用户名: 密码: 验证码:
基于超连续谱的时间分辨CARS方法及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种基于物质分子固有的分子振动特性的光谱研究手段,相干反斯托克斯拉曼散射(Coherent Anti-Stokes Raman Scattering, CARS)光谱探测和显微成像技术是一种具有高的时间和空间分辨率,高的灵敏度、高化学特异性和具有三维层析能力的非侵入光谱分析和显微成像技术。
     为了基于分子振动谱快速有效地识别含有多种物质成份或未知成份的样品中各种成份,实时监测物质分子所处环境的变化和物质分子之间的相互作用,要求CARS光谱探测技术具有快速获取具有高光谱分辨率的完整的分子振动谱的能力。在本论文中,我们提出了一种基于超连续谱激光输出的超宽带时间分辨CARS (time-resolved CARS, T-CARS)光谱探测技术。在这一技术中,利用飞秒激光脉冲泵浦光子晶体光纤(Photonic Crystal Fiber, PCF)产生的超连续谱激光输出同时作为泵浦光和探测光,利用窄线宽激光脉冲作为探测光。通过改变探测光和超连续谱激光脉冲之间的时间延迟能够有效抑制非共振背景噪声,提高系统的探测灵敏度和光谱分辨率。同时,通过时间分辨测量方法实现同时对多个分子振动模式的振动退相时间进行测量。
     本论文完成的主要研究工作包括以下几个方面:
     (1)在广泛调研的基础上,介绍CARS光谱探测和显微成像技术的发展历程和现状,分析其特性和优势,以及现存的问题。
     (2)利用半经典理论分析方法分析具有不同中心频率的三束激光脉冲与物质相互作用的CARS过程。对抑制非共振背景噪声的方法进行了详细的分析和讨论。在此基础上,通过数值模拟的方法模拟了T-CARS过程,并对利用时间分辨方法抑制非共振背景噪声给出了物理解释。理论分析了实现宽带T-CARS光谱探测技术的可行性。
     (3)为实现同时获取完整的分子振动谱,要求超连续谱激光输出在一定的光谱范围内的各光谱成份具有光谱连续性、时间一致性,强度分布均匀且稳定。为获得优化超连续谱激光输出的实验条件,对超连续谱产生机制进行了理论分析和模拟工作。利用有限元法获得现有PCF的色散曲线、零色散点等主要光学参数。利用分步傅立叶法分析了不同条件下超连续谱的频域和时域分布情况。利用互相关频率分辨光学快门方法分析了不同条件下超连续谱中各光谱成份的时间分布情况。通过模拟计算,获得了优化超连续谱激光输出的实验条件,并最终实现了满足实验要求的超连续谱光源。
     (4)在理论研究和数值模拟工作的基础上,实现了超宽带T-CARS光谱探测系统。通过对已知拉曼谱的有机溶液样品进行实验,对系统的主要参数进行了标定,如光谱分辨率、可同时探测的光谱范围等。实验得到了多种有机溶液样品波数在387-4092cm-1内的分子振动谱。对CARS信号的强度与激发光的强度之间的关系进行了实验研究。开展了以时间分辨方法同时测量多个分子振动模式的振动退相时间的实验研究工作。
     本论文研究工作的主要创新点如下:
     (1)通过理论研究得到了优化超连续谱激光光源的实验条件,实现了满足超宽带T-CARS光谱探测技术要求的,在较宽光谱范围内具有较好的光谱连续性、时间一致性,输出强度分布均匀且稳定的超连续谱光源;
     (2)实现了基于超连续谱的超宽带T-CARS光谱探测系统,能够同时获得波数在387-4092cm-‘内的具有高光谱分辨率有机物分子的分子振动谱,具有快速有效地区分不同成份的能力;
     (3)利用超宽带T-CARS光谱探测系统能够同时测量光谱范围内的多个分子振动模式的振动弛豫过程,同时获得振动退相时间,具有实时观察分子间相互作用和监测分子所处环境变化的能力。
As a spectroscopic analyzing method based on the inherent molecular vibrations, the coherent anti-Stokes Raman scattering (CARS) spectroscopic and microscopic imaging technique is a noninvasive spectroscopic and microscopic imaging method with high temporal and spatial resolution, high sensitivity, high chemical specificity and 3D sectioning imaging capability.
     In order to quickly and effectively distinguish the various components of samples with different kinds of components and unknown components, and real-time monitor the change of environment and the interaction courses between different molecules based on the molecular vibrational spectrum, the capability of quickly obtaining the whole molecular vibrational spectrum with high spectral resolution is necessary with the CARS spectrography. In this dissertation, we present an ultra-broadband time-resolved CARS (T-CARS) spectrography based on the supercontinuum. In the ultra-broadband T-CARS, the output of one locked-mode femtosecond laser is split into two beams. One beam of femtosecond laser pulses is introduced into a photonic crystal fiber (PCF) to generate the supercontinuum used as the pump and Stokes simultaneously. The other is used as the probe after passing through a narrow-band-pass filter. The whole molecular vibrational spectrum can be simultaneously obtained. The nonresonant background (NRB) noise accompanying with resonant CARS signals can be effectively suppressed by changing the delay time between pulses of the probe and supercontinuum. The sensitivity and spectral resolution can be improved. Otherwise, the relaxation courses of all molecular vibrational modes in the simultaneously detectable spectral coverage can be recorded by the time-resolved method. The dephasing time of each molecular vibrational mode can be obtained by numerical fitting.
     In this dissertation, the main completed research work has been shown below.
     (1) Based on the extensive research, the developments and present state of the CARS spectroscopic and microscopic imaging technique are introduced.
     (2) We studied the mechanism of CARS process. The CARS course, in which three beams of laser pulse with different frequencies are used, is analyzed by using half-classic theoretical analysis. The methods of suppressing the NRB noise are presented and analyzed in detail. The T-CARS is studied by the numerical simulation method. The physical explanation is given for the suppressing NRB noise by the time-resolved method. The feasibilities are theoretically analyzed for achieving an ultra-broadband T-CARS spectrography.
     (3) In order to simultaneously obtain the whole molecular vibrational spectrum, besides an enough broad bandwidth, the spectral continuity, simultaneity, uniformity and stability of various spectral components in superconyinuum are all necessary. The theoretical analysis and numerical simulation are carried out for obtaining the experimental conditions to improve the supercontinuum. The main optical parameters of existing PCF, such as the dispersion curve, zero dispersion wavelength, are obtained by the finite element method. The distributions of the supercontinuum in the frequency and time domain are explored under various conditions with the split step Fourier method. And the temporal distributions of various spectral components in supercontinuum are analyzed with the cross-correlation frequency-resolved optical gating method. The experimental conditions for improving supercontinuum are obtained with numerical simulation. It is the guidance for achieving the required supercontinuum source.
     (4) Based on the theoretical analysis and numerical simulation, an ultra-broadband T-C ARS spectrometer system is successfully achieved. The main parameters of system are calibrated by measuring some samples with the known Raman spectrum, such as the spectral resolution, simultaneously detectable spectral range. The molecular vibrational spectrums in 387-4092cm-1 of a variety of organic samples are obtained by experiments. The relationships between the intensity of CARS signals and pump laser are studied. The simultaneous measurement of the dephasing time of various molecular vibrational modes is carried out.
     The main innovations are:
     (1) The experimental conditions for improving supercontinuum are obtained with numerical simulation. The supercontinuum laser source is achieved with the good spectral continuity, simultaneity, uniformity and stability. The requirements on the supercontinuum laser source of the ultra-broadband T-C ARS spectrography are met.
     (2) The ultra-broadband T-CARS spectrography based on the supercontinuum is achieved. The organic molecular vibrational spectrums with high spectral resolution can be simultaneously obtained in 387-4092cm-1. It has the capabilities of quickly and effectively distinguishing different components.
     (3) The relaxation courses of various molecular vibrational modes in the spectral coverage can be simultaneously measured to obtain the dephasing time. It has the capabilities of real-time observing the molecular interactions and monitoring the change of surrounding environment.
引文
[1]T Wilson, C Sheppard. Theory and Practice of Scanning Optical Microscopy. Orlando, FL:Academic,1984.8-12
    [2]W Denk, J H Strickler, W W Webb. Two-photon laser scanning fluorescence microscopy. Science,1990,248:73-76
    [3]Xu C, W Zipfel, J B Shear, et al. Multiphoton fluorescence excitation:new spectral windows for biological nonlinear microscopy. PNAS,1996,93:10763-10768
    [4]E Kohen, J G Hirschberg. Cell structure and function by microspectrofluorometry. San Diego, CA:Academic,1989.125-128
    [5]J B Pawley. Handbook of Biological Confocal Microscopy. New York:Plenum,1995. 12-44
    [6]R P Haugland. Handbook of Fluorescent Probes and Research Chemicals. Eugene, OR: Molecular Probes,1996.155-164
    [7]R Y Tsien, A Miyawaki. Biochemical imaging:Seeing the Machinery of Live Cells. Science,1998,280:1954-1955
    [8]J Hoyland. Fluorescent and Luminescent Probes for Biological Activity. ed. W T Mason. San Diego, CA:Academic,1999.88-94
    [9]A Smekal. Zur Quantentheorie der Dispersion. Naturwissenschaften,1923,11: 873-875
    [10]C V Raman, K S Krishnan. A New Type of Secondary Radiation. Nature,1928, 121(3048):501-502
    [11]C V Raman. A New Radiation. Indian Journal of Physics,1928,2:387-398
    [12]G S Landsherg, L I Mandelstam. New phenomenon in scattering of light (preliminary report). Journal of the Russian Physico-Chemical Society, Physics Section,1928,60: 335-342
    [13]G S Landsberg, L I Mandelstam. Eine neue Erscheinung bei der Lichtzertreuun. Naturwissenschaften,1928, B.16. S,557-558
    [14]G S Landsherg, L I Mandelstam. Uber die Lichtzerstrenung in Kristallen. Zeitschrift fur Physik,1928, B.50. S,769-780
    [15]D L Jeanmaire, R P van Duyne. Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Journal of Electroanalytical Chemistry,1977,84(1):1-20
    [16]A Otto. Light Scattering in Solids. ed. M. Cardona, G. Guentherodt Springer, Berlin,
    1984.289-294
    [17]M Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys.,1985,57(3):783-826
    [18]S Nie, S R Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science,1997,275(5303):1102-1106
    [19]K Kneipp, Y Wang, H Kneipp, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett.,1997,78(9):1667-1670
    [20]P D Maker, R W Terhune. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev.,1965,137(3A):801-818
    [21]R F Begley, A B Harvey, R L Byer. Coherent anti-Stokes Raman spectroscopy. Appl. Phys. Lett.,1974,25(7):387-390
    [22]M D Duncan, J Reijntjes, T J Manuccia. Scanning coherent anti-Stokes Raman microscope. Opt. Lett.,1982,7(8):350-352
    [23]A Zumbusch, G R Holtom, X S Xie. Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. Phys. Rev. Lett.,1999,82(20):4142-4145
    [24]J X Cheng, A Volkmer, X S Xie. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B,2002,19(6): 1363-1375
    [25]C L Evans, X S Xie. Coherent anti-Stokes Raman scattering microscopy:chemical imaging for biology and medicine. Annu. Rev. Anal. Chem.,2008,1:883-990
    [26]A Volkmer, J X Cheng. Vibrational imaging with high sensitivity via epi-detected coherent anti-Stokes Raman scattering microscopy. Phys. Rev. Lett.,2001,87(2): 023901
    [27]J X Cheng, L D Book, X S Xie. Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett.,2001,26(17):1341-1343
    [28]J X Cheng, Y K Jia, G F Zheng, et al. Laser-scanning coherent anti-Stokes Raman scattering microscopy and application to cell biology. Biophysical J.,2002,83(1): 502-509
    [29]G W H Wurpel, J M Schins, M Muller. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 2002,27(13):1093-1095
    [30]N Dudovich, D Oron, Y Silberberg. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature,2002,418(8):512-514
    [31]T Ichimura, N Hayazawa, M Hashimoto, et al. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett.,2004,92(22):220801
    [32]Y R Shen. The Principles of Nonlinear Optics. John Wiley and Sons Inc.:New York, 1984.141-184
    [33]M D Levenson, S S Kano. Introduction to Nonlinear Laser Spectroscopy. San Diego, CA:Academic,1988.125-172
    [34]S Maeda, T Kamisuki, Y Adachi. Advances in Non-Linear Spectroscopy. ed. R J H Clark and R E Hester New York:Wiley,1988.164-188
    [35]J Nibler. Advances in Non-Linear Spectroscopy. ed. R J H Clark and R E Hester New York:Wiley,1988.235-285
    [36]A Zumbusch, G R Holtom, X S Xie. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett.,1999,82(20):4142-4145
    [37]D J Murphy. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res.,2001,40(5):325-438
    [38]XL Nan, J X Cheng, X S Xie. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid. Res.,2003, 44(11):2202-2208
    [39]Thuc T. Le, T B Huff, J X Cheng. CARS imaging reveals the roles of lipid in cancer metastasis. BMC Cancer,2009,9(42):1-4
    [40]H Wang. Y Fu, P Zickmund, et al. Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J.,2005,89(1):581-591
    [41]Y Fu, T B Huff, H W Wang, et al. Ex-vivo and in-vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt. Exp.,2008, 16(24):19396-19409
    [42]Thuc T. Le, Ingeborg M. Langohr, Michael Sturek, et al. Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J. of Biomedical Optics,2007,12(5):054007
    [43]Thuc T. Le, J X Cheng. Non-linear optical imaging of obesity-related health risks: review. J. of Innovative Optical Health Science,2009,12(5):054007
    [44]H W Wang, Yan Fu, Terry B. Huff, et al. Chasing lipids in health and diseases by coherent anti-Stokes Raman scattering microscopy. Vibrational Spectroscopy,2009, 50(1):160-167
    [45]C L Evans, E O Potma, M Puorishaag, et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. PNAS,2005,102(46): 16807-16812
    [46]S A Akhmanov, N I Koroteev, A I Kholodnykh. Excitation of the coherent optical
    phonons of Eg-type in calcite by means of the active spectroscopy method. J. Raman Spectrosc.,1-974,2(3):239-248
    [47]C Otto, A Voroshilov, S G Kruglik, et al. Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive'microscopic'multiplex CARS technique. J. Raman Spectrosc.,2001,32(6):495-501
    [48]L Ujj, B L Volodin, A Popp, et al. Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin:spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570. Chem. Phys.,1994,182(2-3):291-311
    [49]B N Toleutaev, T Tahara, H Hamaguchi. Broadband (1000 cm-1) multiplex CARS spectroscopy:Application to polarization sensitive and time-resolved measurements. Appl. Phys. B,1994,59(4):369-375
    [50]A Voroshilov, C Otto, J Greve. Secondary structure of bovine albumin as studied by polarization-sensitive multiplex CARS spectroscopy. Appl. Spectrosc.,1996,50(1): 78-85
    [51]Chen J-X, A Volkmer, L D Book, et al. Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles. J. Phys. Chem. B,2002, 106(34):8493-8498
    [52]G W H Wurpel, J M Schins, M Muller. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 2002,27(13):1093-1095
    [53]M Muller, J M Schins. Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy. J. Phys. Chem. B,2002,106(14):3715-3723
    [54]G W H Wurpel, J M Schins, M Muller. Direct Measurement of Chain Order in Single Phospholipid Mono-and Bilayers with Multiplex CARS. J. Phys. Chem. B,2004, 108(11):3400-3403
    [55]T W Kee, M T Cicerone. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Opt. Lett.,2004,29(23):2701-2703
    [56]H Kano, H Hamaguchi. Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber. Appl. Phys. B,2005,80(2):243-246
    [57]T W Kee, H X Zhao, M T Cicerone. One-laser interferometric broadband coherent anti-Stokes Raman scattering. Opt. Expr.,2006,14(8):3631-3640
    [58]Lee Y J, Liu Y X, M T Cicerone. Characterization of three-color CARS in a two-pulse broadband CARS spectrum. Opt. Lett.,2007,32(22):3370-3372
    [59]Lee Y J, M T Cicerone. Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy. App. Phys. Lett.,2008, 92(4):041108
    [60]C S Wang. Theory of Stimulated Raman Scattering. Phys. Rev.,1969,182(2):482-494
    [61]J J Ottusch, D A Rockwell. Measurement of Raman gain coefficients of hydrogen, deuterium, and methane. IEEE Quantum Electronics,1988,24(10):2076-2080
    [62]R Mays, R J Lysiak. Observations of wavefront reproduction by stimulated Brillouin and Raman scattering as a function of pump power and waveguide dimensions. Opt. Commun.,1980,32(2):334-338
    [63]R M Herman, M A Gray. Theoretical prediction of the stimulated thermal rayleigh scattering in liquids. Phys. Rev. Lett.,1967,19(15):824-828
    [64]Robert W. Boyd. Nonlinear Optics. Academic Press,1992.457-466
    [65]P N Butcher, D Cotter. the Elements of Nonlinear Optics. Cambridge University Press. 1993.146-177
    [66]R H Stolen, E P Ippen, A R Tynes. Raman oscillation in glass optical waveguide. Appl. Phys. Lett.,1972,20(2):62-64
    [67]A Owyoung, C W Patterson, R S McDowell. CW stimulated Raman gain spectroscopy of the vl fundamental of methane. Chem. Phys. Lett.,1978 59(1):156-162
    [68]R L Carman, F Shimizu, C S Wang, et al. Theory of Stokes pulse shapes in transient stimulated Raman scattering. Phys. Rev. A,1970,2(1):60-72
    [69]尹君,于凌尧,屈军乐等.获取生物分子完整拉曼谱的时间分辨相干反斯托克斯拉曼散射方法的理论研究.光学学报,2010(已录用)
    [70]S A J Drute, J P E Taran. CARS spectroscopy. Prog. Quant. Electr.,1981,7(1):1-72
    [71]A Penzkofer, A Laubereau, W Kaiser. High intensity Raman interactions. Prog. Quant. Electr.,1979,6(2):55-140
    [72]M D Levenson, S S Kano. Introduction to Nonlinear Laser Spectroscopy. Academic Press:San Diego,1988.88-122
    [73]R J H Clark, R E Hester. Advances in nonlinear spectroscopy. John Wiley and Sons Ltd.:New York,1988.15-45
    [74]S Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New York,1995.112-154
    [75]M Muller, J Squier, C A de Lange, et al. CARS microscopy with folded BoxCARS
    phasematching. J. Microsc.,2000,197(2):150-158
    [76]B Richards and E Wolf. Electromagnetic Diffraction in Optical Systems. Ⅱ. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. A,1959,253(1274):358-379
    [77]L Novotny. Lecture notes on'nano-optics'. University of Rochester:The Institute of Optics,2000.25-55
    [78]E O Potma, W P de Boeij, D A Wiersma. Nonlinear coherent four-wave mixing in optical microscopy. J. Opt. Soc. Am. B,2000,17(10):1678-1684
    [79]G C Bjorklund. Effects of focusing on third-order nonlinear processes in isotropic media. IEEE J. Quantum Electronics,1975,11(6):287-296
    [80]M Hashimoto, T Araki, S Kawata. Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration. Opt. Lett.,2000,25(24):1768-1770
    [81]Cheng J-X, A Volkmer, L D Book, et al. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. J. Phys. Chem. B,2001,105(7):1277-1280
    [82]A Volkmer, L D Book, X S Xie. Time-resolved coherent anti-Stokes Raman scattering microscopy:imaging based on Raman free induction decay. Appl. Phys. Lett.,2002,80(9):1505-1507
    [83]E O Potma, W P D Boeij, D A Wiersma. Nonlinear coherent four-wave mixing in optical microscopy. J. Opt. Soc. Am. B,2000,17(10):1678-1684
    [84]R Brakel, F W Schneider. Polarization CARS spectroscopy. ed. R. J. H. Clark and R. E. Hester. New York:Wiley & Sons,1988.10-45
    [85]A Laubereau, W Kiser. Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys.,1978,50(3):607-665
    [86]F M Kamga, M G Sceats. Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy:a method for suppression of the nonresonant background. Opt. Lett., 1980,5(3):126-128
    [87]E O Potma, C L Evans, X S Xie. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. Opt. Lett.,2006,31(2):241-243
    [88]D A Kleinman. Nonlinear dielectric polarization in optical media. Phys. Rev.,1962, 126(6):1977-1979
    [89]S Maeda, T Kamisuki, Y Adachi. In Condensed Phase CARS. ed. R J H Clark, R E Hester, John Wiley and Sons:New York,1988.253-268
    [90]M D Duncan. Molecular discrimination and contrast enhancement using a scanning
    coherent anti-stokes Raman microscope. Opt. Commun.,1984,50(5):307-312
    [91]J C Knight, T A Birks, P St J Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett.,1996,21(19):1547-1549
    [92]J C Knight, P St J Russell. New ways to guide light. Science,2002,296:276-276
    [93]M Sangeeta, B Craig, R Andrew, et al. Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths. Opt. Exp.,2007,15(21):14028-14037
    [94]Christoph Heinrich, Stefan Bernet, Monika Ritsch-Marte. Wide-feld coherent anti-Stokes Raman scattering microscopy. Appl. Phys. Lett.,2004,84(5):816-818
    [95]I Toytman, K Cohn, T Smith, et al. Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination. Opt. Lett.,2007,32(13):1941-1943
    [96]P St J Russell. Photonic Crystal Fibers. Science,2003,299:358-362
    [97]H N Paulsen, K M Hilligsoe, J Thogersen, et al, Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt. Lett.,2003, 28(13):1123-1125
    [98]H Kano, H Hamaguchi. Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber. Appl. Phys. Lett.,2004,85(19):4298-4300
    [99]A F Pegoraro, A Ridsdale, D J Moffatt, et al. Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Opt. Expr.,2009,17(4):2984-2996
    [100]S O Konorov, D A Akimov, A A Ivanov, et al. Microstructure fibers as frequency-tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy. Appl. Phys. B.,2004,78(5):565-567
    [101]H A Rinia, M Bonn, M Muller. Quantitative multiplex CARS spectroscopy in congested regions. J. Phys. Chem. B.,2006,110(9):4427-4479
    [102]J M Dudley, X Gu, L Xu, et al. Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber:simulations and experiments. Opt. Expr.,2002,10(21):1215-1221
    [103]V P Bykov. Spontaneous emission in aperiodic structure. Sov. Phys. JETP,1972,35: 269-273
    [104]V P Bykov. Spontaneous emission from a medium with a band spectrum. Sov. J. Quant. Electron.,1975,4:861-871
    [105]E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.,1987,58(20):2059-2062
    [106]S John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    [107]E Yablonovitch, T J Gmitter, R D Meade, et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett.,1991,67(24):3380-3383
    [108]T F Krauss, R M DeLaRue, S Brand. Two-dimensional photonic-bandgap structures operating at near infrared wavelengths. Nature,1996,383:699-702
    [109]T A Birks, J C Knight, P St J Russell. Endlessly single-mode photonic crystal fiber, Opt. Lett.,1997,22(13):961-963
    [110]J C Knight, J Broeng, T A Birks, et al. Photonic band gap guidance in optical fibers, Science,1998,282(5393):1476-1478
    [111]R F Cregan, B J Mangan, J C Knight, ei al. Single-mode photonic band gap guidance of light in air. Science,1999,285:1537-1539
    [112]W Gobel, A Nimmerjahn, F Helmchen, et al. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber, Opt. Lett.,2004,29(11):1285-1287
    [113]D Mogilevtsev, T A Birks, P St J Russel. Group-velocity dispersion in photonic crystal fibers. Opt. Lett.,1998,23(21):1662-1664
    [114]J Limpert, T Schreiber, S Nolte, et al. High-power Air-clad large-mode-area photonic crystal fiber laser. Opt. Expr.,2003,11(7):818-823
    [115]J K Ranka, R S Windeler, A J Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm. Opt. Lett.,2000, 25(1):25-27
    [116]胡明列,王清月,栗岩峰等.飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究.物理学报,2004,53(12):4243-4247
    [117]K S Yee. Numerical solution of initial boundary value problems involving maxwell's equation in isotropic media. IEEE Trans. Antenn. Prop.,1966,14(3):302-307
    [118]M Qiu. Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microwave and Optical Technology Letters,2001,30(5):327-330
    [119]Y Zhu, Y Chen, P Huray, et al. Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs). Microwave and Optical Technology Letters,2002, 35(1):10-14
    [120]A Ferrando, E Silvestre, J J Miret, et al. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett.,1999,24(5):276-278
    [121]J C Knight, T A Birks, P St J Russell, et al. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A,1998,15(3): 748-752
    [122]T P White, B T Kuhlmey, R C Mcphedran, et al. Multiple method for microstructured optical fibers, I. Formulation. Journal of the Optical Society of America B,2002, 19(10):2322-2330
    [123]B T Kuhlmey, P White, G Renversez, et al. Multiple method for microstructured optical fibers, II. Implementation and results. Journal of the Optical Society of America B,2002,19(10):2331-2340
    [124]F Brechet, J Marcou, D Pagnoux, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method, Optical Fiber Technol.,2000,6(2):181-191
    [125]F Fogli, L Saccomandi, P Bassi. Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers. Opt. Expr.,2002,10(1):54-59
    [126]S Stagira. Full vectorial analysis of cylindrical waveguides using Green functions. Opt. Comm.,2003,225(4-6):281-291
    [127]Wang X Y, Lou J J, Lu C. Modeling of PCF with multiple reciprocity bondaryelement method. Opt. Expr.,2004,12(5):961-966
    [128]R K Livesley.有限元-工程师入门.陈守谦,高东红译.哈尔滨:东北林业大学出版社,1988.1-6
    [129]M Koshiba, Y Tsuji. Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. IEEE J. Lightwave Tech.,2000,18(5):737-743
    [130]M Koshiba. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE TRANS. ELECTRON.,2002, E85-C:881-888
    [131]M Koshiba, K Saitoh. Numerical verification of degeneracy in hexagonal photonic crystal fibers. IEEE Photonics Techn. Lett.,2001,13(12):1313-1315
    [132]K Saitoh, M Koshiba. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:application to photonic crystal fibers. IEEE J. of Quntum Electronics,2002,38(7):927-933
    [133]Ni Guan, S Habu, K Takenaga, et al. Boundary element method for analysis of holey optical fibers. J. Lightwave Tech.,2003,21(8):1787-1789
    [134]A Cucinotta, S Selleri, L Vincetti, et al. Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method. J. Lightwave Tech.,2002, 20(8):1433-1442
    [135]F Brechet, J Marcou, D Pagnoux, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the Finite Element Method. Opt. Fib. Tech.,2000,6(2):181-191
    [136]王庆斌.电磁场有限元法.重庆:重庆大学出版社,1996.8-21
    [137]G P Agrawal.非线性光纤光学原理及应用.贾东方余震虹译,北京:电子工业出版社,2002.7-37
    [138]D Marcuse. Lingt transmission optics. Van Nostrand Reinhold, New York,1982.8-12
    [139]Y Kodama, A Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide, IEEE Photonics Technol. Lett.,1987, QE-23:510-524
    [140]J M Dudley, G Genty, S Coen. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics,2006,78(4):1135-1184
    [141]J M Dudley, X Gu, L Xu, et al. Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber:simulations and experiments. Opt. Expr.,2002,10(21):1215-1221
    [142]L.科恩.时频分析-理论和应用.白居宪译.西安:西安交通大学出版社,1993.155-213
    [143]S Linden, H Giessen, J Kuhl. XFROG-A new method for amplitude and phase characterization of weak ultrashort pulses. Phys. Status Solidi B.,1998,206(1):119-124
    [144]L Xu, X Gu, M Kimmel, et al. Ultra-broadband IR continuum generation and its phase measurement using cross-correlation FROG, CLEO,2001, CTunl:198-200
    [145]X Gu, S Akturk, A Shreenath, et al. The measurement of ultrashort light pulses-simple devices, complex pulses. Optical Review,2004,11(3):141-152
    [146]P O'Shea, X Gu, M Kimmel, et al. Increased-bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal. Opt. Expr.,2000, 7(10):342-349
    [147]Coherent. Ultrafast Laser Systems. USA:Coherent Inc.,2009.6-7
    [148]Coherent. Ultrafast Laser Systems. USA:Coherent Inc.,2009.13-15
    [149]Newport. Optics, Optical Delay Line (ODL) Kits. USA:Newport Inc.,2010.12-45
    [150]Newport. Motion Control, VP-25X Precision Compact Linear Stages. USA:Newport Inc.,2010.1-10
    [151]Avantes. http://www.avantes.com/Chemistry/AvaSpec-2048TEC-Thermo-electric-cooled-Fiber-Optic-Spectrometer/Detailed-product-flyer. Html. Holand: Avantes Inc.,2010.1-4
    [152]Avantes. http://www.avantes.com/Chemistry/AvaSpec-Multichannel-Fiber-Optic-Spectrometers/Detailed-product-flyer.html. Holand:Avantes Inc.,2010.2-14
    [153]R Inaba, K Tominaga, M Tasumi, et al. Observation of homogeneous vibrational dephasing in benzonitrile by ultrafast Raman echoes. Chem. Phys. Lett.,1993, 211(2-3):183-188
    [154]H Okamoto, R Inaba, K Yoshihara, et al. Femtosecond time-resolved polarized coherent anti-Stokes Raman studies on reorientational relaxation in benzonitrile. Chem. Phys. Lett.,1993,202(1-2):161-166
    [155]Lee Y J, S H Parekh, Y H Kim, et al. Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering. Opt. Expr., 2010,18(5):4371-4379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700