用户名: 密码: 验证码:
金属铂表面复杂脱氢氧化反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从密度泛函理论(Density Functional Theory, DFT)建立以来,它就被广泛应用于金属表面各种简单催化反应的机理研究当中,例如氢气在过渡金属表面的解离反应,CO和NO的氧化与还原反应等。然而,应用周期性密度泛函方法开展对金属表面复杂脱氢氧化反应机理的理论研究是近年来刚刚兴起的领域,目前的可见报道的研究还很少。作为一个典型的例子,有机小分子如甲醇、乙醇以及甲酸等在过渡金属表面的脱氢氧化反应是目前实验研究中广泛涉及到的热点非均相催化过程。这主要是因为甲醇、乙醇以及甲酸作为理想的氢的载体,在醇类重整制氢体系以及直接燃料电池反应体系中有着广阔的应用,对于缓解当前的能源危机和环境问题具有重要的意义。目前,关于这两个反应体系的研究均处于机理研究和催化剂探索的初步研究阶段。因此,开展醇类以及甲酸在过渡金属表面的催化氧化机理的理论研究不仅可以进一步拓展密度泛函方法的应用领域,开发DFT方法在处理金属表面复杂催化反应体系的巨大潜力,而且可以加深人们对反应过程的微观机理认识,为实验探索新型有效的催化剂提供重要的理论线索。
     由于反应机理的复杂性加上实验手段的局限性,目前人们对于醇类重整制氢反应以及直接燃料电池反应过程的机理认识还不够深入,尤其是对于反应物的C-C键断裂模式以及决定反应选择性的关键因素了解很少。因此,本论文的主要工作是以乙醇和甲酸(在有水存在条件下)的脱氢氧化反应作为模型反应体系,以电化学实验为背景,使用第一性原理的密度泛函计算方法,研究过渡金属铂表面的复杂脱氢氧化反应的完全氧化反应机理。在此基础上,重点围绕复杂脱氢反应体系的反应选择性问题研究了以下几个方面的内容:
     由特殊反应途径决定的反应选择性:从原子水平上来看,反应选择性是不同反应通道之间的速率比较结果,是微观反应动力学的宏观表现。因此,反应选择性与反应发生的微观过程密切相关。据文献报道,在乙醇电化学氧化过程中,不完全脱氢产物乙醛的选择性很高,而且不随反应条件(如电压)的变化而变化。这是制约直接乙醇燃料电池实际能量效率的关键因素。传统的逐步脱氢反应机理并不能合理的解释乙醛的高选择性问题,尤其是乙醛的选择性始终高于它的下游氧化产物乙酸的问题。因此,在本论文中我们首先对乙醇生成乙醛和乙酸的过程进行了研究,全面考察了乙醇生成乙醛的多种反应通道,通过对不同反应路径的反应速率的比较,并考虑了表面其它共吸附物种对反应活性影响,我们发现乙醇氧化生成乙醛的过程是通过一步脱两个氢的协同反应机理实现的。这种特殊的协同脱氢反应通道与反应物分子的构型有关,在金属表面催化过程中并不多见。它的存在合理的解释了乙醇电氧化反应中乙醛的高选择性问题。
     反应选择性之表面结构敏感性特点:如何提高目标产物的选择性是化学研究的首要问题。因此,对于反应选择性的研究是机理研究中的重中之重。大量实验研究表明,催化剂表面结构是影响反应活性和反应选择性的一个重要因素。电化学实验结果显示,乙醇在传统Pt电极上主要发生部分氧化反应生成乙醛和乙酸,而完全氧化产物二氧化碳很少;当加入Sn之后,可以进一步促进C2产物(含有两个C原子)的生成,但CO2的选择性仍然很低;在单晶Pt电极如Pt(557),Pt(335)上,随着电极表面阶梯位的增多,乙酸的选择性明显降低;当电极表面有高密度的(100)面时,CO2的选择性明显增强。这些结果表明乙醇的反应选择性与电极表面的微观结构密切相关。
     本论文即以乙醇的脱氢氧化反应为例,系统的考察了乙醇在铂的不同晶面(如Pt(111),Pt(211)及Pt(100)等)上的完全脱氢氧化机理。通过密度泛函理论计算,我们发现了决定乙醇反应选择性的两个关键步骤,即乙醇的第一步脱氢反应和乙酰基(CH3CO)的氧化反应。前者主要决定了乙醇生成乙醛的选择性问题,而后者主要决定了乙酸和CO2的选择性问题。这两个反应步骤在不同配位数的Pt表面的反应行为不同。在Pt(111)表面,乙醇主要发生部分氧化生成乙醛和乙酸,而在低配位的Pt(211)和Pt(100)表面则主要发生连续的碳氢断键反应,并最终发生C-C键断裂生成C1物种。通过电子结构分析和对关键反应能垒的解析,我们找出了导致乙醇氧化反应选择性随表面结构的不同而变化的物理原因:ⅰ)Δd-PDOS分析结果显示,α-脱氢反应过渡态与表面有较强的成键相互作用,从而导致反应能垒随表面结构的改变有明显的变化;ii)在低配位的Pt(211)和Pt(100)表面,OH由于在桥位吸附太稳定,导致对CH3CO的氧化能力降低,从而抑制了乙酸的生成。在此研究基础上,我们还指出所涉及到的反应之间存在Bronsted-Evans-Polanyi (BEP)线性关系,而且这种关系只与参与反应的化学键的极性有关(如C-C键,C-H键等),与Pt的晶面类型无关。应用这种BEP线性关系,可以很好的预测碳碳解离反应的断键模式,包括反应的活性位点和活性前驱体等。
     反应选择性与反应物吸附构型和溶剂化作用的关系:溶剂化作用对反应活性和反应选择性有着重要影响。关于非均相催化反应的溶剂化效应的研究,尤其是水/金属界面反应的理论研究,一直是理论研究界的研究难点。作为一个典型的例子,甲酸的脱氢氧化反应在超高真空实验条件下和电化学环境下的反应行为截然不同,这说明水溶液对甲酸的脱氢氧化反应有着重要影响。但是目前,实验研究者对于甲酸的电催化氧化反应机理还没有统一的认识,对于反应过程中甲酸根中间体所起的作用,究竟是反应的活性中间体还是电极表面的中毒物种,还存在着很大的分歧。采用密度泛函计算方法并结合一种离散-连续组合溶剂化模型,我们对甲酸在干净的Pt(111)/H2O界面以及甲酸根(HCOO)覆盖的Pt(111)/H2O界面的吸附和反应行为进行了研究,发现当甲酸从水相转移到Pt/H2O界面时,损失了大量的溶剂化能△Esol,而△Esol正是影响甲酸吸附构型的关键因素。我们指出ⅰ)甲酸在金属/水的界面主要经过直接反应通道生成CO2,它的反应活性前驱体是以CH键垂直指向表面(CH-down构型)吸附的溶剂化甲酸分子;水在甲酸的直接氧化反应通道中起了重要的作用;ⅱ)甲酸根的存在促进了活性前驱体CH-down构型在Pt表面的吸附,从而有利于甲酸的直接氧化。主要原因是甲酸根改变了水在金属界面的分布方式,从而降低了CH-down构型吸附过程中所要消耗的溶剂化能。
     反应选择性与表面修饰之间的关系:在电极表面修饰上其它物种或者金属原子是改善电极催化活性的一种有效方法。大量的电化学实验证实,当Pt电极表面有Sb修饰时,能够有效的抑制甲酸的解离吸附(生成CO),提高甲酸直接氧化生成CO2的反应选择性。有研究者认为,Sb的作用主要是通过几何位阻效应阻止了中毒物种CO在Pt表面的生成。然而,单纯的几何位阻效应并不能完全解释甲酸在Sb/Pt电极上的高反应活性。我们研究得知,甲酸生成CO2的反应选择性与甲酸在金属表面的吸附构型密切相关。因此本节中我们应用密度泛函理论方法对比了甲酸(有水存在下)在洁净的Pt(111)及不同Sb覆盖度的Sb/Pt (111)表面上的吸附行为。我们发现,当Sb覆盖度增加到一定程度(如0.375 ML),并在表面形成二维岛状结构(2D-island)时,甲酸在铂表面主要以CH-down构型吸附。Bader电荷分析结果显示,Sb的修饰作用主要是转移了部分电子给Pt表面,与表面Pt原子之间形成垂直于表面的静电偶极矩Sbδ+-Ptδ-。正是这个静电偶极矩的存在促使了甲酸的活性前驱体CH-down构型在Pt表面的吸附,从而有利于提高甲酸的电化学活性。我们的计算结果得到了实验的大力支持。
     另外,鉴于传统过渡态搜索方法对于研究复杂脱氢氧化反应体系所存在的局限性,本论文在原有方法的基础上,发展了一种新的过渡态的搜索方法。新方法继承了Quasi-Newton Broyden几何优化算法的优点,加快了电子结构的收敛速度,使得短时间内建立复杂反应的完全反应势能面成为可能。此外,我们还建立了一种周期性连续介质溶剂化模型来研究金属/水界面的溶剂化效应,采用离散-连续组合方法(combined discrete-continnum method)模拟体系的溶剂化层,即选取一定数目(四个或六个)的溶剂分子与反应物分子形成超分子,来模拟反应物分子的最近溶剂化层,而对剩余的其它溶剂化层用文献报道的介电模型函数(dielectric model function)来描述。
With the advent of Density Functional Theory (DFT), it has shown a powerful functionality in clarifying mechanisms of simple surface reactions, such as H2 dissociation, NO or CO reduction/oxidation on transition metal surfaces and so on. However, exploring mechanisms of complex dehydrogenation reaction networks at transition metals with DFT is an emerging area in the recent years, and very limited research work has been reported. As a typical example, oxidation of small organic molecules like methanol, ethanol and formic acid on transition metals is widely involved in many important heterogeneous catalytic processes, because they are of great interest in alcohol reforming processes and fuel cell applications as ideal hydrogen carrier, which is important in relieving the current energy crisis and environmental pressures. At present, experimental studies on the alcohol reforming processes and direct alcohol/acid fuel cells are at the early stages in clarifying reaction mechanisms and screening proper catalysts. It is therefore of both theoretical and practical interest in investigating mechanisms of alcohol and formic acid dehydrogenation on transition metal surfaces applying with DFT calculations, which not only can broaden the DFT functionality in dealing with more complex reaction network on metal surfaces, but also can help to understand the atomic-level reaction mechanisms and provide important clues for choosing new efficient metal catalysts.
     Due to the complexity of reaction networks and limitation of experimental methods, there is inadequate knowledge about mechanisms of alcohol reforming for hydrogen production and fuel cell reactions, especially for the pattern of C-C bond breaking and the key factors in dictating reaction selectivity. Therefore, in the present work, we take the dehydrogenation of ethanol and formic acid (in the presence of water) as model systems and comprehensively investigate the complex dehydrogenation reaction networks on platinum surfaces within DFT frameworks mainly in the context of electro-oxidation experiments. On this basis, we put emphasis on the following contents which are related to reaction selectivity.
     Selectivity determined by unique reaction pathways:From an atomic-level view, reaction selectivity is a comparison result of the rates between different reaction channels. It is macro-performance of reaction microkinetics. Apparently, reaction selectivity is closely related to the micro-reaction processes. It has been reported that in ethanol electro-oxidation, ethanol is mainly partially oxidized into acetaldehyde and acetic acid instead of being fully oxidized and the highest selectivity to CH3CHO is observed to be slightly affected by electric potential. This undesired selectivity severely limits the practical energy efficiency of direct ethanol fuel cells (DEFCs). The traditionally proposed stepwise dehydrogenation mechanism can not rationalize the high selectivity of CH3CHO, and no answer for the issue that selectivity to CH3CHO is always higher than that of its oxidation product CH3COOH. By extensive density functional theory calculations on the distinct reaction channels from ethanol to acetaldehyde and acetic acid on Pt(111), the rate constants of the different reaction pathways were compared and effect of the coadsorbates were considered. We demonstrated that ethanol is partially oxidized into CH3CHO via a unique concerted dehydrogenation path which is rarely occurred in surface reactions. Such a concerted path is shown to be largely affected by the reactants'structures and its existence can well explain the observed high selectivity to acetaldehyde.
     Structure sensitivity of reaction selectivity:How to selectively activate chemical bond towards making desired product must rank the top concern in chemistry. Research on reaction selectivity is the key point in the mechanistic studies. Amounts of experiments have shown that reaction selectivity and activity is largely affected by the surface structure of metal catalysts. For example, in ethanol electro-oxidation with traditional Pt catalysts, the observed main products are CH3CHO and CH3COOH and the complete oxidation product CO2 is very low; addition of Sn to Pt can accelerate the production of C2 products (species containing 2-C atoms) while the selectivity to CO2 is little affected; on the stepped surfaces like Pt(557) and Pt(335), it was found that the selectivity to acetic acid decreased with the increasing surface steps; when the electrode catalysts composed of high density of (100) terraces, the selectivity to CO2 was greatly enhanced. All these experimental facts indicate that selectivity of ethanol oxidation on platinum is surface structure sensitive.
     Therefore, in the present work, we performed an extensive investigations on the whole reaction network of the complete oxidation of ethanol at different Pt surfaces, including Pt(111), Pt(211) and Pt(100). Two critical steps in dictating the selectivity of ethanol oxidation were clarified, namely the initial dehydrogenation of ethanol and the oxidation of the acetyl (CH3CO) intermediate. The former mainly determines the selectivity to CH3CHO and the latter determines the selectivity to CH3COOH and CO2. These two selectivity-determining steps have distinct behaviors on differently coordinated Pt surfaces. On Pt(111) surface, ethanol is mainly oxidized into CH3CHO and CH3COOH, while on Pt(211) and Pt(100), ethanol mainly proceeds consecutive C-H bond breaking and finally via C-C bond splitting into C1 species. By detailed electronic structure analysis and barrier decomposition, we clarified the physical origin of the surface structure-sensitivity of the reaction selectivity:i)Δd-PDOS results show that transition state of the a-dehydrogenation has strong bonding interaction with surface Pt atom which can account for the surface structure-sensitivity of the a-dehydrogenation barrier; ii) on low coordinated Pt(211) and Pt(100), hydroxyl (OH) bonds at bridge sites too strongly to oxidize other species like acetyl, which suppresses the formation of acetic acid. Besides, we found that a linear Bronsted-Evans-Polanyi (BEP) relation holds for different bond-breaking reactions across different surfaces, which is only related to the type of bond (say, C-C, C-H etc.) but not related to the surface structures. Applied with this BEP relationship, it can qualitatively predict the general pattern in C-C bond dissociation reactions, such as reaction sites and the reaction precursor.
     Relationships of selectivity with reactant adsorption configurations and solvation effect:water solvation has important influences on reaction activity and selectivity. It has been a long-standing challenge for theorists to investigate the solvation effect on the heterogeneous catalytic processes within DFT framework, especially simulations at water/metal interfaces. As a typical example, formic acid shows distinct degradation behaviors under the ultra-high vacuum conditions and electro-oxidation environment. This indicates that the aqueous environment plays an important role in formic acid oxidation. However, there is still no consensus about the reaction mechanism of formic acid electro-oxidation under water solution at the present, and the role of the intermediate formate (HCOO), whether an active intermediate or a spectator species, is still open to discussion. Combined DFT calculations with a discrete-continuum solvation model, we extensively studied the adsorption and reaction behaviors of formic acid on both clean Pt(111)/H2O interface and formate covered Pt(111)/H2O interface. We found that during the adsorption processes in which formic acid transfers from bulk phase to Pt/H2O interfaces, it cost lots of solvation energiesΔEsol, which have important influences on the adsorption configurations of formic acid at the metal/water interfaces. It was concluded that i) formic acid is directly oxidized into CO2 with the reactive precursor of CH-down configured formic acid, and water plays a key role in the direct oxidation pathway; ii) the presence of formate promotes the adsorption of reactive CH-down configuration on Pt sites, which is beneficial to the direct oxidation of formic acid. The physical reason is that the adsorbed formate results in rearrangement of the H-bonding network of water at the water/metal interface, which then leads to reduction of the solvation energy cost during the adsorption of CH-down configuration.
     Relationships between selectivity and surface modification:Modification of Pt with other species and secondary metal atoms is considered to be an efficient way to improve the catalytic activity of electrodes in electro-chemistry. It was generally reported that modification of Sb on Pt (Sb/Pt) hindered the dissociative adsorption of formic acid (leading to CO formation) and promoted the direct oxidation of formic acid into CO2. While some one proposed that the function of Sb on Pt can be attributed to the steric effect which blocks the surface active sites for CO formation, it is still elusive for the high reactivity of formic acid on Sb/Pt electrodes. As we reported, the selectivity of formic acid direct oxidation to CO2 is greatly related to the adsorption configurations. Therefore, we then compared the adsorption behaviors of formic acid (in the presence of water) on clean Pt(111) and various Sb-covered Pt(111). It was found that as the Sb coverage achieves 0.375 ML and forms a 2D island structure on Pt(111), the CH-down configuration becomes the dominant species on the surface, which will benefit the direct oxidation of formic acid into CO2. According to Bader charge analysis, Sb adlayer donates some electron to Pt surface and leads to the formation of a Sbδ+-Ptδ- dipole normal to the surface. It is such an electrostatic dipole that enhances the adsorption energy of CH-down configuration on Pt surfaces and thus the reactivity of formic acid direct oxidation. Our mechanisms get well supported by experimental facts.
     Besides, considering the limitation of the traditional transition state (TS) searching method in dealing with complex dehydrogenation reaction networks, we developed a new TS searching method. This new method inherits the advantages of Quasi-Newton Broyden optimization in the searching processes with a significant speed-up in convergence. It allowed us to study explicitly the whole reaction network of complex dehydrogenation systems in reduced computational time. Besides, we built a periodic continuum solvation model to investigate the solvation effect on reactions at metal/water interfaces. We applied a discrete-continuum method to simulate the solvation shells of reaction systems, namely, we surrounded the reaction centre with up to six discrete water molecules as the core solvation shells and simulated the rest of solvation shells with a reported dielectric model function in a continuum solvation model.
引文
[1]Thomas LH. The calculation of atomic fields [J]. Proceedings of the Cambridge Philosophical Society,1927,23:542-548.
    [2]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev. B,1964, 136(3B):B864-&.
    [3]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals[J]. Rev. Mod. Phys.,1999,71(5):1253-1266.
    [4]Hammer B, Hansen LB, Norskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev. B,1999,59(11):7413-7421.
    [5]Hammer B, Jacobsen KW, Norskov JK. Dissociation Path for H2 on Al(110) [J]. Phys. Rev. Lett.,1992,69(13):1971-1974.
    [6]White JA, Bird DM. Dissociative Adsorption of H-2 on Cu(100) [J]. Chem. Phys. Lett.,1993,213(3-4):422-426.
    [7]Taft CA, Guimaraes TC, Pavao AC, Lester WA. Adsorption and dissociation of diatomic molecules on transition-metal surfaces [J]. Int. Rev. Phys. Chem., 1999,18(2):163-233.
    [8]Dong W, Kresse G, Hafner J. Dissociative adsorption of H-2 on the Pd(111) surface [J]. J. Mol. Catal. A-Chem.,1997,119(1-3):69-76.
    [9]Liu ZP, Hu P. CO oxidation and NO reduction on metal surfaces:density functional theory investigations [J]. Top. Catal.,2004,28(1-4):71-78.
    [10]Liu ZP, Jenkins SJ, King DA. Why is silver catalytically active for NO reduction? A unique pathway via an inverted (NO)(2) dimer [J]. J. Am. Chem. Soc.,2004,126(23):7336-7340.
    [11]Liu ZP, Hu P, Alavi A. Catalytic role of gold in gold-based catalysts:A density functional theory study on the CO oxidation on gold [J]. J. Am. Chem. Soc., 2002,124(49):14770-14779.
    [12]Liu ZP, Jenkins SJ, King DA. Step-enhanced selectivity of NO reduction on platinum-group metals [J]. J. Am. Chem. Soc.,2003,125(48):14660-14661.
    [13]Wang CM, Fan KN, Liu ZP. Origin of oxide sensitivity in gold-based catalysts: A first principle study of CO oxidation over au supported on monoclinic and tetragonal ZrO2 [J]. J. Am. Chem. Soc.,2007,129(9):2642-2647.
    [14]Liu ZP, Wang CM, Fan KN. Single gold atoms in heterogeneous catalysis: Selective 1,3-butadiene hydrogenation over Au/ZrO2 [J].Angew. Chem.-Int. Edit.,2006,45(41):6865-6868.
    [15]Liu ZP, Jenkins SJ, King DA. Role of nanostructured dual-oxide supports in enhanced catalytic activity:Theory of CO oxidation over Au/IrO2/TiO2 [J]. Phys. Rev. Lett.,2004,93(15).
    [16]Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative Minimization Techniques for Abinitio Total-Energy Calculations-Molecular-Dynamics and Conjugate Gradients [J]. Rev. Mod. Phys.,1992, 64(4):1045-1097.
    [17]Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. First-principles simulation:ideas, illustrations and the CASTEP code [J]. J. Phys.-Condes. Matter,2002,14(11):2717-2744.
    [18]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16): 11169-11186.
    [19]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci.,1996,6(1):15-50.
    [20]Hafner J. Ab-initio simulations of materials using VASP:Density-functional theory and beyond [J]. J. Comput. Chem.,2008,29(13):2044-2078.
    [21]Greeley J, Mavrikakis M. A first-principles study of methanol decomposition on Pt(111) [J]. J. Am. Chem. Soc.,2002,124(24):7193-7201.
    [22]Greeley J, Mavrikakis M. Competitive paths for methanol decomposition on Pt(111)[J]. J. Am. Chem. Soc.,2004,126(12):3910-3919.
    [23]Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M. Mechanisms of methanol decomposition on platinum:A combined experimental and ab initio approach [J]. J. Phys. Chem. B,2005,109(23):11622-11633.
    [24]Desai SK, Neurock M, Kourtakis K. A periodic density functional theory study of the dehydrogenation of methanol over Pt(111) [J]. J. Phys. Chem. B,2002, 106(10):2559-2568.
    [25]Tanksale A, Beltramini JN, Lu GM. A review of catalytic hydrogen production processes from biomass [J]. Renew. Sust. Energ. Rev.,2010,14(1):166-182.
    [26]Youngblood WJ, Lee SHA, Maeda K, Mallouk TE. Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors [J]. Accounts Chem. Res.,2009,42(12):1966-1973.
    [27]Deluga GA, Salge JR, Schmidt LD, Verykios XE. Renewable hydrogen from ethanol by autothermal reforming [J]. Science,2004,303(5660):993-997.
    [28]Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J]. Angew. Chem.-Int. Edit.,2007,46(38):7164-7183.
    [29]Huber GW, Shabaker JW, Evans ST, Dumesic JA. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts [J]. Appl. Catal. B-Environ.,2006,62(3-4):226-235.
    [30]Kalinci Y, Hepbasli A, Dincer I. Biomass-based hydrogen production:A review and analysis [J]. Int. J. Hydrog. Energy,2009,34(21):8799-8817.
    [31]Thounthong P, Davat B, Rael S, Sethakul P. Fuel Cell High-Power Applications [J]. IEEE Ind. Electron. Mag.,2009,3(1):32-46.
    [32]Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C. Development of anode catalysts for a direct ethanol fuel cell [J]. J. Appl. Electrochem.,2004, 34(4):439-446.
    [33]Zhao F, Slade RCT, Varcoe JR. Techniques for the study and development of microbial fuel cells:an electrochemical perspective [J]. Chem. Soc. Rev.,2009, 38(7):1926-1939.
    [34]Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts [J].J. Catal.,2003,215(2):344-352.
    [35]Hohn KL, Lin YC. Catalytic Partial Oxidation of Methanol and Ethanol for Hydrogen Generation [J]. ChemSusChem,2009,2(10):927-940.
    [36]Pettersson LJ, Westerholm R. State of the art of multi-fuel reformers for fuel cell vehicles:problem identification and research needs [J]. Int. J. Hydrogen Energy,2001,26(3):243-264.
    [37]Alcaide F, Cabot PL, Brillas E. Fuel cells for chemicals and energy cogeneration [J]. J. Power Sources,2006,153(1):47-60.
    [38]Liguras DK, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts [J]. Appl. Catal. B-Environ.,2003,43(4):345-354.
    [39]Vasudeva K, Mitra N, Umasankar P, Dhingra SC. Steam reforming of ethanol for hydrogen production:Thermodynamic analysis [J]. Int. J. Hydrog. Energy, 1996,21(1):13-18.
    [40]Freni S, Maggio G, Cavallaro S. Ethanol steam reforming in a molten carbonate fuel cell:A thermodynamic approach [J]. J. Power Sources,1996,62(1): 67-73.
    [41]Freni S, Maggio G. Energy balance of different internal reforming MCFC configurations [J]. Int. J. Energy Res.,1997,21(3):253-264.
    [42]Liu PX, Liu Y, Ye JL. The Development of Catalysis in Ethanol Steam Reforming for Fuel Cells [J]. World Sci-tech R&D,2005,27(6):69-75.
    [43]Garcia EY, Laborde MA. Hydrogen-Production by the Steam Reforming of Ethanol-Thermodynamic Analysis [J].Int. J. Hydrog. Energy,1991,16(5): 307-312.
    [44]Ioannides T. Thermodynamic analysis of ethanol processors for fuel cell applications [J]. J. Power Sources,2001,92(1-2):17-25.
    [45]Cavallaro S, Chiodo V, Vita A, Freni S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst [J]. J. Power Sources,2003,123(1): 10-16.
    [46]Cavallaro S, Chiodo V, Freni S, Mondello N, Frusteri F. Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol:H-2 production for MCFC [J].Appl. Catal. A-Gen.,2003,249(1):119-128.
    [47]Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts [J]. Catal. Commun.,2002,3(12):565-571.
    [48]Breen JP, Burch R, Coleman HM. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J]. Appl. Catal. B-Environ.,2002,39(1):65-74.
    [49]Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F. Steam reforming of ethanol on Ni/MgO catalysts:H-2 production for MCFC [J]. J. Power Sources, 2002,108(1-2):53-57.
    [50]Frusteri F, Freni S, Chiodo V, Spadaro L, Bonura G, Cavallaro S. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the
    production of hydrogen for MCFC [J]. J. Power Sources,2004,132(1-2): 139-144.
    [51]Palmeri N, Chiodo V, Freni S, Frusteri F, Bart JCJ, Cavallaro S. Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst [J]. Int. J. Hydrog. Energy,2008,33(22):6627-6634.
    [52]Marino FJ, Cerrella EG, Duhalde S, Jobbagy M, Laborde MA. Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts [J]. Int. J. Hydrog. Energy,1998,23(12):1095-1101.
    [53]Llorca J, de la Piscina PR, Sales J, Horns N. Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts [J]. Chem. Commun., 2001, (7):641-642.
    [54]Laosiripojana N, Assabumrungrat S. Catalytic steam reforming of ethanol over high surface area CeO2:The role of CeO2 as an internal pre-reforming catalyst [J]. Appl. Catal. B-Environ.,2006,66(1-2):29-39.
    [55]Yee A, Morrison SJ, Idriss H. A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy:Evidence of benzene formation [J]. J. Catal.,2000,191(1):30-45.
    [56]Davda RR, Dumesic JA. Renewable hydrogen by aqueous-phase reforming of glucose [J]. Chem. Commun.,2004, (1):36-37.
    [57]Davda RR, Dumesic JA. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide [J]. Angew. Chem.-Int. Edit., 2003,42(34):4068-4071.
    [58]Lamy C, Leger JM. Electrocatalytic Oxidation of Small Organic-Molecules at Platinum Single-Crystals [J]. J. Chim. Phys. Phys.-Chim. Biol.,1991,88(7-8): 1649-1671.
    [59]Capon A, Parsons R. Oxidation of Formic-Acid at Noble-Metal Electrodes.1. Review of Previous Work [J]. J. Electroanal. Chem.,1973,44(1):1-7.
    [60]Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T. Direct formic acid fuel cells [J]. J. Power Sources,2002,111(1):83-89.
    [61]Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. J. Power Sources,2002,105(2):283-296.
    [62]Beden B, Morin M-C, Hahn F, Lamy C. In-Situ Analysis by Infrared Reflectance Spectroscopy of the Adsorbed Species Resulting from the Electrosorption of Ethanol on Platinum in Acid Medium [J]. J. Electroanal. Chem.,1987,229(1-2):353-366.
    [63]Chang YW, Liu CW, Wei YC, Wang KW. Promotion of PtRu/C anode catalysts for ethanol oxidation reaction by addition of Sn modifier [J]. Electrochem. Commun.,2009,11(11):2161-2164.
    [64]Hitmi H, Belgsir EM, Leger JM, Lamy C, Lezna RO. A Kinetic, Analysis of the Electrooxidation of Ethanol at a Platinum-Electrode in Acid-Medium [J]. Electrochim. Acta,1994,39(3):407-415.
    [65]Gootzen JFE, Visscher W, vanVeen JAR. Characterization of ethanol and 1,2-ethanediol adsorbates on platinized platinum with Fourier transform infrared spectroscopy and differential electrochemical mass spectrometry [J]. Langmuir,1996,12(21):5076-5082.
    [66]Schmidt VM, Ianniello R, Pastor E, Gonzalez S. Electrochemical reactivity of ethanol on porous Pt and PtRu:Oxidation/reduction reactions in 1 M HClO4 [J]. J. Phys. Chem.,1996,100(45):17901-17908.
    [67]Ianniello R, Schmidt VM, Rodriguez JL, Pastor E. Electrochemical surface reactions of intermediates formed in the oxidative ethanol adsorption on porous Pt and PtRu [J]. J. Electroanal. Chem.,1999,471(2):167-179.
    [68]Wang H, Jusys Z, Behm RJ. Ethanol and Acetaldehyde Adsorption on a Carbon-Supported Pt Catalyst:A Comparative DEMS Study [J]. Fuel Cells, 2004,4(1-2):113-125.
    [69]Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ. Ethanol oxidation on novel, carbon supported Pt alloy catalysts-Model studies under defined diffusion conditions [J]. Electrochim. Acta,2006,52(1):221-233.
    [70]Mendez E, Rodriguez JL, Arevalo MC, Pastor E. Comparative study of ethanol and acetaldehyde reactivities on rhodium electrodes in acidic media [J]. Langmuir,2002,18(3):763-772.
    [71]Neto AO, Linardi M, dos Anjos DM, Tremiliosi G, Spinace EV. Electro-oxidation of ethanol on PtSn/CeO2-C electrocatalyst [J]. J. Appl. Electrochem.,2009,39(7):1153-1156.
    [72]Attwood PA, McNicol BD, Short RT. Electrocatalytic Oxidation of Methanol in Acid Electrolyte-Preparation and Characterization of Noble-Metal Electrocatalysts Supported on Pretreated Carbon-Fiber Papers [J]. J. Appl. Electrochem.,1980,10(2):213-222.
    [73]Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316(5825):732-735.
    [74]Xia XH, Liess HD, Iwasita T. Early stages in the oxidation of ethanol at low index single crystal platinum electrodes [J]. J. Electroanal. Chem.,1997, 437(1-2):233-240.
    [75]Tarnowski DJ, Korzeniewski C. Effects of surface step density on the electrochemical oxidation of ethanol to acetic acid [J]. J. Phys. Chem. B,1997, 101(2):253-258.
    [76]Zhou WJ, Zhou ZH, Song SQ, Li WZ, Sun GQ, Tsiakaras P, Xin Q. Pt based anode catalysts for direct ethanol fuel cells [J]. Appl. Catal. B,2003,46(2): 273-285.
    [77]Tsiakaras PE. PtM/C (M=Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs: Structural characteristics and cell performance [J]. J. Power Sources,2007, 171(1):107-112.
    [78]Colmati F, Antolini E, Gonalez ER. Ethanol oxidation on carbon supported Pt-Sn electrocatalysts prepared by reduction with formic acid [J]. J. Electrochem. Soc.,2007,154(1):B39-B47.
    [79]Bommersbach P, Chaker M, Mohamedi M, Guay D. Physico-chemical and electrochemical properties of platinum-tin nanoparticles synthesized by pulsed
    laser ablation for ethanol oxidation [J]. J. Phys. Chem. C,2008,112(37): 14672-14681.
    [80]Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB. Influence of Sn content on PtSn/C catalysts for electrooxidation of C-1-C-3 alcohols:Synthesis, characterization, and electrocatalytic activity [J].Appl. Catal. B-Environ.,2008, 82(1-2):89-102.
    [81]Sen Gupta S, Singh S, Datta J. Promoting role of unalloyed Sn in PtSn binary catalysts for ethanol electro-oxidation [J]. Mater. Chem. Phys.,2009,116(1): 223-228.
    [82]Zhu MY, Sun GQ, Xin Q. Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation [J]. Electrochim. Acta,2009, 54(5):1511-1518.
    [83]Zhu MY, Sun GQ, Li HQ, Cao L, Xin Q. Effect of the Sn(Ⅰ)/Sn(Ⅳ) redox couple on the activity of PtSn/C for ethanol electro-oxidation [J]. Chin. J. Catal.,2008,29(8):765-770.
    [84]Rousseau S, Coutanceau C, Lamy C, Leger JM. Direct ethanol fuel cell (DEFC):Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes [J]. J. Power Sources,2006,158(1):18-24.
    [85]Spinace EV, Dias RR, Brandalise M, Linardi M, Neto AO. Electro-oxidation of ethanol using PtSnRh/C electrocatalysts prepared by an alcohol-reduction process [J]. Ionics,2010,16(1):91-95.
    [86]Beltramo GL, Shubina TE, Koper MTM. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface enhanced Raman spectroscopy and DFT [J]. ChemPhysChem,2005,6(12):2597-2606.
    [87]Falconer JL, Madix RJ. Kinetics and Mechanism of Autocatalytic Decomposition of Hcooh on Clean Ni(110) [J]. Surf. Sci.,1974,46(2): 473-504.
    [88]Falconer JL, McCarty JG, Madix RJ. Surface Explosion-Hcooh on Ni (110) [J]. Surf. Sci.,1974,42(1):329-330.
    [89]Benziger JB, Madix RJ. Decomposition of Formic-Acid on Ni (100) [J]. Surf. Sci.,1979,79(2):394-412.
    [90]Larson LA, Dickinson JT. Decomposition of Formic-Acid on Ru(1010) [J]. Surf. Sci.,1979,84(1):17-30.
    [91]Silverman EM, Madix RJ, Brundle CR. Formic-Acid Decomposition from Clean and Oxidized Nickel-Iron (100) Alloy Surfaces [J]. Journal of Vacuum Science& Technology,1981,18(2):616-619.
    [92]Sexton BA, Madix RJ. A Vibrational Study of Formic-Acid Interaction with Clean and Oxygen-Covered Silver (110) Surfaces [J]. Surf. Sci.,1981,105(1): 177-195.
    [93]Avery NR, Toby BH, Anton AB, Weinberg WH. Decomposition of Formic-Acid on Ru(001)-an Eels Search for a Formic Anhydride Intermediate [J]. Surf. Sci.,1982,122(1):L574-L578.
    [94]Toby BH, Avery NR, Anton AB, Weinberg WH. Electron-Energy Loss Spectroscopy of the Decomposition of Formic-Acid on Ru(001) [J]. J. Electron Spectrosc. Relat. Phenom.,1983,29(JAN):317-321.
    [95]Hayden BE, Prince K, Woodruff DP, Bradshaw AM. An Iras Study of Formic-Acid and Surface Formate Adsorbed on Cu(110) [J]. Surf. Sci.,1983, 133(2-3):589-604.
    [96]Dubois LH, Ellis TH, Zegarski BR, Kevan SD. New Insights into the Kinetics of Formic-Acid Decomposition on Copper Surfaces [J]. Surf. Sci.,1986, 172(2):385-397.
    [97]Columbia MR, Crabtree AM, Thiel PA. The Temperature and Coverage Dependences of Adsorbed Formic-Acid and Its Conversion to Formate on Pt(111) [J]. J.Am. Chem. Soc.,1992,114(4):1231-1237.
    [98]Columbia MR, Thiel PA. The Interaction of Formic-Acid with Transition-Metal Surfaces, Studied in Ultrahigh-Vacuum [J]. J. Electroanal. Chem.,1994, 369(1-2):1-14.
    [99]Samjeske G, Osawa M. Current oscillations during formic acid oxidation on a Pt electrode:Insight into the mechanism by time-resolved IR spectroscopy [J]. Angew. Chem.-Int. Edit.,2005,44(35):5694-5698.
    [100]Chen YX, Heinen M, Jusys Z, Behm RJ. Bridge-bonded formate:Active intermediate or spectator species in formic acid oxidation on a Pt film electrode? [J]. Langmuir,2006,22(25):10399-10408.
    [101]Chen YX, Heinen M, Jusys Z, Behm RB. Kinetics and mechanism of the electrooxidation of formic acid-Spectroelectrochemical studies in a flow cell [J]. Angew. Chem.-Int. Edit.,2006,45(6):981-985.
    [102]Gao F, Wang YL, Burkholder L, Hirschmugl C, Saldin DK, Poon HC, Sholl D, James J, Tysoe WT. The structure and reactivity of 2-butanol on Pd(111) [J]. Surf. Sci.,2008,602(13):2264-2270.
    [103]Samjeske G, Miki A, Ye S, Yamakata A, Mukouyama Y, Okamoto H, Osawa M. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum:A time-resolved surface-enhanced infrared study [J]. J. Phys. Chem. B,2005,109(49):23509-23516.
    [104]Chen YX, Miki A, Ye S, Sakai H, Osawa M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J]. J. Am. Chem. Soc.,2003, 125(13):3680-3681.
    [105]Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells [J]. J. Power Sources,2006,163(1):71-75.
    [106]McGovern MS, Waszczuk P, Wieckowski A. Stability of carbon monoxide adsorbed on nanoparticle Pt and Pt/Ru electrodes in sulfuric acid media [J]. Electrochim. Acta,2006,51(7):1194-1198.
    [107]Li XG, Hsing IM. Electrooxidation of formic acid on carbon supported PtxPd1-x (x=0-1) [J]. Electrochim. Acta,2006,51(17):3477-3483.
    [108]Liu B, Li HY, Die L, Zhang XH, Fan Z, Chen JH. Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation [J]. J. Power Sources,2009,186(1):62-66.
    [109]Xu JB, Zhao TS, Liang ZX. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells [J]. J. Power Sources,2008,185(2):857-861.
    [110]Uhm SY, Chung ST, Lee JY. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell [J]. Electrochem. Commun.,2007,9(8):2027-2031.
    [111]Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces [J]. J. Am. Chem. Soc.,2003,125(13): 3704-3705.
    [112]Macia MD, Herrero E, Feliu JM. Formic acid oxidation on Bi-Pt(111) electrode in perchloric acid media. A kinetic study [J]. J. Electroanal. Chem., 2003,554:25-34.
    [113]Ting SW, Cheng SA, Tsang KY, van der Laak N, Chan KY. Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure [J]. Chem. Commun.,2009, (47):7333-7335.
    [114]Xu D, Bliznakov S, Liu ZP, Fang JY, Dimitrov N. Composition-Dependent Electrocatalytic Activity of Pt-Cu Nanocube Catalysts for Formic Acid Oxidation [J].Angew. Chem.-Int. Edit.,2010,49(7):1282-1285.
    [115]Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskov JK. High throughput experimental and theoretical predictive screening of materials-A comparative study of search strategies for new fuel cell anode catalysts [J]. J. Phys. Chem. B,2003,107(40):11013-11021.
    [116]Bahr S, Borodin A, Hofft O, Kempter V, Allouche A. Interaction of formic acid with solid water [J].J. Chem. Phys.,2005,122(23).
    [117]Allouche A. Quantum studies of hydrogen bonding in formic acid and water ice surface [J]. J. Chem. Phys.,2005,122(23):234704.
    [118]Lee JG, Asciutto E, Babin V, Sagui C, Darden T, Roland C. Deprotonation of solvated formic acid:Car-Parrinello and metadynamics simulations [J]. J. Phys. Chem. B,2006,110(5):2325-2331.
    [119]Hartnig C, Grimminger J, Spohr, E. Adsoption of formic acid on Pt(111) in the presence of water [J]. J. Electroanal. Chem.,2007,607(1-2):133-139.
    [120]Neurock M, Janik M, Wieckowski A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt [J]. Faraday Discuss.,2008,140:363-378.
    [121]Liu ZP, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces:A density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces [J]. J. Am. Chem. Soc.,2003,125(7):1958-1967.
    [122]Cossi M, Scalmani G, Rega N, Barone V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J. Chem. Phys.,2002,117(1):43-54.
    [123]Mennucci B, Tomasi J. Continuum solvation models:A new approach to the problem of solute's charge distribution and cavity boundaries [J]. J. Chem. Phys.,1997,106(12):5151-5158.
    [124]Cuesta A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum [J]. J. Am. Chem. Soc.,2006, 128(41):13332-13333. ABINIT适用于固体物理、材料科学、化学和材料工程的研究,包括固体、分子、材料的表面及界面。
    SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)适用于分子和固体的电子结构计算和分子动力学模拟[80]。SIESTA使用标准的Kohn-Sham自洽密度泛函方法,结合局域密度近似(LDA-LSD)或广义梯度近似(GGA)。计算使用完全非局域形式(Keinman-Bylander)的标准模守恒赝势。基组是数值原子轨道的线性组合(LCAO)。它允许任意个角动量,多个zeta,极化和截断轨道。计算中把电子波函数和密度投影到实空间网格中,以计算Hartree和XC势,以及矩阵元素。除了标准的Rayleigh-Ritz本征态方法外,程序还允许使用占据轨道(价键或类Wannier函数)的局域线性组合,使得计算时间和内存与原子大小成线性标度,因而可以在一般的工作站上模拟几百个原子的体系,计算效率较高。
    除了上面提到的几个程序外,还有多个用于周期性体系计算的软件,如PWSCF、 CPMD[81]、 DACAPO、Dmol3、 CP2K[82]、 CRYSTAL、 ONETEP[83-85]、 OPENMX[86]、 SeqQuest和ConQuest[87]等。详细的介绍可以参考各个程序的使用手册或在线介绍。
    [1]Kohn W, Becke AD, Parr RG. Density functional theory of electronic structure [J].J. Phys. Chem.,1996,100(31):12974-12980.
    [2]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals [J]. Rev. Mod. Phys.,1999,71(5):1253-1266.
    [3]Jones RO, Gunnarsson O. The density functional formalism, its applications and prospects [J]. Rev. Mod. Phys.,1989,61(3):689-746.
    [4]Ziegler T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics [J]. Chem. Rev.,1991,91(5):651-667.
    [5]Parr RG, Density-Functional Theory of Atoms and Molecules [M]. Oxford University Press:1989.
    [6]Singnurkar P, Bako I, Koch HP, Demirci E, Winkler A, Schennach R. DFT and RAIRS investigations of methanol on Cu(110) and on oxygen-modified Cu(110) [J]. J. Phys. Chem. C,2008,112(36):14034-14040.
    [7]Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative Minimization Techniques for Abinitio Total-Energy Calculations-Molecular-Dynamics and Conjugate Gradients [J]. Rev. Mod. Phys.,1992, 64(4):1045-1097.
    [8]Mattsson TR, Paddison SJ. Methanol at the water-platinum interface studied by ab initio molecular dynamics [J]. Surf. Sci.,2003,544(2-3):L697-L702.
    [9]Pulay P, Fogarasi G. Geometry Optimization in Redundant Internal Coordinates [J]. J. Chem. Phys.,1992,96(4):2856-2860.
    [10]Thomas LH. The calculation of atomic fields [J]. Proceedings of the Cambridge Philosophical Society,1927,23:542-548.
    [11]Fermi E. Un Metodo Statistico per la Determinazione di alcune Priorieta dell'Atome [J]. Rend. Accad. Naz. Lincei,1927,6:602-607.
    [12]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev. B,1964, 136(3B):B864-&.
    [13]Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects [J]. Physical Review,1965,140(4A):1133-1138.
    [14]Wigner EP. Effects of the electron interaction on the energy levels of electrons in metals [J]. Trans. Faraday Soc.,1938,34:678-685.
    [15]Hedin L, Lundqvist BI. Explicit local exchange-correlation potentials [J]. J. Phys. C,1971,4(14):2064-2083.
    [16]Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis [J]. Canadian Journal of Physics,1980,58(8):1200-1211.
    [17]Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996, 54(23):16533-16539.
    [18]Wang Y, Perdew JP. Correlation Hole of the Spin-Polarized Electron-Gas, with Exact Small-Wave-Vector and High-Density Scaling [J]. Phys. Rev. B,1991, 44(24):13298-13307.
    [19]Becke AD. Density-Functional Thermochemistry.2. the Effect of the Perdew-Wang Generalized-Gradient Correlation Correction [J]. J. Chem. Phys., 1992,97(12):9173-9177.
    [20]Kurth S, Perdew JP, Blaha P. Molecular and solid-state tests of density functional approximations:LSD, GGAs, and meta-GGAs [J]. Int. J. Quantum Chem.,1999,75(4-5):889-909.
    [21]Gronbeck H. First principles studies of metal-oxide surfaces [J]. Top. Catal., 2004,28(1-4):59-69.
    [22]Ashcroft NW, Mermin ND, Solid Stace Physics. In Thomson Learning, Inc: 1976.
    [23]Chadi DJ, Cohen ML. Special Points in the Brillouin Zone [J]. Phys. Rev. B, 1973,8(12):5747-5753.
    [24]Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13(12):5188-5192.
    [25]Evarestov RA, Smirnov VP. Modification of the Monkhorst-Pack special points meshes in the Brillouin zone for density functional theory and Hartree-Fock calculations [J]. Phys. Rev. B,2004,70(23):233101.
    [26]Phillips JC. Energy-Band Interpolation Scheme Based on a Pseudopotential [J]. Physical Review,1958,112(3):685-695.
    [27]Cohen ML, Heine V. The fitting of pseudopotentials to experimental data and their subsequent application [J]. Solid State Physics,1970,24:37-248.
    [28]Yin MT, Cohen ML. Theory of ab initio pseudopotential calculations [J]. Phys. Rev. B,1982,25(12):7403-7412.
    [29]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci.,1996,6(1):15-50.
    [30]Pickett WE. Pseudopotential methods in condensed matter applications [J]. Comput. Phys. Rep.,1989,9:115-197.
    [31]Vackar J, Simunek A. Phase-Shift Technique for Generating Generalized Norm-Conserving Semilocal Pseudopotentials [J]. Solid State Commun.,1992, 81(10):837-840.
    [32]Fuchs M, Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory [J]. Comput. Phys. Commun.,1999,119(1):67-98.
    [33]Zunger A, Cohen ML. First-principles nonlocal-pseudopotential approach in the density-functional formalism:Development and application to atoms [J]. Phys. Rev. B,1978,18(10):5449-5472.
    [34]Zunger A, Cohen ML. First-principles nonlocal-pseudopotential approach in the density-functional formalism. Ⅱ. Application to electronic and structural properties of solids [J]. Phys. Rev. B,1979,20(10):4082-4108.
    [35]Hamann DR, Schluter M, Chiang C. Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett.,1979,43(20):1494-1497.
    [36]Vanderbilt D. Optimally smooth norm-conserving pseudopotentials [J]. Phys. Rev. B,1985,32(12):8412-8415.
    [37]Hamann DR. Generalized norm-conserving pseudopotentials [J]. Phys. Rev. B, 1989,40(5):2980-2987.
    [38]Shirley EL, Allan DC, Martin RM, Joannopoulos JD. Extended norm-conserving pseudopotentials [J]. Phys. Rev. B,1989,40(6):3652-3660.
    [39]Troullier N, Martins JL. Efficient Pseudopotentials for Plane-Wave Calculations [J]. Phys. Rev. B,1991,43(3):1993-2006.
    [40]Troullier N, Martins JL. Efficient Pseudopotentials for Plane-Wave Calculations.2. Operators for Fast Iterative Diagonalization [J]. Phys. Rev. B, 1991,43(11):8861-8869.
    [41]Kleinman L, Bylander DM. Efficacious Form for Model Pseudopotentials [J]. Phys. Rev. Lett.,1982,48(20):1425-1428.
    [42]Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory [J]. Phys. Rev. Lett.,1985,55(22):2471-2474.
    [43]Gillan MJ. Calculation of the Vacancy Formation Energy in Aluminium [J]. J. Phys., Condens. Matter,1989,1(4):689-711.
    [44]Wood DM, Zunger A. A new method for diagonalising large matrices [J]. Journal of Physics A,1985,18(9):1343-1359.
    [45]Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration [J]. Chem. Phys. Lett.,1980,73(2):393-398.
    [46]Siegbahn P, Heiberg A, Roos B, Levy B. Comparison of the Super-Cl and the Newton-Raphson Scheme in the Complete Active Space Scf Method [J]. Phys. Scr.,1980,21(3-4):323-327.
    [47]Simons J, Jorgensen P, Taylor H, Ozment J. Walking on Potential-Energy Surfaces [J]. J. Phys. Chem.,1983,87(15):2745-2753.
    [48]Khait YG, Puzanov YV. Search for stationary points on multidimensional surfaces [J]. Theochem-J. Mol. Struct.,1997,398:101-109.
    [49]Cerjan CJ, Miller WH. On Finding Transition-States [J]. J. Chem. Phys.,1981, 75(6):2800-2806.
    [50]Baker J. An Algorithm for the Location of Transition-States [J]. J. Comput. Chem.,1986,7(4):385-395.
    [51]Shepard R, Minkoff M. Some comments on the DIIS method [J]. Mol. Phys., 2007,105(19-22):2839-2848.
    [52]Li XS, Frisch MJ. Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method [J]. J. Chem. Theory Comput., 2006,2(3):835-839.
    [53]Liotard DA. Algorithmic Tools in the Study of Semiempirical Potential Surfaces [J]. Int. J. Quantum Chem.,1992,44(5):723-741.
    [54]Henkelman G, Jonsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives [J]. J. Chem. Phys., 1999,111(15):7010-7022.
    [55]Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jonsson H. Comparison of methods for finding saddle points without knowledge of the final states [J]. J. Chem. Phys.,2004,121(20):9776-9792.
    [56]Heyden A, Bell AT, Keil FJ. Efficient methods for finding transition states in chemical reactions:Comparison of improved dimer method and partitioned rational function optimization method [J]. J. Chem. Phys.,2005,123(22): 224101.
    [57]Kaestner J, Sherwood P. Superlinearly converging dimer method for transition state search [J]. J. Chem. Phys.,2008,128(1):014106.
    [58]Halgren TA, Lipscomb WN. Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition-States [J]. Chem. Phys. Lett.,1977,49(2):225-232.
    [59]Peng CY, Schlegel HB. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition-States [J]. Isr. J. Chem.,1993,33(4):449-454.
    [60]Bofill JM, Anglada JM. Finding transition states using reduced potential-energy surfaces [J]. Theor. Chem. Acc.,2001,105(6):463-472.
    [61]Fukui K. The Path of Chemical-Reactions-the Irc Approach [J]. Accounts Chem. Res.,1981,14(12):363-368.
    [62]Gonzalez C, Schlegel HB. Reaction-Path Following in Mass-Weighted Internal Coordinates [J]. J. Phys. Chem.,1990,94(14):5523-5527.
    [63]Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points [J]. J. Chem. Phys.,2000,113(22):9978-9985.
    [64]Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. J. Chem.
    Phys.,2000,113(22):9901-9904.
    [65]Mills G, Jonsson H. Quantum and Thermal Effects in H-2 Dissociative Adsorption-Evaluation of Free-Energy Barriers in Multidimensional Quantum-Systems [J]. Phys. Rev. Lett.,1994,72(7):1124-1127.
    [66]Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths [J].J. Chem. Phys.,2008,128(13):134106
    [67]Elber R, Karplus M. A Method for Determining Reaction Paths in Large Molecules-Application to Myoglobin [J]. Chem. Phys. Lett.,1987,139(5): 375-380.
    [68]Munro LJ, Wales DJ. Defect migration in crystalline silicon [J]. Phys. Rev. B, 1999,59(6):3969-3980.
    [69]Kumeda Y, Wales DJ, Munro LJ. Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory. Application to C10H10 and defect migration in crystalline silicon [J]. Chem. Phys. Lett.,2001,341(1-2):185-194.
    [70]Baboul AG, Schlegel HB. Improved method for calculating projected frequencies along a reaction path [J]. J. Chem. Phys.,1997,107(22): 9413-9417.
    [71]Alvarezcollado JR. A New Method for Calculating Energy-Levels in the Frame of the Hartree-Fock Approximation [J].Mol. Phys.,1984,52(5):1237-1239.
    [72]Quapp W, Hirsch M, Imig O, Heidrich D. Searching for saddle points of potential energy surfaces by following a reduced gradient [J]. J. Comput. Chem.,1998,19(9):1087-1100.
    [73]Schmitt LM. Theory of genetic algorithms [J]. Theor. Comput. Sci.,2001, 259(1-2):1-61.
    [74]Liu ZP, Jenkins SJ, King DA. Car exhaust catalysis from first principles: Selective NO reduction under excess O-2 conditions on Ir [J]. J. Am. Chem. Soc.,2004,126(34):10746-10756.
    [75]Liu ZP, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces:A density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces [J]. J. Am. Chem. Soc.,2003,125(7):1958-1967.
    [76]Johnson DD. Modified Broyden Method for Accelerating Convergence in Self-Consistent Calculations [J]. Phys. Rev. B,1988,38(18):12807-12813.
    [77]Broyden CG. A Class of Methods for Solving Nonlinear Simultaneous Equations [J]. Mathematics of Computation,1965,19(92):557-&.
    [78]Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. First-principles simulation:ideas, illustrations and the CASTEP code [J]. J. Phys.-Condes. Matter,2002,14(11):2717-2744.
    [79]Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC. First-principles computation of material properties:the ABINIT software project [J]. Comput. Mater. Sci.,2002,25(3):478-492.
    [80]Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation [J]. J. Phys. Condes. Matter,2002,14(11):2745-2779.
    [81]Andreoni W, Curioni A. New advances in chemistry and materials science with CPMD and parallel computing [J]. Parallel Comput.,2000,26(7-8):819-842.
    [82]VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J. QUICKSTEP:Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Comput. Phys. Commun.,2005, 167(2):103-128.
    [83]Skylaris CK, Haynes PD, Mostofi AA, Payne MC. Introducing ONETEP: Linear-scaling density functional simulations on parallel computers [J]. J. Chem. Phys.,2005,122(8):084119.
    [84]Skylaris CK, Haynes PD, Mostofi AA, Payne MC. Using ONETEP for accurate and efficient O(N) density functional calculations [J]. J. Phys. Condes. Matter, 2005,17(37):5757-5769.
    [85]Haynes PD, Skylaris CK, Mostofi AA, Payne MC. ONETEP:linear-scaling density-functional theory with local orbitals and plane waves [J]. Phys. Status Solidi B-Basic Solid State Phys.,2006,243(11):2489-2499.
    [86]Ozaki T, Kino H. Efficient projector expansion for the ab initio LCAO method [J]. Phys. Rev. B,2005,72(4):045121.
    [87]Bowler DR, Choudhury R, Gillan MJ, Miyazaki T. Recent progress with large-scale ab initio calculations:the CONQUEST code [J]. Phys. Status Solidi B-Basic Solid State Phys.,2006,243(5):989-1000. 心的协同脱氢反应能垒与OH解离能垒基本相等。这两个反应可以用来解释在甲醇的电化学氧化反应中有少量甲醛和甲酸生成的实验现象。
    从结构上看,甲醇和乙醇之间只差了一个甲基基团。然而,从脱氢氧化反应选择性上看,两者差别很大。所以我们可以认为,甲基是决定乙醇反应选择性的一个关键的结构因素。Mulliken电荷分析结果显示,在乙醇的协同脱氢反应过渡态中,[CH3HC=OH]基团带有部分正电荷([CH3HC-OH]δ+)。这可能是由于过渡态中形成了部分分子内双键,导致羟基氢原子部分质子化所造成的。显然,对比[CH3HC=OH]δ+和[H2C=OH]δ+可知,甲基供电子作用有利于稳定带正电的过渡态[CH3HC=OH]δ+,因此使得乙醇的协同反应途径能垒降低。而在甲醇的协同反应过程中却不存在这种作用。
    本章采用周期性密度泛函方法研究了乙醇在Pt(111)表面的脱氢氧化反应过程,得到了乙醇氧化生成乙醛进而生成乙酸的反应势能面。重点研究了乙醇脱氢氧化生成乙醛的三种不同反应通道,定量计算了它们的反应速率常数,并考察了其它共吸附物种如H和H2O的存在对反应活性和选择性的影响。结果显示,乙醇氧化生成乙醛的过程是通过一步脱两个氢的协同反应机理实现的,而且这种协同反应途径不受电极表面其它吸附物种的影响。
    在金属表面催化领域,这是首次通过理论计算的方法确定了协同脱氢反应过渡态。它的存在合理的解释了乙醇电氧化反应中产物乙醛的高选择性问题。我们的反应机理解释了很多实验现象,计算结果得到众多实验事实的支持。通过Mulliken电荷分析以及与甲醇在Pt(111)表面的脱氢氧化反应进行对比结果显示,乙醇中甲基基团的存在是稳定乙醇协同脱氢反应过渡态的重要因素。这说明在实验设计中,可以通过改变反应物的配体构型或者改变金属催化剂的组成(将催化剂表面视为反应过渡态的一个配体)来改善醇类的氧化反应选择性,从而达到提高醇类燃料电池氧化性能的目的。[1] Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy [J]. Annu. Rev. Energ. Environ.,1996,21:403-465. [2] Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C. Development of
    anode catalysts for a direct ethanol fuel cell [J]. J. Appl. Electrochem.,2004, 34(4):439-446.
    [3]Thounthong P, Davat B, Rael S, Sethakul P. Fuel Cell High-Power Applications [J]. IEEE Ind. Electron. Mag.,2009,3(1):32-46.
    [4]Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ. Ethanol oxidation on novel, carbon supported Pt alloy catalysts-Model studies under defined diffusion conditions [J]. Electrochim. Acta,2006,52(1):221-233.
    [5]Vigier F, Rousseau S, Coutanceau C, Leger JM, Lamy C. Electrocatalysis for the direct alcohol fuel cell [J]. Top. Catal.,2006,40(1-4):111-121.
    [6]Wang H, Jusys Z, Behm RJ. Ethanol electrooxidation on a carbon-supported Pt catalyst:Reaction kinetics and product yields [J]. J. Phys. Chem. B,2004, 108(50):19413-19424.
    [7]Hitmi H, Belgsir EM, Leger JM, Lamy C, Lezna RO. A Kinetic, Analysis of the Electrooxidation of Ethanol at a Platinum-Electrode in Acid-Medium [J]. Electrochim. Acta,1994,39(3):407-415.
    [8]Iwasita T, Pastor E. A Dems and Ftir Spectroscopic Investigation of Adsorbed Ethanol on Polycrystalline Platinum [J]. Electrochim. Acta,1994,39(4): 531-537.
    [9]Lee AF, Gawthrope DE, Hart NJ, Wilson K. A Fast XPS study of the surface chemistry of ethanol over Pt{111} [J]. Surf. Sci.,2004,548(1-3):200-208.
    [10]Zhao HB, Kim J, Koel BE. Adsorption and reaction of acetaldehyde on Pt(111) and Sn/Pt(111) surface alloys [J]. Surf. Sci.,2003,538(3):147-159.
    [11]Alcala R, Mavrikakis M, Dumesic JA. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111) [J]. J. Catal., 2003,218(1):178-190.
    [12]Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative Minimization Techniques for Abinitio Total-Energy Calculations-Molecular-Dynamics and Conjugate Gradients [J]. Rev. Mod. Phys.,1992, 64(4):1045-1097.
    [13]Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996, 54(23):16533-16539.
    [14]Liu ZP, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces:A density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces [J]. J. Am. Chem. Soc.,2003,125(7):1958-1967.
    [15]Liu ZP, Jenkins SJ, King DA. Car exhaust catalysis from first principles: Selective NO reduction under excess O-2 conditions on Ir [J]. J. Am. Chem. Soc.,2004,126(34):10746-10756.
    [16]Gronbeck H. First principles studies of metal-oxide surfaces [J]. Top. Catal., 2004,28(1-4):59-69.
    [17]Delbecq F, Vigne F. Acetaldehyde on Pt(111) and Pt/Sn(111):A DFT study of the adsorption structures and of the vibrational spectra [J]. J. Phys. Chem. B, 2005,109(21):10797-10806.
    [18]Rousseau S, Coutanceau C, Lamy C, Leger JM. Direct ethanol fuel cell (DEFC):Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes [J]. J. Power Sources,2006,158(1):18-24.
    [19]Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell [J]. Catal. Today,1997,38(4):445-457.
    [20]Desai SK, Neurock M, Kourtakis K. A periodic density functional theory study of the dehydrogenation of methanol over Pt(111) [J]. J. Phys. Chem. B,2002, 106(10):2559-2568.
    [21]Greeley J, Mavrikakis M. Competitive paths for methanol decomposition on Pt(111) [J]. J.Am. Chem. Soc.,2004,126(12):3910-3919.
    [22]Greeley J, Mavrikakis M. A first-principles study of methanol decomposition on Pt(111) [J]. J. Am. Chem. Soc.,2002,124(24):7193-7201.
    [1]Zhao F, Slade RCT, Varcoe JR. Techniques for the study and development of microbial fuel cells:an electrochemical perspective [J]. Chem. Soc. Rev., 2009,38(7):1926-1939.
    [2]Thounthong P, Davat B, Rael S, Sethakul P. Fuel Cell High-Power Applications [J]. IEEE Ind. Electron. Mag.,2009,3(1):32-46.
    [3]Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. J. Power Sources,2002,105(2):283-296.
    [4]Ioannides T. Thermodynamic analysis of ethanol processors for fuel cell applications [J]. J. Power Sources,2001,92(1-2):17-25.
    [5]Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C. Development of anode catalysts for a direct ethanol fuel cell [J]. J. Appl. Electrochem.,2004, 34(4):439-446.
    [6]Wang H, Jusys Z, Behm RJ. Ethanol electrooxidation on a carbon-supported Pt catalyst:Reaction kinetics and product yields [J]. J. Phys. Chem. B,2004, 108(50):19413-19424.
    [7]Vigier F, Rousseau S, Coutanceau C, Leger JM, Lamy C. Electrocatalysis for the direct alcohol fuel cell [J]. Top. Catal.,2006,40(1-4):111-121.
    [8]Antolini E. Catalysts for direct ethanol fuel cells [J]. J. Power Sources,2007, 170(1):1-12.
    [9]Demirci UB. Direct liquid-feed fuel cells:Thermodynamic and environmental concerns [J]. J. Power Sources,2007,169(2):239-246.
    [10]Liguras DK, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts [J]. Appl. Catal. B-Environ.,2003,43(4):345-354.
    [11]Deluga GA, Salge JR, Schmidt LD, Verykios XE. Renewable hydrogen from ethanol by autothermal reforming [J]. Science,2004,303(5660):993-997.
    [12]Sheng PY, Chiu WW, Yee A, Morrison SJ, Idriss H. Hydrogen production from ethanol over bimetallic Rh-M/CeO2 (M= Pd or Pt) [J]. Catal. Today, 2007,129(3-4):313-321.
    [13]Davda RR, Dumesic JA. Renewable hydrogen by aqueous-phase reforming of glucose [J]. Chem. Commun.,2004, (1):36-37.
    [14]Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J]. Angew. Chem.-Int. Edit.,2007,46(38):7164-7183.
    [15]Gootzen JFE, Visscher W, vanVeen JAR. Characterization of ethanol and 1,2-ethanediol adsorbates on platinized platinum with Fourier transform
    infrared spectroscopy and differential electrochemical mass spectrometry [J]. Langmuir,1996,12(21):5076-5082.
    [16]Schmidt VM, Ianniello R, Pastor E, Gonzalez S. Electrochemical reactivity of ethanol on porous Pt and PtRu:Oxidation/reduction reactions in 1 M HClO4 [J].J. Phys. Chem.,1996,100(45):17901-17908.
    [17]Wang H, Jusys Z, Behm RJ. Ethanol and Acetaldehyde Adsorption on a Carbon-Supported Pt Catalyst:A Comparative DEMS Study [J]. Fuel Cells, 2004,4(1-2):113-125.
    [18]Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ. Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts:In situ FTIR spectroscopy and on-line DEMS studies [J]. Phys. Chem. Chem. Phys.,2007,9(21):2686-2696.
    [19]Ianniello R, Schmidt VM, Rodriguez JL, Pastor E. Electrochemical surface reactions of intermediates formed in the oxidative ethanol adsorption on porous Pt and PtRu [J]. J. Electroanal. Chem.,1999,471(2):167-179.
    [20]Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ. Ethanol oxidation on novel, carbon supported Pt alloy catalysts-Model studies under defined diffusion conditions [J]. Electrochim. Acta,2006,52(1):221-233.
    [21]Beden B, Morin M-C, Hahn F, Lamy C. In-Situ Analysis by Infrared Reflectance Spectroscopy of the Adsorbed Species Resulting from the Electrosorption of Ethanol on Platinum in Acid Medium [J]. J. Electroanal. Chem.,1987,229(1-2):353-366.
    [22]Chang YW, Liu CW, Wei YC, Wang KW. Promotion of PtRu/C anode catalysts for ethanol oxidation reaction by addition of Sn modifier [J]. Electrochem. Commun.,2009,11(11):2161-2164.
    [23]Hitmi H, Belgsir EM, Leger JM, Lamy C, Lezna RO. A Kinetic, Analysis of the Electrooxidation of Ethanol at a Platinum-Electrode in Acid-Medium [J]. Electrochim. Acta,1994,39(3):407-415.
    [24]Shao MH, Adzic RR. Electrooxidation of ethanol on a Pt electrode in acid solutions:in situ ATR-SEIRAS study [J]. Electrochim. Acta,2005,50(12): 2415-2422.
    [25]Fujiwara N, Friedrich KA, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry [J]. J. Electroanal. Chem.,1999,472(2):120-125.
    [26]Camara GA, de Lima RB, Iwasita T. Catalysis of ethanol electro oxidation by PtRu:the influence of catalyst composition [J]. Electrochem. Commun.,2004, 6(8):812-815.
    [27]Mann J, Yao N, Bocarsly AB. Characterization and analysis of new catalysts for a direct ethanol fuel cell [J]. Langmuir,2006,22(25):10432-10436.
    [28]Rousseau S, Coutanceau C, Lamy C, Leger JM. Direct ethanol fuel cell (DEFC):Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes [J]. J. Power Sources,2006,158(1):18-24.
    [29]Wang H, Jusys Z, Behm RJ. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts:A quantitative DEMS study [J]. J. Power Sources, 2006,154(2):351-359.
    [30]Zhou WJ, Zhou ZH, Song SQ, Li WZ, Sun GQ, Tsiakaras P, Xin Q. Pt based anode catalysts for direct ethanol fuel cells [J]. Appl. Catal. B,2003,46(2): 273-285.
    [31]de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques [J]. J. Phys. Chem. B,2002,106(38): 9825-9830.
    [32]Sen Gupta S, Datta J. A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits [J]. J. Electroanal. Chem.,2006,594(1):65-72.
    [33]Tsiakaras PE. PtM/C (M= Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs:Structural characteristics and cell performance [J]. J. Power Sources,2007,171(1):107-112.
    [34]Hazzazi OA, Attard GA, Wells PB, Vidal-Iglesias FJ, Casadesus M. Electrochemical characterisation of gold on Pt{h k l} for ethanol electrocatalysis [J].J. Electroanal. Chem.,2009,625(2):123-130.
    [35]Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells [J]. J. Power Sources,2004,131(1-2):217-223.
    [36]Santos VP, Del Colle V, de Lima RB, Tremiliosi G. In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands [J]. Electrochim. Acta,2007,52(7):2376-2385.
    [37]Spinace EV, Dias RR, Brandalise M, Linardi M, Neto AO. Electro-oxidation of ethanol using PtSnRh/C electrocatalysts prepared by an alcohol-reduction process [J]. Ionics,2010,16(1):91-95.
    [38]Antolini E. Platinum-based ternary catalysts for low temperature fuel cells Part Ⅱ. Electrochemical properties [J]. Appl. Catal. B,2007,74(3-4): 337-350.
    [39]Wu G, Swaidan R, Cui GF. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process [J].J. Power Sources,2007,172(1):180-188.
    [40]Tarnowski DJ, Korzeniewski C. Effects of surface step density on the electrochemical oxidation of ethanol to acetic acid [J]. J. Phys. Chem. B,1997, 101(2):253-258.
    [41]Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316(5825):732-735.
    [42]Davis JL, Barteau MA. Spectroscopic Identification of Alkoxide, Aldehyde, and Acyl Intermediates in Alcohol Decomposition on Pd(111) [J]. Surf. Sci., 1990,235(2-3):235-248.
    [43]Shekhar R, Barteau MA, Plank RV, Vohs JM. Adsorption and reaction of aldehydes on Pd surfaces [J]. J. Phys. Chem. B,1997,101(40):7939-7951.
    [44]Weststrate CJ, Ludwig W, Bakker JW, Gluhoi AC, Nieuwenhuys BE. Ethanol
    adsorption, decomposition and oxidation on Ir(111):A high resolution XPS study [J]. Chemphyschem,2007,8(6):932-937.
    [45]Alcala R, Mavrikakis M, Dumesic JA. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111) [J]. J. Catal., 2003,218(1):178-190.
    [46]Alcala R, Shabaker JW, Huber GW, Sanchez-Castillo MA, Dumesic JA. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts [J]. J. Phys. Chem. B,2005,109(6):2074-2085.
    [47]Shin JW, Tornquist WJ, Korzeniewski C, Hoaglund CS. Elementary steps in the oxidation and dissociative chemisorption of ethanol on smooth and stepped surface planes of platinum electrodes [J]. Surf. Sci.,1996,364(2): 122-130.
    [48]Vesselli E, Coslovich G, Comelli G, Rosei R. Modelling of ethanol decomposition on Pt(111):Ae comparison with experiment and density functional theory [J]. J. Phys. Condes. Matter,2005,17(39):6139-6148.
    [49]Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation [J]. J. Phys.-Condes. Matter,2002,14(11):2745-2779.
    [50]Troullier N, Martins JL. Efficient Pseudopotentials for Plane-Wave Calculations [J]. Phys. Rev. B,1991,43(3):1993-2006.
    [51]Junquera J, Paz O, Sanchez-Portal D, Artacho E. Numerical atomic orbitals for linear-scaling calculations [J]. Phys. Rev. B,2001,64(23).
    [52]Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996, 54(23):16533-16539.
    [53]Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative Minimization Techniques for Abinitio Total-Energy Calculations-Molecular-Dynamics and Conjugate Gradients [J]. Rev. Mod. Phys.,1992, 64(4):1045-1097.
    [54]Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. First-principles simulation:ideas, illustrations and the CASTEP code [J]. J. Phys.-Condes. Matter,2002,14(11):2717-2744.
    [55]Wang HF, Liu ZP. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum:New transition-state searching method for resolving the complex reaction network [J]. J. Am. Chem. Soc.,2008,130(33): 10996-11004.
    [56]Climent V, Gomez R, Orts JM, Feliu JM. Thermodynamic analysis of the temperature dependence of OH adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption [J]. J. Phys. Chem. B,2006,110(23):11344-11351.
    [57]Markovic NM, Schmidt TJ, Grgur BN, Gasteiger HA, Behm RJ, Ross PN. Effect of temperature on surface processes at the Pt(111)-liquid interface: Hydrogen adsorption, oxide formation, and CO oxidation [J]. J. Phys. Chem. B,1999,103(40):8568-8577.
    [58]Chang SC, Leung LWH, Weaver MJ. Metal Crystallinity Effects in Electrocatalysis as Probed by Real-Time Ftir Spectroscopy-Electrooxidation of Formic-Acid, Methanol, and Ethanol on Ordered Low-Index Platinum Surfaces [J]. J. Phys. Chem.,1990,94(15):6013-6021.
    [59]Ma Z, Zaera F. In situ reflection-absorption infrared spectroscopy at the liquid-solid interface:decomposition of organic molecules on polycrystalline platinum substrates [J]. Catal. Lett.,2004,96(1-2):5-12.
    [60]Xia XH, Liess HD, Iwasita T. Early stages in the oxidation of ethanol at low index single crystal platinum electrodes [J]. J. Electroanal. Chem.,1997, 437(1-2):233-240.
    [61]Bligaard T, Norskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J. The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].J. Catal.,2004,224(1):206-217.
    [62]Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces [J]. J. Am. Chem. Soc.,2003,125(13): 3704-3705.
    [63]Liu ZP, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces:A density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces [J]. J. Am. Chem. Soc.,2003,125(7):1958-1967.
    [64]Liu ZP, Hu P. General trends in the barriers of catalytic reactions on transition metal surfaces [J].J. Chem. Phys.,2001,115(11):4977-4980.
    [65]Desai SK, Neurock M, Kourtakis K. A periodic density functional theory study of the dehydrogenation of methanol over Pt(111) [J]. J. Phys. Chem. B, 2002,106(10):2559-2568.
    [66]Michaelides A, Hu P. Insight into microscopic reaction pathways in heterogeneous catalysis [J]. J. Am. Chem. Soc.,2000,122(40):9866-9867.
    [67]Liu ZP, Hu P, Lee MH. Insight into association reactions on metal surfaces: Density-functional theory studies of hydrogenation reactions on Rh(111) [J]. J. Chem. Phys.,2003,119(12):6282-6289.
    [1]Kim J, Jung C, Rhee CK, Lim TH. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111) [J]. Langmuir,2007,23(21): 10831-10836.
    [2]Uhm SY, Chung ST, Lee JY. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell [J]. Electrochem. Commun.,2007,9(8):2027-2031.
    [3]Beltramo GL, Shubina TE, Koper MTM. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface enhanced Raman spectroscopy and DFT [J]. ChemPhysChem,2005,6(12):2597-2606.
    [4]Wang X, Tang Y, Gao Y, Lu TH. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell [J]. J. Power Sources,2008,175(2): 784-788.
    [5]Miyake H, Okada T, Samjeske G, Osawa M. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy [J]. Phys. Chem. Chem. Phys.,2008,10(25):3662-3669.
    [6]Weber M, Wang JT, Wasmus S, Savinell RF. Formic acid oxidation in a polymer electrolyte fuel cell-A real-time mass-spectrometry study [J]. J. Electrochem. Soc.,1996,143(7):L158-L160.
    [7]Yu XW, Pickup PG. Recent advances in direct formic acid fuel cells (DFAFC) [J]. J. Power Sources,2008,182(1):124-132.
    [8]Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316(5825):732-735.
    [9]Samjeske G, Osawa M. Current oscillations during formic acid oxidation on a Pt electrode:Insight into the mechanism by time-resolved IR spectroscopy [J]. Angew. Chem.-Int. Edit.,2005,44(35):5694-5698.
    [10]Chen YX, Heinen M, Jusys Z, Behm RJ. Bridge-bonded formate:Active intermediate or spectator species in formic acid oxidation on a Pt film electrode? [J]. Langmuir,2006,22(25):10399-10408.
    [11]Chen YX, Heinen M, Jusys Z, Behm RB. Kinetics and mechanism of the electrooxidation of formic acid-Spectroelectrochemical studies in a flow cell [J]. Angew. Chem.-Int. Edit.,2006,45(6):981-985.
    [12]Samjeske G, Miki A, Ye S, Yamakata A, Mukouyama Y, Okamoto H, Osawa M. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum:A time-resolved surface-enhanced infrared study [J]. J. Phys. Chem. B,2005,109(49):23509-23516.
    [13]Gao W, Zhao M, Jiang Q. Pathways for the non-CO-involved oxidation of methanol on Pt(111) [J]. ChemPhysChem,2008,9(14):2092-2098.
    [14]Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T. Direct formic acid fuel cells [J]. J. Power Sources,2002,111(1):83-89.
    [15]Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells [J]. J. Power Sources,2006,163(1):71-75.
    [16]McGovern MS, Waszczuk P, Wieckowski A. Stability of carbon monoxide adsorbed on nanoparticle Pt and Pt/Ru electrodes in sulfuric acid media [J]. Electrochim. Acta,2006,51(7):1194-1198.
    [17]Li XG, Hsing IM. Electrooxidation of formic acid on carbon supported PtxPd1-x (x=0-1) [J]. Electrochim. Acta,2006,51(17):3477-3483.
    [18]Liu B, Li HY, Die L, Zhang XH, Fan Z, Chen JH. Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation [J]. J. Power Sources,2009,186(1):62-66.
    [19]Xu JB, Zhao TS, Liang ZX. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells [J]. J. Power Sources,2008,185(2):857-861.
    [20]Zhang LJ, Wang ZY, Xia DG. Bimetallic PtPb for formic acid electro-oxidation [J]. J. Alloys Compd.,2006,426(1-2):268-271.
    [21]Macia MD, Herrero E, Feliu JM. Formic acid oxidation on Bi-Pt(111) electrode in perchloric acid media. A kinetic study [J]. J. Electroanal. Chem., 2003,554:25-34.
    [22]Ting SW, Cheng SA, Tsang KY, van der Laak N, Chan KY. Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure [J]. Chem. Commun.,2009, (47):7333-7335.
    [23]Ha S, Larsen R, Masel RI. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells [J]. J. Power Sources,2005,144(1):28-34.
    [24]Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid [J]. J. Phys. Chem. B,2006, 110(27):13393-13398.
    [25]Brandt K, Steinhausen M, Wandelt K. Catalytic and electro-catalytic oxidation of formic acid on the pure and Cu-modified Pd(111)-surface [J]. J. Electroanal. Chem.,2008,616(1-2):27-37.
    [26]Zhang ZG, Zhou XC, Liu CP, Xing W. The mechanism of formic acid electro oxidation on iron tetrasulfophthalocyanine-modified platinum electrode [J]. Electrochem. Commun.,2008,10(1):131-135.
    [27]Zhou XC, Xing W, Liu CP, Lu TH. Platinum-macrocycle co-catalyst for electro-oxidation of formic acid [J]. Electrochem. Commun.,2007,9(7): 1469-1473.
    [28]Samjeske G, Miki A, Ye S, Osawa M. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy [J]. J. Phys. Chem. B, 2006,110(33):16559-16566.
    [29]Chen YX, Heinen M, Jusys Z, Behm RJ. Kinetic isotope effects in complex reaction networks:Formic acid electro-oxidation [J]. ChemPhysChem,2007, 8(3):380-385.
    [30]Columbia MR, Crabtree AM, Thiel PA. The Temperature and Coverage Dependences of Adsorbed Formic-Acid and Its Conversion to Formate on Pt(111) [J]. J. Am. Chem. Soc.,1992,114(4):1231-1237.
    [31]Columbia MR, Crabtree AM, Thiel PA. eVidence for a Hydrogen-Bonded Complex between Water and Formic-Acid Coadsorbed on Pt(111) [J]. Surf. Sci.,1992,271(1-2):139-148.
    [32]Allouche A. Quantum studies of hydrogen bonding in formic acid and water ice surface [J]. J. Chem. Phys.,2005,122(23):234704.
    [33]Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskov JK. High throughput experimental and theoretical predictive screening of materials-A comparative study of search strategies for new fuel cell anode catalysts [J]. J. Phys. Chem. B,2003,107(40):11013-11021.
    [34]Hartnig C, Grimminger J, Spohr, E. Adsoption of formic acid on Pt(111) in the presence of water [J]. J. Electroanal. Chem.,2007,607(1-2):133-139.
    [35]Fattebert JL, Gygi F. Density functional theory for efficient ab initio molecular dynamics simulations in solution [J].J. Comput. Chem.,2002, 23(6):662-666.
    [36]Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation [J]. J. Phys.-Condes. Matter,2002,14(11):2745-2779.
    [37]Troullier N, Martins JL. Efficient Pseudopotentials for Plane-Wave Calculations [J].Phys. Rev. B,1991,43(3):1993-2006.
    [38]Junquera J, Paz O, Sanchez-Portal D, Artacho E. Numerical atomic orbitals for linear-scaling calculations [J]. Phys. Rev. B,2001,64(23).
    [39]Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996, 54(23):16533-16539.
    [40]Wang HF, Liu ZP. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum:New transition-state searching method for resolving the complex reaction network [J]. J. Am. Chem. Soc.,2008,130(33): 10996-11004.
    [41]Fattebert JL, Gygi F. First-principles molecular dynamics simulations in a continuum solvent [J]. Int. J. Quantum Chem.,2003,93(2):139-147.
    [42]Fattebert JL, Gygi F. Linear-scaling first-principles molecular dynamics with plane-waves accuracy [J]. Phys. Rev. B,2006,73(11):115124.
    [43]Kazempoor M, Pirug G. Complex formation and proton transfer between formic acid and water adsorbed on Au(111) surfaces under UHV conditions [J]. Appl. Phys. A-Mater. Sci. Process.,2007,87(3):435-441.
    [44]Neurock M, Janik M, Wieckowski A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt [J]. Faraday Discuss.,2008,140:363-378.
    [45]Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J]. J. Phys. Chem. B,2004,108(46):17886-17892.
    [46]Chen YX, Miki A, Ye S, Sakai H, Osawa M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J]. J. Am. Chem. Soc.,2003, 125(13):3680-3681.
    [47]Miki A, Ye S, Senzaki T, Osawa M. Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution [J].J. Electroanal. Chem.,2004,563(1):23-31.
    [48]Fang YH, Liu ZP. Surface Phase Diagram and Oxygen Coupling Kinetics on Flat and Stepped Pt Surfaces under Electrochemical Potentials [J]. J. Phys. Chem. C,2009,113(22):9765-9772.
    [1]Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM. Formic acid oxidation on Pd-modified Pt(100) and Pt(111) electrodes:A DEMS study [J]. J. Appl. Electrochem.,2006,36(11):1207-1214.
    [2]Uhm SY, Chung ST, Lee JY. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell [J]. Electrochem. Commun.,2007,9(8):2027-2031.
    [3]Cuesta A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum [J]. J. Am. Chem. Soc.,2006, 128(41):13332-13333.
    [4]Zhou XC, Xing W, Liu CP, Lu TH. Platinum-macrocycle co-catalyst for electro-oxidation of formic acid [J]. Electrochem. Commun.,2007,9(7): 1469-1473.
    [5]Zhang ZG, Zhou XC, Liu CP, Xing W. The mechanism of formic acid electro oxidation on iron tetrasulfophthalocyanine-modified platinum electrode [J]. Electrochem. Commun.,2008,10(1):131-135.
    [6]Kim J, Jung C, Rhee CK, Lim TH. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111) [J]. Langmuir,2007,23(21): 10831-10836.
    [7]Schmidt TJ, Stamenkovic V, Attard GA, Markovic NM, Ross PN. On the behavior of Pt(111)-Bi in acid and alkaline electrolytes [J]. Langmuir,2001, 17(24):7613-7619.
    [8]Watanabe M, Genjima Y, Turumi K. Direct methanol oxidation on platinum electrodes with ruthenium adatoms in hot phosphoric acid [J]. J. Electrochem. Soc.,1997,144(2):423-428.
    [9]Macia MD, Herrero E, Feliu JM. Formic acid self-poisoning on adatom-modified stepped electrodes [J]. Electrochim. Acta,2002,47(22-23): 3653-3661.
    [10]Leiva E, Iwasita T, Herrero E, Feliu JM. Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model [J]. Langmuir,1997, 13(23):6287-6293.
    [11]Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ. Electrooxidation Mechanisms of Methanol and Formic-Acid on Pt-Ru Alloy Surfaces [J]. Electrochim. Acta,1995,40(1):91-98.
    [12]Kizhakevariam N, Weaver MJ. Structure and Reactivity of Bimetallic Electrochemical Interfaces-Infrared Spectroscopic Studies of Carbon-Monoxide Adsorption and Formic-Acid Electrooxidation on Antimony-Modified Pt(100) and Pt(111) [J]. Surf. Sci.,1994,310(1-3): 183-197.
    [13]Yang YY, Sun SG, Gu YJ, Zhou ZY, Zhen CH. Surface modification and electrocatalytic properties of Pt(100), Pt(110), Pt(320) and Pt(331) electrodes with Sb towards HCOOH oxidation [J]. Electrochim. Acta,2001,46(28): 4339-4348.
    [14]Yang YY, Sun SG. Effects of Sb adatoms on kinetics of electrccatalytic oxidation of HCOOH at Sb-modified Pt(100), Pt(111), Pt(110), Pt(320), and Pt(331) surfaces-An energetic modeling and quantitative analysis [J]. J. Phys. Chem. B,2002,106(48):12499-12507.
    [15]Matsumoto F, Roychowdhury C, DiSalvo FJ, Abruna HD. Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation [J]. J. Electrochem. Soc.,2008,155(2): B148-B154.
    [16]Zhang LJ, Wang ZY, Xia DG. Bimetallic PtPb for formic acid electro-oxidation [J]. J. Alloys Compd.,2006,426(1-2):268-271.
    [17]Blais S, Jerkiewicz G, Herrero E, Feliu JM. Temperature-dependent of the electro-oxidation of the irreversibly chemisorbed as on Pt(111) [J]. Langmuir, 2001,17(10):3030-3038.
    [18]Peng B, Wang JY, Zhang HX, Lin YH, Cai WB. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid [J]. Electrochem. Commun.,2009,11(4): 831-833.
    [19]Macia MD, Herrero E, Feliu JM. Formic acid oxidation on Bi-Pt(111) electrode in perchloric acid media. A kinetic study [J]. J. Electroanal. Chem.,2003,554: 25-34.
    [20]Ting SW, Cheng SA, Tsang KY, van der Laak N, Chan KY. Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure [J]. Chem. Commun.,2009, (47):7333-7335.
    [21]Shibata M, Furuya N, Watanabe M, Motoo S. Electrocatalysis by Ad-Atoms.24. Effect of Arrangement of Bi Ad-Atoms on Formic-Acid Oxidation [J]. J. Electroanal. Chem.,1989,263(1):97-108.
    [22]Li XG, Hsing IM. Electrooxidation of formic acid on carbon supported PtxPd1-x (x=0-1) [J]. Electrochim. Acta,2006,51(17):3477-3483.
    [23]Huang XQ, Zhang HH, Guo CY, Zhou ZY, Zheng NF. Simplifying the Creation of Hollow Metallic Nanostructures:One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes [J]. Angew. Chem.-Int. Edit., 2009,48(26):4808-4812.
    [24]Wu QH, Yang YY, Zhou ZY, Xiao XY, Cehn SP, Sun SG, Chen GL. In situ FTIR spectrocopic investigations of 1,3-butanediol oxidation on Sb and S modified Pt electrodes [J]. Spectrosc. Spectr. Anal.,2000,20(5):612-613.
    [25]Herrero E, Climent V, Feliu JM. On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface [J]. Electrochem. Commun.,2000,2(9):636-640.
    [26]Climent V, Herrero E, Feliu JM. Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes [J]. Electrochim. Acta, 1998,44(8-9):1403-1414.
    [27]Yang YY, Zhou ZY, Wu QH, Zheng MS, Gu YJ, Cheng SP, Sun SG. Kinetics
    and characteristics of electrocatalytic oxidation of formic acid on Pt (110)/Sb electrodes [J]. Chem. J. Chin. Univ.-Chin.,2001,22(7):1201-1204.
    [28]Yang YY, Zhou ZY, Sun SG. In situ FTIRS studies of kinetics of HCOOH oxidation on Pt(110) electrode modified with antimony adatoms [J]. J. Electroanal. Chem.,2001,500(1-2):233-240.
    [29]Li H, Jiang LC, Jiang X. Electrocatalytic Oxidation of Formaldehyde and Formic Acid on a Pt/Sbad Electrode [J]. ElectroChemistry,1995,1(1):56-63.
    [30]Li H, Li WS, Jiang X. Catalytic Oxidation of Formic Acid on Pt/Mad (M=As、 Sb、 Bi) Electrodes [J].Adv. in Sci.& Tech.,2000,1(7):18-21.
    [31]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16): 11169-11186.
    [32]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci.,1996,6(1):15-50.
    [33]Fang YH, Liu ZP. Surface Phase Diagram and Oxygen Coupling Kinetics on Flat and Stepped Pt Surfaces under Electrochemical Potentials [J]. J. Phys. Chem. C,2009,113(22):9765-9772.
    [34]Watanabe M, Horiuchi M, Motoo S. Electrocatalysis by Ad-Atoms.23. Design of Platinum Ad-Electrodes for Formic-Acid Fuel-Cells with Ad-Atoms of the 4th-Group and the 5th-Group [J]. J. Electroanal. Chem.,1988,250(1): 117-125.
    [35]Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A. A nanoparticle catalyst with superior activity for electrooxidation of formic acid [J]. Electrochem. Commun.,2002,4(7):599-603.
    [36]Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts [J]. Surf. Sci. Rep.,2002,45(4-6):121-229.
    [37]Sanville E, Kenny SD, Smith R, Henkelman G. Improved grid-based algorithm for Bader charge allocation [J]. J. Comput. Chem.,2007,28(5):899-908.
    [38]Bader R, Atoms in Molecules:A Quantum Theory[M]. Oxford University Press: New York,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700