001,25(11):83-85.
    [81]Amarh F, G Karady George, Sundararajan Raji. Linear stochastic analysis of polluted insulator leakage current. IEEE Transactions on Power Delivery,2002, 17(4):1063-1069.
    [82]El-Hag A H, Jayaram S, Cherney E A. Fundamental and low frequency harmonic components of leakage current as a diagnostic tool to study aging of RTV and HTV silicone rubber in salt-fog. IEEE Trans. Dielect. Elect. Insul.,2003,10(1):128-136.
    [83]Kim Charles J, Momoh James A, Lee Heung-Jae, Phase-time analysis of the leakage impulse current of faulty line-post pin insulators. IEEE Transactions on Power Delivery,2003,18(1):323-328.
    [84]赵汉表,林辉,谢利理等.基于高压侧测量的输电线绝缘子泄漏电流在线监测系统.电力系统自动化,2004,28(22):78-82.
    [85]Piah M A M, Darus A. Modeling leakage current and electric field behavior of wet contaminated insulators. IEEE Transactions on Power Delivery,2004,19:432-433.
    [86]赵汉表,林辉,廖胜蓝等.小波变换在绝缘子泄漏电流检测中的应用.高电压技术,2005,31(4):45-47.
    [87]Suda Tomotaka. Frequency characteristics of leakage current waveforms of a string of suspension insulators. IEEE Transactions on Power Delivery,2005,20(1): 481-487.
    [88]贺博,林辉.高压绝缘子污闪过程特征量的分类和判别.高压电器,2006(6),42(3):172-175,178.
    [89]贺博,林辉.人工污秽试验中绝缘子泄漏电流的统计特性.高电压技术,2006,32(8):4-6.
    [90]Mao Yingke, Guan Zhicheng, Wang Liming, et al. Frequency characters of leakage current on the surface of outdoor insulators in different relative humidity.2006 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2006, 1:692-695.
    [91]杜欣慧,戴云航,王志刚等.饱和受潮条件下的绝缘子泄漏电流特性.高电压技术,2007,33(9):6-9.
    [92]姚陈果,李璟延,米彦等.绝缘子安全区泄漏电流频谱特征提取及污秽状态预测.中国电机工程学报,2007,27(30):1-7.
    [93]李延,司马文霞,孙才新等.染污绝缘子放电中泄漏电流的频谱变化.高电压技术,2008,34(3):455-457.
    [94]关志成,毛颖科,王黎明.污秽绝缘子泄漏电流特性研究.高电压技术,2008,34(1):1-6.
    [95]惠阿丽,林辉.高压绝缘子泄漏电流的分形特征.高电压技术,2008,34(6):1271-1275.
    [96]张重远,黄彬,王娟等.悬式瓷制绝缘子泄漏电流与表面污秽的关系.高电压技术,2008,34(4):655-659.
    [97]Piah M A M, Darus A. Modeling leakage current and electric field behavior of wet contaminated insulators. IEEE Transactions on Power Delivery,2004,19(1): 432-433.
    [98]Montoya G, Ramirez I, Montoya J I. Correlation among ESDD, NSDD and leakage current in distribution insulators. IEE Proceedings on Generation, Transmission & Distribution,2004,151(3):334-340.
    [99]石岩,蒋兴良,黄欢.污秽瓷绝缘子泄漏电流的估算方法.高电压技术,2009,35(6):1350-1355.
    [100]李延,司马文霞,孙才新等.绝缘子污秽度预测特征量提取与神经网络模型. 电力系统自动化,2008,32(15):84-88.
    [101]聂一雄,尹项根,刘春等.用模糊逻辑方法对绝缘子串在线检测结果的评定.中国电机工程学报,2003,23(3):131-136.
    [102]Ahmad Ahmad S, Ghosh P S, Aljunid Syed Abdul Kader, et al. Estimation of salt contamination level on the high voltage insulators surfaces during rainy season using artificial neural network. Fifth International Conference on Power System Management and Control,17-19 April 2002:303-308.
    [103]Sarathi R, Chandrasekar S. Diagnostic study of the surface condition of the insulation structure using wavelet transform and neural networks. Elect. Power Syst. Res. J.,2004, (68):137-147.
    [104]Jahromi Ali Naderian, El-Hag Ayman H, Jayaram Shesha H, et al. A neural network based method for leakage current prediction of polymeric insulators. IEEE Transactions on Power Delivery,2006,21(1):506-507.
    [105]毛颖科,关志成,王黎明等.基于BP人工神经网络的绝缘子泄漏电流预测.中国电机工程学报,2007,27(27):7-12.
    [106]付家才,王向琴.基于BP神经网络的绝缘子表面污秽预测方法.黑龙江科技学院学报,2007,17(4):282-284.
    [107]陈升,王基一,应伟国.基于BP神经网络的绝缘子泄漏电流量预测方法.浙江电力,2007(1):18-22.
    [108]何相佑,向凤红,忽建蕊.基于模糊输出BP神经网络的绝缘子等值盐密预测.陕西电力,2008(5):1-4.
    [109]Irvani M R, Mukherjee P K. Numerical computation of potential distribution along a transmission line insulator chain. IEEE Elect.Ins,1993,18:167-170.
    [110]Chakravorti S, Mukherjee P K. Power frequency and impulse field calculation around a HV insulator with uniform or nonuniform surface pollution. IEEE Trans on Electrical Insulation,1993,28(1):43-53.
    [111]EI-Kishky H, Gorur R S. Electric potential and field computation along AC HV insulators. IEEE Trans. Dielect. Elect. Insul.,1994,1(6):983-990.
    [112]Chakravorti S, Steinbigler H. Boundary element studies on insulator shape and electric field around HV insulators with or without pollution. IEEE Trans on Dielectrics and Electrical Insulation,2000,7(2):169-176.
    [113]Imre Sebestyen. Electric-field calculation for HV insulators using domain-decomposition method. IEEE Trans on Magnetics,2002,38(2):1213-1216.
    [114]韩社教,马西奎等.有限元—解析结合解法在无界轴对称静电场问题数值解中的应用.电工技术学报,2001,16(5):1-5.
    [115]孙玉田,王宏宇.二维开域电磁场的一般解法.电机与控制学报,2001,5(4):225-228.
    [116]姜保军,孙力,李波.电磁检测中的开域电磁场数值计算.中国电机工程学报,2005,25(8):156-160.
    [117]文康珍,文远芳,黎文安.二维开域静电场的ANSYS解法.武汉大学学报(工学版),2007,31(8):36-38.
    [118]文康珍,文远芳,端木林楠等.尖电极静电场ANSYS解的误差.电瓷避雷器.2009(4):14-16.
    [119]倪光正.工程电磁场数值计算.北京:机械工业出版社,2004.
    [120]解广润.高压静电场.上海:中国科学技术出版社,1987.
    [121]杨宪章.工程电磁场.北京:中国电力出版社,2002.
    [122]王富耻,张朝晖.ANSYS 10.0有限元分析理论与工程应用.北京:电子工业出版社,2006.
    [123]Santoso S, Powers E J, Hofmann P. Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery,1996,11(2):924-930.
    [124]ngrisani L A, Daponte P, Apuzzo M D, et al. A measurement method based on the wavelet transform for power quality analysis. IEEE Transactions on Power Delivery, 1998,13(4):990-998.
    [125]Pham V L, Wong K P. Wavelet transform based algorithm for harmonic analysis of power system waveforms. IEE Proceedings on Generation, Transmission & Distribution,1999,146(3):249-254.
    [126]Pham V L and Wong K P. Antidistortion method for wavelet transform filter banks and non stationary power system waveform harmonic analysis. IEE Proceedings on Generation, Transmission & Distribution,2001,148(2):117-122.
    [127]薛蕙,杨仁刚,郭永芳.小波包变换(WPT)频带划分特性的分析.电力系统及其自动化学报,2003,15(2):5-8.
    [128]赵龙莲,张录达,李军会等.小波包熵和Fisher判别在近红外光谱法鉴别中药大黄真伪中的应用.光谱学与光谱分析,2008,28(4):817-820.
    [129]刘艳梅,程凯,鞠浩民等.发动机异响信号的小波包能量特征提取.机械制造与研究,2009,38(2):70-72,83.
    [130]潘华,李安,唐熊辉等.液浮陀螺声音信号的小波包系数距离研究.微计算机信息(测控自动化),2009,25(2-1):309-310.
    [131]贾丹丹,李宏.基于神经网络和小波分析的血细胞识别算法.计算机应用与软件,2009,26(8):29-31.
    [132]Nikias L C, Raghuveer M R. Bispectrum estimation:A digital signal processing framework. Proc. IEEE,1987,75(7):869-891.
    [133]Gannakis G, Cumulants B. A helpful tool in signal processing. Proc. IEEE,1987,75: 1333-1334.
    [134]Mendel M. Tutorial on higher-order Statistics (spectra) in Signal Processing and System Theory:Theory Results and Some Applications. Proc. IEEE,1991,79: 278-305.
    [135]Collis W B, White P R, Hannond J K. Higher-order spectra:the bispetrum and trispectrum. Mechanical System and Signal Processing,1998,12(3):375-394.
    [136]Parker J B, Ware H A, Wipf D P, et al. Fault diagnostics using statistical change detection in the bispectral domain. Mechanical Systems and Signal Processing, 2000,14(4):561-570.
    [137]Dusan K, Radoslav S. Order bispectrum:a new tool for reciprocated machine condition monitoring. Mechanical Systems and Signal Processing,2000,14(6): 871-890.
    [138]Tommy W S C, Tan H Z. HOS-based nonparametric and parametric methodologies formachine fault detection. IEEE Transactions on Industrial Electronics,2000,47(5): 1051-1059.
    [139]刘希强,周彦文,李红等.双谱估计在地震前兆数字化资料分析中的应用.西北地震学报,29(3):201-206,212,2007.
    [140]齐子元,徐章遂,雷正伟.基于高阶谱分析的机械故障特征识别.军械工程学院学报,2008,20(1):48-50,65.
    [141]王秉仁,杨艳霞.双谱分析在旋转机械故障诊断中的应用.煤矿机械,2009,30(1).
    [142]王书庆,林延青.采用灰色B型关联度分析进行设备故障诊断的方法.机械科学与技术,1998,17(6):991-993.
    [143].张宇,刘雨东.倒谱在舰船辐射噪声特征提取中的应用.舰船科学技术,2009,31(2):84-87.
    [144]Choi H I, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans on Acoust. Speech Signal Processing,1989,37:862-871.
    [145]成永红.电力设备绝缘检测与诊断.北京:电力出版社,1984.
    [146]郑君里.信号与系统.北京:高等教育出版社,2005.
    [147]Sanjit K. Mitra.数字信号处理—基于计算机的方法(第2版).北京:清华大学出版社,2001.
    [148]邹鲲,袁俊泉,龚享铱.MATLAB 6.x信号处理.北京:清华大学出版社,2002.
    [149]邓聚龙.灰色系统.北京:国防工业出版社,1985.
    [150]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [151]何正嘉,訾艳阳,张西宁.现代信号处理及工程应用.西安:西安交通大学出版 社,2007.
    [152]秦树人,季忠,尹爱军.工程信号处理.北京:高等教育出版社,2008.
    [153]佟德纯,姚宝恒.工程信号处理与设备诊断.北京:科学出版社,2008.
    [154]董长虹,高志,余啸海.Matlab小波分析工具箱原理与应用.北京:国防工业出版社.2004.
    [155]周伟,桂林,周林,张家祥等.MATLAB小波分析高级技术.西安:西安电子科技大学出版社,2006.
    [156]葛哲学,孙志强.神经网络理论与MATLABR2007实现.北京:电子工业出版社,2008.
    [157]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700