用户名: 密码: 验证码:
电化学氢化物发生系统电极性能优化及其在原子光谱中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢化物/冷蒸气发生法是原子光谱最重要的样品引入方式。化学氢化物/冷蒸气发生法(CHG/CVG)较之常规进样法具有很多的优势,但是通常需要使用价格较贵、性质不稳定的硼氢化钠或者硼氢化钾作还原剂。由于硼氢化物还原能力非常强,可以还原的物质种类多,所以以硼氢化物-酸体系为基础的化学氢化物/冷蒸气发生法容易受到共存的过渡金属离子的干扰,因此对研究者们来说,发展一种新的氢化物发生技术来代替化学法具有很强的吸引力。电化学氢化物/冷蒸气发生法(EC-HG/EC-VG)在某些情况下就可以替代CHG/CVG法。
     考虑到EC-HG/EC-VG的分析性能与阴极材料的性能和电解池的设计有直接关系,为了提高电化学氢化物发生效率、提高EC-HG/EC-VG原子光谱的灵敏度并拓展其适用的元素范围,本工作主要尝试了选择合适的阴极材料以及改进电化学氢化物发生池的结构以改善电化学法的分析性能。另外通过具体的实验结果和一些物理化学数据,在前人研究的基础上,对电化学氢化物发生机理进行了较为深入的探讨。论文具体工作包括以下几部分:
     首先采用三维多层网状钨丝电极作为电化学氢化物发生池的阴极,在低温条件下,网状钨丝阴极表面产生的TeH2可以被吹扫气体有效地带出阴极腔,并带入到原子荧光光谱仪中进行定量分析。通过将EC-HG和原子荧光光谱法(AFS)联用,构建了简单、高效的测定实际样品中碲元素含量的分析方法。
     考虑到导电高聚物聚苯胺(PANI)材料的优良特性,采用线性扫描伏安(LSV)实验研究了Hg(Ⅱ)在PANI修饰电极表面的反应特性,结果发现PANI膜有助于Hg(Ⅱ)的还原,使Hg(Ⅱ)可以在较高的电极电势下还原。本工作中,我们将聚苯胺修饰的石墨电极用作EC-VG系统的阴极材料,通过与AFS法联用,用于Hg(Ⅱ)的测定。由于还原过程中可能包含一个催化过程,该ECVG-AFS法具有灵敏度高、稳定性好、记忆效应低等优点,该方法被成功地用于生物样品中总Hg含量的测定。
     采用电化学法制备了PANI修饰的Pb电极,并将该PANI/Pb作为电化学氢化物发生池中的阴极材料,建立了电化学氢化物发生-原子荧光光谱系统测定元素Sn的方法。由于PANI膜对Sn(IV)具有较好的还原活性,所以该方法具有较高的灵敏度、良好的稳定性和较低的记忆效应。
     为了减少氢化物在传输过程中的损失,设计了一种氢化物发生池和气液分离器一体化的整体池。该电化学氢化物发生池以一个小尺寸的石墨管(容积约为180μl)为阴极腔,免除了离子交换膜和专门的阳极电解液的使用。该整体池的无膜结构使电解液能够依次流过阴极腔、气液分离腔和阳极腔,同时起到阴极液和阳极液的作用,具有节约和环境友好等优点;该整体池的密封采用螺帽结构,安装方便,便于清洗。通过将该整体电化学氢化物发生池和AFS联用,建立了一种简单高效的流动注射分析技术,成功地用于生物样品中总砷的测定。
The hydride/vapor generation is well-established sample introduction technique in atomic spectrometry when low detection limits are desired. Although the chemical hydride generation technique, which is sample introduction method based on the reaction of sodium tetrahydroborate with the acidic material that has many advantages and is widely used, there are some disadvantages, such as the usage of expensive reagent of sodium tetrahydroborate and its aqueous solutions must be prepared daily because of its unstablility. What's more, on account of the powerful reducibility of sodium/kalium tetrahydroborate, interferences from concomitant species can be severe. The electrochemical hydride/vapor generation (EC-HG/EC-VG) methods have been developed as alternatives to the chemical methods.
     Considering the fact that the analytical performances of the EC-HG and ECVG were directly related to the cathode material and the design of the electrolytic cell, efforts were made in this work to develop suitable cathode material for EC-HG or ECVG determination. Besides, systematic researchs, which based on previous work and quantitative data in this work, were also carried out on the mechanism of electrochemical hydride/vapor generation. The details are listed as follows:
     A three-dimensional reticular W filament electrode was used as the cathode in the EC-HG system. At low temperatures, the TeH2 generated on the reticular W filament cathode surface could be effectively driven out by sweeping gas in the cathode chamber and was determined by atomic fluorescence spectrometry (AFS). A simple and highly accurate method was developed for the detection of Te in soldering tin material by coupling EC-HG with AFS.
     Considering the excellent characteristics of polyaniline (PANI) material, such as unique stablility and avoids the use of organic solvents, we experimented its performances by Linear sweep voltammetry and found that the PANI film improved the reduction of Hg(Ⅱ), allowing the reduction of Hg(II) at higher potentials. In this work, we developed an ECVG-AFS system with PANI/graphite as cathode for Hg (Ⅱ) determination. Owing to the fact that a catalytic process may be involved in the reduction process, this proposed method had the virtues of higher sensitivity, excellent stability and lower memory effect. This developed method was successfully applied for analyzing trace amounts of mercury in biological samples.
     In the present work, PANI on Pb electrode was synthesized electrochemically and this PANI/Pb electrode was used as cathode material in the EC-HG-AFS system for the determination of tin. Attributing to the superior reduction activity of the PANI film for Sn (IV), this proposed method had the virtues of higher sensitivity, excellent stability and lower memory effect. This developed method was successfully applied for analyzing total tin in foods.
     An integrated EC-HG cell was laboratory constructed and a small dimension (180μl) graphite tube used as cathode chamber. This integrated cell was free of ion-exchange membrane and individual anolyte. The non-membrane setup enabled the electrolyte stream to be sequentially pumped through cathode chamber, gas liquid separator (GLS) chamber and anode chamber acted as both catholyte and anolyte. Therefore, it had advantages of low-cost and environmental-friendly. In addition, the screw cap makeup for components seal makes assembling of EC-HG cell be easy, and reduced the time required for cathode replacement or cleaning. A simple and sensitive flow injection method for the detection of As was created by coupling this integrated EC-HG cell with AFS, and this developed method was successfully applied to determine trace amounts of As in biological samples.
引文
[1]刘明钟,汤志勇,刘霁欣.原子荧光光谱分析[M].北京:化学工业出版社,2008。
    [2]杰维蒂赫Г Г, 佐林АД,超纯挥发性无机氢化物[M].解崇绅,译.北京:科学出版社,1985。
    [3]Laborda F, Bolea E, Baranguan M T, Castillo JR. Hydride generation in analytical chemistry and nascent hydrogen:when is it going to be over? [J]. Spectrochimica Acta Part B 57(2002): 797802.
    [4]Ke YP, Sun Q, Yang ZR, Xin JJ, Chen L, Hou XD. Determination of trace cadmium and zinc in corn kernels and related soil samples by atomic absorption and chemical vapor generation atomic fluorescence after microwave-assisted digestion[J]. Spectroscopy Letters,39(2006):29-43.
    [5]Sun HW, Suo R. Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry[J]. Anal Chim Acta,509(2004):71-76.
    [6]Luna AS, Sturgeon RE, de Campos RC. Chemical vapor generation:Atomic absorption by Ag, Au, Cu, and Zn following reduction of aquo ions with sodium tetrahydroborate(III) [J]. Anal Chem.,72(2000):35233531.
    [7]Adeloju SB, Zhang YL. Vapor Generation Atomic Absorption Spectrometric Determination of Cadmium in Environmental Samples with In-Line Anion Exchange Separation[J]. Anal Chem., 81(2009):4249-4255.
    [8]Fu Q, Yang LM, Wang QQ. Determination of cadmium in seawater by vapor generation atomic fluorescence spectrometry after online preconcentration with a novel alkyl phosphinic acid resin[J]. Spectroscopy Letters 40(2007):547-557.
    [9]Nakahara T, Wasa T. Indirect determination of iodine in seawater and brine by atmospheric-pressure helium microwave induced plasma atomic emission-spectrometry using continuous-flow cold-vapor generation of mercury[J]. Microchemical Journal 41(1990): 148-155.
    [10]Sinemus HW, Stabel HH, Radziuk B, Kleiner J. Automated-determination of mercury by continuous-flow vapor generation and collection in a graphite tube[J]. Spectrochim Acta, Part B 48(1993):643-648.
    [11]Duarte FA, Bizzi CA, Antes FG, Dressler VL, Flores EMD. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry [J]. Spectrochim Acta, Part B 64(2009):513-519.
    [12]Yu YL, Du Z, Chen, ML, Wang JH. Coating of a thin layer of NaBH4 solution for mercury vapor generation coupled to atomic fluorescence spectrometry[J]. J. Anal. At. Spectrom.,22(2007):800-806.
    [13]Sturgeon RE, Liu J, Boyko VJ, Luong VT. Determination of copper in environmental matrices following vapor generation[J]. Anal Chem.,68(1996):1883-1887.
    [14]Zhang C, Li Y, Cui XY, Jiang Y, Yan YP. Room temperature ionic liquids enhanced chemical vapor generation of copper, silver and gold following reduction in acidified aqueous solution with KBH4 for atomic fluorescence spectrometry[J]. J. Anal. At. Spectrom.,23(2008): 1372-1377.
    [15]Musil S, Kratzer J, Vobecky M, Hovorka J, Benada O, Matousek T. Chemical vapor generation of silver for atomic absorption spectrometry with the multiatomizer:Radiotracer efficiency study and characterization of silver species[J]. Spectrochim Acta, Part B 64(2009): 1240-1247.
    [16]Zhang C, Li Yn, Wu. P, Jiang Y, Liu Q, Yan. XP, Effects of room-temperature ionic liquids on the chemical vapor generation of gold:Mechanism and analytical application[J]. Anal Chim Acta,650(2009):59-64.
    [17]Ertas G, Ataman OY, Interference effect of iron on the determination of gold in geological samples using the vapor generation technique and preconcentration in a graphite furnace[J]. Applied Spectroscopy,60(2006):423-429.
    [18]Feng YL, Sturgeon RE, Lam JW, Chemical vapor generation characteristics of transition and noble metals reacting with tetrahydroborate(III) [J]. J Anal At Spectrom.,18(2003): 14351442.
    [19]Pena-Vazquez E, Villanueva-Alonso J, Bermejo-Barrera P, Vapor Generation for Metal Determination in Steels Using ICP-OES[J]. Atomic Spectroscopy 29(2008):180-185.
    [20]Pohl P, Zyrnicki W, On the transport of some metals into inductively coupled plasma during hydride generation process[J]. Anal Chim Acta,429(2001):135143
    [21]. Lee DS, Determination of Nickel in Seawater by Carbonyl Generation[J]. Anal Chem 54. (1982):1182-1184.
    [22]Yan D, Yan Z, Cheng GS, Li AM, Determination of indium and thallium by hydride generation and atomic-absorption spectrometry [J]. Talanta 31(1984):133134.
    [23]Bazan JM, Enhancement of osmium detection in inductively coupled plasma atomic emission spectrometry[J]. Anal Chem.,59(1987):10661069.
    [24]Holak W, Gas-sampling technique for arsenic determination by atomic absorption spectrophotometry[J]. Anal. Chem.,41(1969):1712.
    [25]Fernahdez FJ, Manning DC, At. Absorpt. Newsl.,10(1971):86.
    [26]Braman RS, Justen LL, Foreback CC, Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony[J]. Anal. Chem.,44(1972): 2195.
    [27]Schmidt FJ, Royer JL, Sub Microgram Determination of Arsenic, Selenium, Antimony and Bismuth By Atomic absorption Utilizing sodium Borohydride Reduction[J]. Anal. Lett., 6(1973):17.
    [28]Pollock EN, West SJ, Generation and determination of covalent hydrides by atomic absorption[J]. At. Absorp. Newsl.,12(1973):6.
    [29]Thompson KC, The atomic-fluoresence determination of antimony, arsenic, selenium and tellurium by using the hydride generation technique[J]. Analyst,100(1975):307.
    [30]Femandez BA, Temprano MCV, dela.Campa MRF, et.al, Determination of arsenic by inductively-coupled plasma atomic emission spectrometry enhanced by hydride generation from organized media[J]. Talanta,39(1992):1517.
    [31]Liu YM, Sanchez MLF, Gpmzalez EB, et al, Vesicle-mediated high-performance liquid chromatography coupled to hydride generation inductively coupled plasma atomic emission spectrometry for speciation of toxicologically important arsenic species[J]. J Anal At Spectrom., 8(1993):815-820.
    [32]Deng BY, Xiao Y, Xu XS, Zhu PC, Liang SJ, Mo WM, Cold vapor generation interface for mercury speciation coupling capillary electrophoresis with electrothermal quartz tube furnace atomic absorption spectrometry:Determination of mercury and methylmercury[J]. Talanta 79(2009):1265-1269.
    [33]Alp O, Ertas N, Determination of inorganic and total mercury by flow injection vapor generation atomic absorption spectrometry using a W-coil atomizer [J]. J Anal At Spectrom., 2(2009) 4:93-96.
    [34]Su YY, Xu KL, Gao Y, Hou XD, Determination of trace mercury in geological samples by direct slurry sampling cold vapor generation atomic absorption spectrometry [J]. Microchim. Acta, 160(2008):191-195.
    [35]Yin YM, Qiu JH, Yang LM, Wang QQ, A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry [J]. Anal. Bioanal. Chem.,388(2007):831-836.
    [36]Li HM, Zhang Y, Zheng CB, Wu L, Lv Y, Hou XD, UV irradiation controlled cold vapor generation using SnC12 as reductant for mercury speciation[J]. Anal. Sci.,22 (2006): 1361-1365.
    [37]Wu H, Jin Y, Han WY, Miao Q, Bi SP, Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry[J]. Spectrochim Acta, Part B 61 (2006):831-840.
    [38]Qiu DR, Vandecasteele C, Vermeiren K, Dams R, Continuous hydride generation inductively coupled plasma atomic emission-spectrometry for tin-optimization of working parameters and approach to clarifying the mechanism of stannane generation[J], Spectrochim Acta, Part B 45 (1900):439-451.
    [39]张锂,韩国才,碱性模式氢化物发生原子荧光光谱法测定铁矿石中砷[J].分析测试学报,25(2006):120-122.
    [40]邱德仁,陈治江,罗晓霞.氢化物发生碱性模式[M].14(1994):77-79.
    [41]Rigin VI, Verkhoturov GN. Zh. Anal. Khim,32(1977):1965.
    [42]Rigin VI, Zh. Anal. Khim.,34(1979):1569.
    [43]Rigin VI, Zh. Anal. Khim.,33(1978):1966.
    [44]Brockmann A, Ku HM, Golloch A, Colloquium Atomspektrometrische Spurenanalytik, ed. B. Welz, Bodenseewerk Perkin Elmer, Uberlingen,1991, pp.439447.
    [45]Brockmann A, Nonn C, Golloch A. New concept for hydride generation technique-electrochemical hydride generation [J]. J. Anal. At. Spectrom.,8(1993):397-401.
    [46]Lin YH, Wang XR, Yuan DX, Yang PY, Huang BL, Zhuang ZX, Flow-injection electrochemical hydride generation technique for atomic-absorption spectrometry[J]. J. Anal. At. Spectrom.,7(1992):287-291.
    [47]Lin Y, Zhuang Z, Wang X, Ding W, Huang B, Proceedings of 3rd Beijing Conference and Exhibition on Instrumental Analysis, Peking University,1989, C119.
    [48]Lin Y, Zhuang Z, Wang X, Huang B. Proceedings of Changchun International Symposium on Analytical Chemistry, Jilin University press, Changchun,1990, p.221.
    [49]Lin Y, PhD Thesis, Xiamen University, China,1991.
    [50]Denkhaus E, Golloch A, Kampen TU, Nierfeld M, Telgheder U, Electrolytic hydride generation electrothermal atomic absorption spectrometry-in situ trapping of As on different pre-conditioned end-heated graphite tubes[J]. Fresenius J Anal Chem 361(1998):733737.
    [51]Machado LFR, Jacintho AO, Menegario AA, Zagatto EAG, Gine MFElectrochemical and chemical processes for hydride generation in flow injection ICP-MS:determination of arsenic in natural waters [J]. J Anal At Spectrom.,13(1998):13431346.
    [52]Laborda F, Bolea E, Castillo JRTubular electrolytic hydride generator for continuous and flow injection sample introduction in atomic absorption spectrometry [J]. J Anal At Spectrom 15(2000):103107.
    [53]Arbab-Zavar MH, Hashemi M, Evaluation of electrochemical hydride generation for spectrophotometric determination of As(Ⅲ) by silver diethyldithiocarbamate[J]. Talanta 52 (2000): 100710.14.
    [54]Denkhaus E, Beck F, Bueschler P, Gerhard R, Golloch A, Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin mechanistic aspects and figures of merit[J]. Fresenius J Anal Chem.,370 (2001):735743.
    [55]Bings NH, Stefanka Z, Mallada SR, Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples [J]. Anal Chim Acta,479(2003):203214.
    [56]Guo XM, Li SP, Huang BL, Design and Performance of a Novel Electrolytic Cell with Micro-Channel Electrodes for Electrochemical Hydride Generation Atomic Fluorescence Spectrometry—Preliminary Report[J]. Can J Anal Sci Spectrosc.,49(2004):327333.
    [57]Sima J, Rychlovsky P, Dedina J, The efficiency of the electrochemical generation of volatile hydrides studied by radiometry and atomic absorption spectrometry [J]. Spectrochim Acta B 59 (2004):125133.
    [58]Bolea E, Laborda F, Castillo JR, Sturgeon RE, Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry [J]. Spectrochim Acta B 59(2004):505513.
    [59]Ozmen B, Matysik FM, Bings NH, Broekaert JAC, Optimization and evaluation of different chemical and electrochemical hydride generation systems for the determination of arsenic by microwave plasma torch optical emission spectrometry [J]. Spectrochim Acta B 59(2004): 941950.
    [60]Hashemi M, Arbab-Zavar MH, Sarafraz-Yazdi A, Effect of cathodic electrolyte on the performance of electrochemical hydride generation from graphite cathode[J]. Talanta 64(2004): 644649.
    [61]Arbab-Zavar MH, Chamsaz M, Youssefi A, Aliakbari M, Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium[J]. Anal Chim Acta,546(2005): 126132.
    [62]Zhang WB, Gan WE, Su QD, Lin XQ, The Determination of Ge by Atomic Fluorescence Spectrometry with Electrochemical Hydride Generation[J]. Chinese J Anal Chem.,33(2005): 14491451.
    [63]Gan WE, Zhang WB, Su QD, Simultaneous Determination of As and Sb by Electrochemical Hydride Generation-Atomic Fluorescence Spectrometry [J]. Chinese J Anal Chem.,33(2005):687689.
    [64]. Zhang WB, Gan WE, Lin XQ, Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J]. Anal Chim Acta,539 (2005):335340.
    [65]Zhang WB, Gan WE, Lin XQ, Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry[J]. Talanta 68(2006):13161321.
    [66]Machado LFR, Jacintho AO, Gine MF, Electrochemical hydride generation for selenium determination in a flow injection system with air-GLP flame atomic absorption spectrometric detection[J]. Quim Nova 23(2000):30-33.
    [67]Schermer S, Jurica L, Paumard J, Beinrohr E, Matysik FM, Broekaert JAC, Optimization of electrochemical hydride generation in a miniaturized electrolytic flow cell coupled to microwave-induced plasma atomic emission spectrometry for the determination of selenium[J]. Fresenius J Anal Chem 371(2001):740745.
    [68]Bolea E, Laborda F, Belarra MA, Castillo JRInterferences in electrochemical hydride generation of hydrogen selenide[J]. Spectrochim Acta B 56(2001):23472360.
    [69]. Junkova A, Sima J, Rychlovsky P, Interferences of selected transition and noble metals and hydride-forming elements in electrochemical hydride generation of H2Se[J]. Chem Pap-Chem Zvesti,57(2003):192196.
    [70]Bolea E, Laborda F, Castillo JR, Flow injection electrochemical hydride generation of hydrogen selenide on lead cathode:Critical Study of the influence of experimental parameters[J]. Anal Sci.,19(2003):367372.
    [71]Sima J, Rychlovsky P, Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers[J]. Spectrochim. Acta part B 58(2003):919930.
    [72]Arbab-Zavar MH, Rounaghi GH, Chamsaz M, Masrournia M, Determination of Mercury(II) Ion by Electrochemical Cold Vapor Generation Atomic Absorption Spectrometry [J]. Anal Sci.,19 (2003):743746.
    [73]Sturgeon RE, Guo XM, Mester Z, Chemical vapor generation:are further advances yet possible?[J]. Anal Bioanal Chem.,382 (2005):881883.
    [74]Akagi H, Takabatake E, Chemosphere 3 (1973):131133.
    [75]Akagi H, Fujita Y, Takabatake E, Chem Lett 49(1976):14.
    [76]Akagi H, Sakagami Y, J Hyg Chem (Jpn) 18(1972):358.
    [77]Medez H, Lavilla I, Bendicho C, Mild sample pretreatment procedures based on photolysis and sonolysis-promoted redox reactions as a new approach for determination of Se(IV), Se(VI) and Se(-Ⅱ) in model solutions by the hydride generation technique with atomic absorption and fluorescence detection[J]. J Anal At Spectrom 19(2004):13791385.
    [78]Villano M, Padro A, Rubio R, Rauret G, Organic and inorganic selenium speciation using high-performance liquid chromatography with UV irradiation and hydride generation-quartz cell atomic absorption spectrometric detection[J]. J Chromatogr A 819(1998):211220.
    [79]Wang QQ, Liang J, Qiu JH, Huang BL, Online pre-reduction of selenium((VI)) with a newly designed UV/TiO2 photocatalysis reduction device[J]. J Anal At Spectrom.,19(2000):715716.
    [80]Kikuchi E, Sakamoto H, Kinetics of the reduction reaction of selenate ions by TiO2 photocatalyst[J]. J. Electrochem. Soc.,147(2000):45894593.
    [81]Guo XM, Sturgeon RE, Mester Z, Gardner GJ, UV vapor generation for determination of selenium by heated quartz tube atomic absorption spectrometry[J]. Anal. Chem.,75(2003): 20922099.
    [82]Guo XM, Sturgeon RE, Mester Z, Gardner GJ, UV light-mediated alkylation of inorganic selenium[J]. Appl. Organomet Chem.,17(2003):575579.
    [83]Guo XM, Sturgeon RE, Mester Z, Gardner GJ, Photochemical alkylation of inorganic selenium in the presence of low molecular weitht organic acids[J]. Environ Sci. Technol., 37(2003):56455650.
    [84]Guo XM, Sturgeon RE, Mester, Z, Gardner GJ, UV photosynthesis of nickel carbonyl[J], Appl. Organomet Chem.,18(2004):205211.
    [85]Guo XM, Sturgeon RE, Mester Z, Gardner GJ, Vapor generation by UV irradiation for sample introduction with atomic spectrometry[J]. Anal Chem.,76 (2004):24012405.
    [86]Guo XM, Sturgeon RE, Mester, Z, Gardner GJ, Photochemical alkylation of inorganic arsenic-Part 1. Identification of volatile arsenic species[J]. J Anal At Spectrom.,20(2005):702708.
    [87]He YH, Hou XD, Zheng CB, Sturgeon RE, Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry [J]. Anal Bioanal Chem 388 (2007):769774
    [88]Chenthamarakshan CR, Yang H, Ming Y, Rajeshwa K, Photocatalytic reactivity of zinc and cadmium ions in UV-irradiated titania suspensions[J]. J. Electroanal Chem 494(2000):7986.
    [89]李安模,魏继中.原子吸收与原子荧光光谱分析[M].北京:科学出版社,2000。
    [90]Sturgeon RE, Willie SN, Berman SS, Hydride generation-atomic absorption determination of antimony in seawater with in situ concentration in a graphite furnace[J]. Anal. Chem., 57(1985):2311-2314.
    [91]Dulivo A, Lampugnani L, Zambonir, Combined electrothermally heated quartz tube flame atomizer for the hydride generation nondispersive atomic fluorescence determination of selenium[J], J. Anal. At. Spectrom.,5(1990):225-229.
    [92]Guo TZ, Liu MZ, Schrader W. Use of a flow-injection hydride generation technique in nondispersive atomic fluorescence spectrometry[J], J. Anal. At. Spectrom.,7(1992):667-674.
    [93]Zhang, WB, Yang, XA, Chu, XF, Electrochemical Hydride generation for the determination of hydride forming elements by atomic fluorescence spectrometry[J]. Microchemical Journal 93(2009):180-187.
    [94]Dedina J, Rubeska I, hydride atomization in a cool hydrogen-oxygen flame burning in a quartz tube atomizer[J]. Spectrochim Acta Part B 35(1980):119.
    [95]Welz B, Melcher M, Mutual interactions of elements in the hydride technique in atomic absorption spectrometry:Part1. Influence of selenium on arsenic determination[J]. Anal. Chim. Acta,131(1981):17.
    [96]Evans WH, Jackson FJ, Dellar D, Evaluation of a method for the determination of total antimony, arsenic and tin in foodstuffs using measurement by atomic-absorption spectrometry with atomization in a silica tube using the hydride generation technique[J]. Analyst,104(1979): 16.
    [97]赵一兵,李安模.原子吸收分析中共价氢化物原子化机理初探, 光谱学光谱分析,7(1987): 1。
    [98]赵一兵,李安模,氢化物原子吸收机理研究Ⅰ.H2和空气在氢化物原子化中的作用。分析化学16(1988):415。
    [99]Bloxam CL, Quart Jour Chem Soc 13(1861):1222.
    [100]Bloxam CL, Quart Jour Chem Soc 13(1861):338343.
    [101]Rigin VI, Verkhoturov GN, Zh. Anal. Khim.,32(1977):1965.
    [102]Rigin VI, Zh. Anal. Khim.,34(1979):1569.
    [103]Rigin VI, Verkhoturov GN. Zh. Anal. Khim.,32(1977):1557.
    [104]Laborda F, Bolea E, Castillo JR, Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry:fundamentals, interferences, and applications[J]. Anal Bioanal Chem,388 (2007):743751.
    [105]Denkhaus E, Golloch A, Guo XM, Huang BL, Electrolytic hydride generation (EC-HG)—a sample introduction system with some special features[J]. J. Anal. At. Spectrom.,16 (2001), 870878.
    [106]Volmer M, Wick H, Z. Phys. Chem.,172(1935):429.
    [107]Erdney-Gruz T, Volmer M, Z. Phys. Chem.,150(1930):203.
    [108]Okamoto G, Horiuti J, Hirota K, Sci. Papers inst. Phys. Chem. Res.,29(1936):223.
    [109]Arbab-Zavar MH, Chamsaz M, Youssefi A, Aliakbari M, Mechanistic aspects of electrochemical hydride generation for cadmium[J]. Analytica Chimica Acta,576(2006): 215220.
    [110]Pyell U, Dworschak A, Nitschke F, Neidhart B, Flow injection electrochemical hydride generation atomic absorption spectrometry (FI-EHG-AAS) as a simple device for the speciation of inorganic arsenic and selenium [J]. Fresenius'J. Anal. Chem.,363(1999):495-498.
    [111]Schaumloffel D, Neidhart B, A FIA-system for As(III)/As(V)-determination with electrochemical hydride generation and AAS-detection[J]. Fresenius'J. Anal. Chem.,354(1996): 866-869.
    [112]P. Buschler, PhD Thesis, University of Duisburg, Germany,1997.
    [113]Denkhaus E, Buschler P, Golloch A, Lattner D, CANAS'97 Colloqium Analytische Atomspektroskopie, ed. C. Vogt, R.Wennrich and G. Werner, Universitaet Leipzig und UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig,1998, p.197.
    [114]Ding WW, Sturgeon RE, Interference of copper and nickel on electrochemical hydride generation[J]. J. Anal. At. Spectrom.,11(1996):421-425.
    [115]Schickling C, Yang JF, Broekaert JAC, Optimization of electrochemical hydride generation coupled to microwave-induced plasma atomic emission spectrometry for the determination of arsenic and its use for the analysis of biological tissue samples [J]. J Anal At Spectrom.,11 (1996):739745
    [116]Sima J, Rychlovsky P, Design of a combined cell for the electrochemical generation of volatile compounds in the atomic absorption spectrometric method[J]. Chem Listy 92(1998): 676679.
    [117]Li X, Jia J, Wang ZH, Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry, Anal Chim Acta,560(2006):153158.
    [118]Ding WW, Sturgeon RE, Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration[J]. J Anal At Spectrom.,11(1996):225230.
    [119]Sima J, Rychlovsky P, Design of a Combined Cell for the Electrochemical Generation of Volatile Compounds in the Atomic Absorption Spectrometric Method, Chem. Listy,9(1998):676-679.
    [120]Bolea E, Arroyo D, Cepria G, Laborda F, Castillo JR, Elucidation of interference mechanisms caused by iron on stibine electrochemical generation by differential pulse anodic stripping voltametry. A case study[J]. Spectrochim Acta B 61(2006):96103.
    [121]Hueber DM, Winefordner JD, A flowing electrolytic hydride generation for continuous sample introduction in atomic spectrometry [J]. Anal Chim Acta 316(1995):129144.
    [122]Zhang WB, Yang XA, Determination of the different oxidation states of As and Sb by a new electrochemical hydride generator coupled with atomic fluorescence spectrometry[J]. analytica chimica acta,611(2008):127-133.
    [123]Pohl P, Zapata IJ, Bings NH, Optimization and comparison of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer[J]. Analytica Chimica Acta 606(2008):9-18.
    [124]Menemenlioglu I, Korkmaz D, Ataman OY, Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry[J]. Spectrochimica Acta Part B 62(2007):40-47.
    [125]Cerveny V, Rychlovsky P, NetolickaJ, Sima J, Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers[J]. Spectrochimica Acta Part B 62(2007):317-323.
    [126]Li X, Wang ZH, Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry[J]. Analytica Chimica Acta,588(2007): 179183
    [127]Arbab-Zavar MH, Chamsaz M, Yousefi A, Ashraf N, Electrochemical hydride generation of thallium[J]. Talanta 79(2009):302-307.
    [128]Arbab-Zavar MH, Chamsaz M, Heidari T, Speciation and Analysis of Arsenic(III) and Arsenic(V) by Electrochemical Hydride Generation Spectrophotometric Method[J]. Anal. Sci., 26(2010):107-110.
    [129]Liang J, Wang QQ, Huang BL, Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry[J]. Anal Bioanal Chem381(2005):366-372.
    [130]Chao ST, Fan YC, Hou YZ, Wang KX, Zhu Y, Arsenic species analysis by ion chromatography-bianode electrochemical hydride generator-atomic fluorescence spectrometry[J]. Journal of Chromatography A,1213(2008):56-61.
    [131]李永舫,导电聚合物的电化学性质,复旦学报(自然科学版)43(2004):468-475。
    [132]董绍俊,车广礼,谢远武,化学修饰电极,北京:科学出版社,2003。
    [133]赵凯元王敌清,聚苯胺修饰超微盘电极上镉(Ⅱ)的表面络合吸附波[J], 物理化学学报,19(2003):727~732。
    [134]Jugovic B, Gvozdenovic M, Stevanovic J, Trisovic T, Grgur B, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in electrochemical power sources[J]. Materials Chemistry and Physics 114(2009):939-942.
    [135]Bourdo S, Li ZR, Biris AS, Watanabe F, Viswanathan T, Pavel I, Structural, Electrical, and Thermal Behavior of Graphite-Polyaniline Composites with Increased Crystallinity[J], Adv. Funct. Mater.,18(2008):432440.
    [136]Syed A A, SinesanM K, Talanta,,38(1991):815.
    [137]Stilwell D E, Park S M. J Electrochem Soc,135(1998):2491.
    [138]Kobayashi T, Yoneyama H, Tamura H, J ElectroanalChem,161(1984):293.
    [139]Gottesfeld S, Redondo A, Feldberg S W, J Electrochem. Soc,134(1987):271.
    [140]傅谊,马建标,何炳林,分析测试学报,,17(1998):43.
    [141]Zoran Mandlc. Ljetka, J Electroarml Chem,,403(1996):133.
    [142]张朋 陈明 何鹏举,基于聚苯胺/In203的声表面波CO气体传感器研究[J],压电与声光,31(2009):302-304.
    [143]胡志超 许婧婧 田媛 彭如 鲜跃仲 冉琴 金利通,聚苯胺纳米线/聚丙烯酸层层组装及其电化学传感性能研究[J],化学传感器2(2009):25-30.
    [144]Letheby H, J.Am.Chem.Soc.,15(1862):161.
    [145]MacDiarmidAG, Chem.Engin.News.10(1984):38.
    [146]MacDiarmid AG, Chiang JC, Halpern M, Huang WS, Krawczyk JR, Mammone RJ,. Mu SL, Somasiri NLD, Wu W 1984. Polym.Prepr.,25:248.
    [147]李新贵,窦强, 黄美荣,聚苯胺及其复合物对重金属离子的高效吸附性能[J],化学进展,20(2008):227-232。
    [148]朱新生, 王新渡, 孙东豪,合成技术及应用,17(2002):5。
    [149]Neves S das, Codoba S I de Torresi, Rita Ap., Synth. Met.,101(1999):754.
    [150]Jugovic B, Gvozdenovic M, Stevanovic J, Trisovic T, Grgur B, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in electrochemical power sources[J]. Materials Chemistry and Physics 114(2009):939-942.
    [151]MacDiarmidAG, Chiang JC, Richter AF, Epstein AJ, Synth. Met.18(1987):285.
    [152]Wnek GE, Synth. Met.,15 (1986):213.
    [153]Wnek GE, Polym.Prepr.,27(1986):277.
    [154]Epstein AJ, Ginder JM, Zuo F, Bigelow RW, Woo. HS, Tanner DB, Richter AF, Huang WS, MicDiarmid AG, Synth. Met,18(1987):303.
    [155]Huang M R, Peng Q Y, Li X G. Chem. Eur. J.,12(2006):4341-4350.
    [156]Li X G, Huang M R, Li S X, Acta Mater.,52(2004):5363-5374.
    [157]Dimitriev O P, Macromolecules,37(2004):3388-3395.
    [158]Syed AA, Dinesan MK, Talanta 38(1991):815.
    [159]Syed AA, Dinesan MK, Analyst 117(1992):61
    [160]Sanjiv K, Rakesh V, Gangadharan S, Analyst,118(1993):1085
    [161]Sahayam AC. Determination of Cd, Cu, Pb and Sb in environmental samples by ICP-AES using polyaniline for separation[J]. Fresenius J Anal Chem 362(1998):285288.
    [162]Remya Devi PS, Kumar S, Verma R, Sudersananl M, Sorption of mercury on chemically synthesized polyaniline[J]. Journal of Radioanalytical and Nuclear Chemistry 269(2006):217-222.
    [163]Gupta RK, Singh RA, Dubey SS, Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene[J]. Separation and Purification Technology 38(2004): 225232.
    [164]Balarama Krishna MV, Karunasagar D, Rao SV, Arunachalam J, Preconcentration and speciation of inorganic and methyl mercury in waters using polyaniline and gold trap-CVAAS[J]. Talanta 68(2005):329335.
    [1]Denkhaus E, Golloch A, Guo XM, Huang BL, Electrolytic hydride generation (EC-HG)—a sample introduction system with some special features[J]. J. Anal. At. Spectrom.,16(2001): 870878.
    [2]Laborda F, Bolea E, Castillo JR, Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry:fundamentals, interferences, and applications[J]. Anal Bioanal Chem 388(2007):743751.
    [3]Rigin VI, Verkhoturov GN, Atomic absorption determination of arsenic using prior electrochemical reduction[J]. Zh. Anal. Khim.,33(1977):1966.
    [4]Lin YH, Wang XR, Yuan DX, et al, Flow injection-electrochemical hydride generation technique for atomic absorption spectrom etry[J]. Invited lecture. J. Anal. At. Spectrom.,7(1992): 287-291.
    [5]邓勃,原子荧光光谱分析[M],北京:化学工业出版社,2008。
    [6]Matousek T, The efficiency of chemical vapour generation of transition and noble metals[J], Anal Bioanal Chem 388(2007):763767.
    [7]Pohl P, Prusisz B, Chemical vapor generation of noble metals for analytical Spectrometry [J]. Anal Bioanal Chem 388(2007):753762.
    [8]. Brindle I D, Vapour-generation analytical chemistry:from Marsh to multimode sample-introduction system[J]. Anal Bioanal Chem388(2007):735741.
    [9]. Arbab-Zavar M H, Hashemi M, Evaluation of electrochemical hydride generation for spectrophotometric determination of As(III) by silver diethyldithiocarbamate[J]. Talanta 52(2000): 10071014.
    [10]Denkhaus E, Beck F, Bueschler P, Gerhard R, Golloch A, Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin-mechanistic aspects and figures of merit[J]. Fresenius J Anal Chem.,370(2001):735743.
    [11]Bings N H, Stefanka Z, Mallada SR, Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples[J]. Anal Chim Acta,479(2003):203214.
    [12]Guo XM, Li SP, Huang BL, Design and Performance of a Novel Electrolytic Cell with Micro-Channel Electrodes for Electrochemical Hydride Generation Atomic Fluorescence Spectrometry—Preliminary Report[J]. Can J Anal Sci Spectrosc.,49(2004):327333.
    [13]Sima J, Rychlovsky P, Dedina J, The efficiency of the electrochemical generation of volatile hydrides studied by radiometry and atomic absorption spectrometry[J]. Spectrochim Acta B 59(2004):125133.
    [14]Bolea E, Laborda F, Castillo JR, Sturgeon RE, Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry[J]. Spectrochim Acta B 59(2004):505513.
    [15]Ozmen B, Matysik FM, Bings NH, Broekaert JAC, Optimization and evaluation of different chemical and electrochemical hydride generation systems for the determination of arsenic by microwave plasma torch optical emission spectrometry[J]. Spectrochim Acta B 59(2004): 941950.
    [16]Hashemi M, Arbab-Zavar MH, Sarafraz-Yazdi A, Effect of cathodic electrolyte on the performance of electrochemical hydride generation from graphite cathode[J]. Talanta 64(2004): 644649.
    [17]Gan WE, Zhang WB, Su QD, Simultaneous Determination of As and Sb by Electrochemical Hydride Generation-Atomic Fluorescence Spectrometry[J]. Chinese J Anal Chem.,33(2005): 687689.
    [18]Zhang WB, Gan WE, Lin XQ, Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J]. Anal Chim Acta,539(2005):335340.
    [19]Zhang WB, Gan WE, Lin XQ, Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry [J]. Talanta 68(2006):13161321.
    [20]Li X, Jia J, Wang ZH, Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry[J]. Anal Chim Acta,560(2006):153158
    [21]Jiang XJ, Gan WE, Han SP, Zi HJ, He YZ, Design and application of a novel integrated electrochemical hydride generation cell for the determination of arsenic in seaweeds by atomic fluorescence spectrometry [J]. Talanta 79(2009):314318.
    [22]Arbab-Zavar MH, Chamsaz M, Youssefi A, Aliakbari M, Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium[J]. Anal Chim Acta 546(2005):126132.
    [23]Zhang WB, Gan WE, Su QD, Lin XQ, The Determination of Ge by Atomic Fluorescence Spectrometry with Electrochemical Hydride Generation[J]. Chinese J Anal Chem.,33(2005): 14491451.
    [24]Machado LFR, Jacintho AO, Gine MF, Electrochemical hydride generation for selenium determination in a flow injection system with air-GLP flame atomic absorption spectrometric detection[J]. Quim Nova 23(2000):3033.
    [25]Schermer S, Jurica L, Paumard J, Beinrohr E, Matysik F M, Broekaert J A C,. Optimization of electrochemical hydride generation in a miniaturized electrolytic flow cell coupled to microwave-induced plasma atomic emission spectrometry for the determination of selenium[J]. Fresenius J Anal Chem.,371(2001):740745.
    [26]Bolea E, Laborda F, Belarra M A, Castillo J R, Interferences in electrochemical hydride generation of hydrogen selenide[J]. Spectrochim Acta B 56(2001):23472360.
    [27]Junkova A, Sima J, Rychlovsky P, Interferences of selected transition and noble metals and hydride-forming elements in electrochemical hydride generation of H2Se[J]. Chem Pap-Chem Zvesti 57(2003):192196.
    [28]Bolea E, Laborda F, Castillo JR, Flow injection electrochemical hydride generation of hydrogen selenide on lead cathode:Critical study of the influence of experimental parameters[J]. Anal Sci,19(2003):367372.
    [29]Sima J, Rychlovsky P, Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers[J].Spectrochim Acta B 58(2003):919930.
    [30]Arbab-Zavar MH, Rounaghi GH, Chamsaz M, Masrournia M, Determination of Mercury(Il) ion by electrochemical cold vapor generation atomic absorption spectrometry [J]. Anal Sci, 19(2003):743746.
    [31]Li X, Wang ZH, Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry [J]. Analytica Chimica Acta,588(2007): 179183.
    [32]Cerveny V, Rychlovsky P, Netolicka J, Sima J, Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers[J]. Spectrochimica Acta Part B 62(2007):317323.
    [33]Z. anorg. Chem.,25 (1900):313.
    [34]Bard AJ, Parsons R, Jordan J (Eds.), Standard Potentials in Aqueous Solutions, Marcel Dekker, New York,1985.
    [35]赫尔德DT原著,燕正著,氢化物化学导论[M].北京:科学出版社出版.
    [36]Salzberg HW., Goldschmidt B, J. Electrochem. Soc.,107(1960):348.
    [37]Tomlimson L, J. Electrochem.Soc.,111(1964):592.
    [38]Gerischer H, Mehl W, Z Elektrochem 59(1956):10491059.
    [39]Erdney-Gruz T, Volmer M, Z Phys Chem 150(1930):203213
    [40]Volmer M, Wick H, Z Phys Chem 172 (1932):429447
    [41]Milazzo G, Elektrochemie I, Burkhauser Verlag, Basel-Boston-Stuttgart,1983, p 292
    [42]TafelJ, Z Phys Chem 50(1905):641711.
    [43]Tafel J, Naumann K, Z Phys Chem 50(1905):713752.
    [44]Beck F, Chem Ing Tech 48(1976):10961105.
    [45]Rutschi P, Delahay P, J Chem Phys 23(1955):195213.
    [46]Hickling A, Salt F W, Trans Faraday Soc 38(1942):474490.
    [47]Horiuti J, Ikusima M, Proc Imp Acad 15(1939):3944.
    [48]Okamoto G, Horiuti J, Hirota K, Sci Papers Inst Chem Res 29(1936):223251.
    [49]Salzberg HW, Goldschmidt B, J Electrochem Soc 107(1960):348353.
    [50]Tomlinson L, J Electrochem Soc 111(1964):592596.
    [51]董绍俊,车广礼,谢远武著,化学修饰电极[M].北京:科学出版社,p329.
    [52]MacDiarmid AG, Chem. Engin. News.,, Sep10(1984):38.
    [53]MacDiarmid AG, Chiang JC, et al, Polym. Prepr.,25(1984):248.
    [54]Remya Devi PS, Kumar S, Verma R, Sudersanan M, Sorption of mercury on chemically synthesized polyaniline, Journal of Radioanalytical and Nuclear Chemistry[J],269(2006): 217222.
    [55]Hueber DM, Winefordner JD, A flowing electrolytic hydride generator for continuous sample introduction in atomic spectrometry[J]. Anal. Chim. Acta,316(1995):129144.
    [56]Laborda F, Bolea E, Castillo JR, Tubular electrolytic hydride generator for continuous and flow injection sample introduction in atomic absorption spectrometry [J]. J. Anal. At. Spectrom., 15(2000):103107.
    [57]Ding WW, Sturgeon RE, Evaluation of electrochemical hydride generation for the determination of arsenic and selenium in sea water by graphite furnace atomic absorption with in situ concentration[J]. Spectrochim. Acta Part B 51(1996):13251334.
    [58]Ding WW, Sturgeon RE, Evaluation of electrochemical hydride generation for the determination of totalantimony in naturalwaters by electrothermalatomic absorption spectrometry with in-situ concentration[J]. J. Anal. At. Spectrom.,11(1996):225230.
    [59]Ding WW, Sturgeon RE, Interference of copper and nickel on electrochemical hydride generation[J]. J. Anal. At. Spectrom.,11(1996):421425.
    [60]Denkhaus E, Golloch A, Kampen TU, Nierfeld M, Telgheder U, Electrolytic hydride generation electrothermal atomic absorption spectrometry in situ trapping of As on different pre conditioned end heated graphite tubes[J]. Fresenius J. Anal.Chem.,361(1998):733737.
    [61]Machado LF, Jacintho AO, Menegario AA, Zagatto EA, Gine MF, Electrochemical and chemical processes for hydride generation in flow injection ICP MS determination of arsenic in naturalwaters[J]. J. Anal. At. Spectrom.,13(1998):13431346.
    [63]Arbab-Zavar MH, Chamsaz M, Youssefi A, Aliakbari M, Mechanistic aspects of electrochemical hydride generation for cadmium[J]. Analytica Chimica Acta,576(2006): 215220.
    [64]Creighton H J, Principle and Application of Electrochemistry. John wiley& Sons.1997, p248.
    [65]Schickling C, PhD-thesis, Dortmund, Germany,1996, p 103109
    [66]陈延禧著,电解工程[M],天津:天津科学技术出版社,1993.8
    [67]Pyell U, Dworschak A, Nitschke F, Neidhart B, Flow injection electrochemical hydride generation atomic absorption spectrometry (FI-EHG-AAS) as a simple device for the speciation of inorganic arsenic and selenium [J]. Fresenius'J. Anal. Chem.,363(1999):495-498.
    [68]Schaumloffel D, Neidhart B, A FIA-system for As(III)/As(V)-determination with electrochemical hydride generation and AAS-detection[J]. Fresenius'J. Anal. Chem.,354(1996): 866-869.
    [1]司荣军,顾雪祥,周登诗,高鹏,杨开岐,分散元素一金矿床中应引起注意的地球化学信息[J].地质与勘探,42(2006):68—71.
    [2]Taddia M, Bellini A, Determination of tellurium in indium-phosphide by electrothermal atomic-absorption spectrometry and ultraviolet-visible spectrophotometry[J]:J. Anal. At. Spectrom.,10 (1995):433-437.
    [3]Sahu GP, Lavale SC, Polarography of selenium and tellurium:A new arena of electrochemistry[J], Asian Journal of Chemistry 14(2002):90-94
    [4]Ghasemi E, Najafi NM, Seidi S, Raofie F, Ghassempour A, Speciation and determination of trace inorganic tellurium in environmental samples by electrodeposition-electrothermal atomic absorption spectroscopy[J]. J. Anal. At. Spectrom.,24(2009):1446-1451.
    [5]Oda S, Arikawa Y, Determination of tellurium in coal samples by means of graphite furnace atomic absorptiona spectrometry after coprecipitation with iron(III) hydroxide[J]. Bunseki Kagaku,54(2005):1033-1037.
    [6]Cava-Montesinos P, de la Guardia A, Teutsch C, Cervera ML, Speciation of selenium and tellurium in milk by hydride generation atomic fluorescence spectrometry [J]. J. Anal. At. Spectrom.,19(2004):696-699.
    [7]Feng XJ, Fu B, Determination of arsenic, antimony, selenium, tellurium and bismuth in nickel metal by hydride generation atomic fluorescence spectrometry [J]. Anal. Chim. Acta,371(1998):109-113.
    [8]Liang ZW, Lonardo RF, Micher RG, Determination of Tellurium and antimony in nickel-alloys by laser-excited atomic fluorescence spectrometry in a graphite-furnace[J]. Spectrochim. Acta Part B 48(1993):7-23.
    [9]Laborda F, Bolea E, Castillo JR, Tubular electrolytic hydride generator for continuous and flow injection sample introduction in atomic absorption spectrometry [J]. J. Anal. At. Spectrom., 1(2000):103107.
    [10]Matsumoto A, Shiozaki T, Nakahara T, Simultaneous determination of bismuth and tellurium in steels by high power nitrogen microwave induced plasma atomic emission spectrometry coupled with the hydride generation technique[J]. Anal. Bioanal. Chem.,379(2004):9095.
    [11]Cava-Montesinos P, Cervera ML, Pastor A, de la Guardia M, Hydride generation atomic fluorescence spectrometric determination of ultratraces of selenium and tellurium in cow milk[J]. Anal. Chim. Acta,481(20030:291300.
    [12]Chen YL, Jiang SJ, Determination of tellurium in a nickel-based alloy by flow injection vapor generation inductively coupled plasma mass spectrometry[J]. J. Anal. At. Spectrom.,15(2000): 15781582.
    [13]Grotti M, Lagomarsino C, Frache R, Multivariate study in chemical vapor generation for simultaneous determination of arsenic, antimony, bismuth, germanium, tin, selenium, tellurium and mercury by inductively coupled plasma optical emission spectrometry[J]. J. Anal. At. Spectrom.,20(2005):13651373.
    [14]Li X, Jia J, Wang ZH, Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry[J]. Anal. Chim. Acta,560(2006):153158.
    [15]Liang J, Wang QQ, Huang BL, Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry[J]. Anal. Bioanal. Chem.,381(2005):366372.
    [16]Ozmen B, Matysik FM, Bings NH, Broekaert JAC, Optimization and Evaluation of Different Chemical and Electrochemical Hydride Generation Systems for the Determination of Arsenic by Microwave Plasma Torch Atomic Emission Spectrometry[J]. Spectrochim. Acta Part B 59(2004): 941950.
    [17]Lin YH, Wang XR, Yuan DX, Yang PY, Huang BL, Zhuang ZX, J. Anal. At. Spectrom., 7(1992):287.
    [18]Brockmann A, Nonn C, Golloch J, J. Anal. At.Spectrom.,8(1993):397.
    [19]Huang BL, Can. J. Appl. Spectrosc.,239(1994):117.
    [20]Ding WW, Sturgeon RE, J. Anal. At. Spectrom.,11(1996):225.
    [21]Lin Y, Wang X, Yuan D, Yang P, Huang B, Zhuang Z, Flow injection—electrochemical hydride generation technique for atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 7(1992):287-291.
    [22]Brockmann A, Nonn C, Golloch A, New concept for hydride generation technique electrochemical hydride generation[J]. J. Anal. At. Spectrom.8(1993):397-401.
    [23]Schaumloffel D, Neidhart B, A FIA-system for As(Ⅲ)/As(V)-determination with electrochemical hydride generation and AAS-detection[J]. Fresenius J. Anal. Chem.354(1996): 866-886.
    [24]Hueber DM, Winefordner JD, A flowing electrolytic hydride generator for continuous sample introduction in atomic spectrometry[J]. Anal. Chim. Acta,316(1995):129-144.
    [25]Denkhaus E, Golloch A, Guo XM, Huang BL, Electrolytic hydride generation (EC-HG)—a sample introduction system with some special features[J]. J. Anal. At. Spectrom.,16(2001): 870878.
    [26]Denkhaus E, Beck F, Bueschler P, Gerhard R, Golloch A, Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin-mechanistic aspects and figures of merit[J], Fresenius J Anal Chem 370(2001):735743.
    [27]Bings NH, Stefanka Z, Mallada SR, Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples[J]. Anal Chim Acta 479(2003):203214.
    [28]. Guo XM, Li SP, Huang BL, Design and Performance of a Novel Electrolytic Cell with Micro-Channel Electrodes for Electrochemical Hydride Generation Atomic Fluorescence Spectrometry—Preliminary Report[J]. Can J Anal Sci Spectrosc,49(2004):327333.
    [29]. Sima J, Rychlovsky P, Dedina J, The efficiency of the electrochemical generation of volatile hydrides studied by radiometry and atomic absorption spectrometry [J], Spectrochim Acta B 59(2004):125133.
    [30]. Bolea E, Laborda F, Castillo JR., Sturgeon RE, Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry [J]. Spectrochim Acta B 59(2004):505513.
    [31]. Ding WW, Sturgeon RE, Evaluation of Electrochemical Hydride Generation for the determination of Total Antimony in Natural Waters by Electrothermal Atomic Absorption Spectrometry With in situ Concentration [J]. J. Anal. At. Spectrom.,11(1996):225230.
    [32]Zhang WB, Gan WE, Lin XQ, Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J]. Anal Chim Acta 539(2005):335340.
    [33]Zhang WB, Gan WE, Lin XQ, Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry[J]. Talanta 68 (2006):13161321.
    [34]Li X, Jia J, Wang ZH, Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry[J]. Anal Chim Acta,560(2006):153158.
    [35]Arbab-Zavar MH, Chamsaz M, Youssefi A, Aliakbari M, Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium[J]. Anal. Chim. Acta,546(2005): 126132.
    [36]Li X, Wang ZH, Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry [J]. Anal. Chim. Acta,588(2007): 179183.
    [37]Arbab-Zavar MH, Rounaghi GH, Chamsaz M, Masrournia M, Determination of Mecurry(Ⅱ) ion by electrochemical cold vapor generation atomic absorption sdpectromtry[J]. Anal. Sci.,19(2003):743746.
    [38]Cerveny V, Rychlovsky P, Netolicka J, Sima J, Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers[J]. Spectrochim. Acta Part B 62(2007):317323.
    [39]Laborda F, Bolea E, Castillo JR, Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry:fundamentals, interferences, and applications[J]. Anal. Bioanal. Chem.388(2007):743-751.
    [40]Zhang WB, Gan WE, Lin XQ, Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J]. Anal. Chim. Acta,539(2005):335340.
    [41]Zhang WB, Gan WE, Lin XQ, Development of a new electrochemical hydride generator with W wire cathode for the determination of As and Sb by atomic fluorescence spectrometry [J], Talanta 68(2006):13161321.
    [42]Methods for chemical analysis of tin-lead solders-Determination of copper, iron, cadmium, silver, gold, arsenic, zinc, aluminum, bismuth, phosphorous content. GB/T 10574.13-2003.
    [43]Lin YH, Wang XR, Yuan DX, Yang PY, Huang BL, Zhuang ZX, Flow injection-electrochemical hydride generation technique for atomic absorption spectrometry [J]. J. Anal. Atom. Spectrom.7(1992):287291.
    [44]Denkhaus E, Beck F, Bueschler P, Gerhard R, Golloch A, Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin-mechanistic aspects and figures of merit[J]. Fresenius'J. Anal. Chem.370(2001):735743.
    [45]赫尔德原著,燕正译,氢化物化学导论,北京:科学出版社,1959.
    [46]Menemenlioglu I, Korkmaz D, Ataman OY, Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry[J]. Spectrochim. Acta Part B 62(2007):4047.
    [47]Sima J, Rychlovsky P, Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers[J]. Spectrochim. Acta Part B 58(2003):919930.
    [1]Zhou HY, Wong MH, Mercury accumulation in freshwater fish with emphasis on the dietary influence[J]. Water Res.,34(2000):4234-4242.
    [2]Wang Q, Liu BZ, Yang HS, Wang XY, Lin ZH, Toxicity of lead, cadmium and mercury on embryogenesis, survival, growth and metamorphosis of Meretrix meretrix larvae[J]. Ecotoxicology, 18(2009):829837.
    [3]Becker A, Soliman KFA, The Role of Intracellular Glutathione in Inorganic Mercury-Induced Toxicity in Neuroblastoma Cells[J]. Neurochem. Res.,34(2009):1677-1684.
    [4]Berry MJ, Ralston NVC, Mercury Toxicity and the Mitigating Role of Selenium[J]. EcoHealth, 5(2008):456-459.
    [5]Lengyel Z, Lukacs A, Szabo A, Nagymajtenyi L, General toxicity and neurotoxicity of lead and mercury in combination with dimethoate in rats after subchronic oral exposure[J]. Trace Elem. Electrolytes,23(2006):242-246.
    [6]Zhu ZL, Chan GCY, Ray SJ, Zhang XR, Hieftje GM, Use of a Solution Cathode Glow Discharge for Cold Vapor Generation of Mercury with Determination by ICP-Atomic Emission Spectrometry[J]. Anal. Chem.80(2008):7043-7050.
    [7]Shao LJ, Gan WE, Su QD, Determination of total and inorganic mercury in fish samples with on-lineoxidation coupled to atomic fluorescence spectrometry[J]. Anal. Chim. Acta,562(2006): 128-133.
    [8]Han SP, Gan WE, Jiang XJ, Zi HJ, Su QD, On-line pressurized electromagnetic induction heating digestion:a promising sample preparation technique for trace mercury analysis[J]. J. Anal. At. Spectrom.,23(2008):773-776.
    [9]Wu H, Jin Y, Han WY, Miao Q, Bi SP, Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry[J]. Spectrochim. Acta, Part B 61(2006):831-840.
    [10]Su YY, Xu KL, Gao Y, Hou XD, Determination of trace mercury in geological samples by direct slurry sampling cold vapor generation atomic absorption spectrometry[J]. Microchim Acta,160(2008): 191-195.
    [11]Pourreza N, Ghanemi K, Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole [J]. J. Hazard. Mater.,161(2009):982-987.
    [12]Arbab-Zavar MH, Rounaghi GH, Chamsaz M, Masrournia M, Determination of mercury(Ⅱ) ion by electrochemical cold vapor generation atomic absorption spectrometry[J]. Anal. Sci.,19(2003): 743-746.
    [13]Cerveny V, Rychlovsky P, Netolicka J, Sima J, Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers[J]. Spectrochim. Acta, Part B 62(2007): 317-323.
    [14]Bings NH, Stefanka Z, Mallada SR, Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples [J]. Anal. Chim. Acta 479(2003):203-214.
    [15]Li X, Wang ZH, Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry [J]. Anal. Chim. Acta 588(2007):179-183.
    [16]Laborda F, Bolea E, Castillo JR, Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry:fundamentals, interferences, and applications [J]. Anal. Bioanal. Chem.,388(2007):743-751.
    [17]Wang EK, Liu AH, Polyaniline chemically modified electrode for detection of anions in bow-injection analysis and ion chromatography[J]. Anal. Chim. Acta,252(1991):53-57.
    [18]Ye JN, Baldwin RP, Flow Injection Analysis of Electroinactive Anions at a Polyaniline Electrode[J]. Anal. Chem.,60(1988):1979-1982.
    [19]Kobayashi T, Yoneyama H, Tamura H, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes[J]. J. Electroanal. Chem.,177(1984):281-291.
    [20]Gupta RK, Singh RA, Dubey SS, Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene[J]. Sep. Purif. Technol.,38(2004):225-232.
    [21]Li XG, Feng H, Huang MR, Strong Adsorbability of Mercury Ions on Aniline/Sulfoanisidine CopolymerNanosorbents[J]. Chem. Eur. J.,15(2009):4573-4581.
    [22]Remya Devi PS, Kumar S, Verma R, Sudersanan M, Sorption of mercury on chemically synthesized polyaniline[J]. J. Radioanal. Nucl. Chem.269(2009):217-222.
    [23]Balarama Krishna MV, Karunasagar D, Rao SV, J. Arunachalam, Preconcentration and speciation of inorganic and methyl mercury in waters using polyaniline and gold trap-CVAAS[J]. Talanta 68(2005):329-335.
    [24]Jiang XJ, Gan WE, Han SP, He YZ, Determination of Te in soldering tin using continuous flowing electrochemical hydride generation atomic fluorescence spectrometry [J]. Spectrochim. Acta, PartB63(2008):710-713.
    [25]Reis BF, Rodenas-Torralba E, Sancenon-Buleo J, Morales-Rubio A, de la Guardia M, Multicommutation cold vapour atomic fluorescence determination of Hg in water[J]. Talanta 60(2003): 809-819.
    [1]Blunden S, Wallace T, Tin in canned food:a review and understanding of occurrence and effect[J]. Food Chem. Toxicol.41(2003):16511662.
    [2]Mino Y, Determination of Tin in canned foods by X-ray Fluorescence Spectrometry[J]. Journal of Health Science,52(2006):67-72.
    [3]Perring L, Basic-Dvorzak M, Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy[J]. Anal. Bioanal. Chem 374(2002):235243
    [4]Spinola Costa AC, Teixeira LSG, Ferreira SLC, Spectrophotometric determination of tin in copper-based alloys using pyrocatechol violet[J]. Talanta 42(1995):19731978.
    [5]Huang X, Zhang W, Han S, Wang X, Determination of tin in canned foods by UV/visible spectrophotometric technique using mixed surfactants[J], Talanta 44(1997):817822.
    [6]Lopez-Garcia I, Arnau-Jerez I, Campillo N, Hernandez-Cordoba M, Determination of tin and titanium in soils, sediments and sludges using electrothermal atomic absorption spectrometry with slurry sample introduction[J]. Talanta 62(2004):413419.
    [7]Tsogas GZ, Giokas DL, Vlessidis AG, Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: Study of preconcentration technique performance[J]. J. Hazard. Mater.,163(2009):988994.
    [8]Carrion N, Itriago AM, Alvarez MA, Eljuri E, Simultaneous determination of lead, nickel, tin and copper in aluminium-base alloys using slurry sampling by electrical discharge and multielement ETAAS[J]. Talanta 61(2003):621632.
    [9]Lopez-Garcia I, Arnau-Jerez I, Campillo N, Hernandez-Cordoba M, Determination of tin and titanium in soils, sediments and sludges using electrothermal atomic absorption spectrometry with slurry sample introduction[J], Talanta 62(2004):413419.
    [10]Manzoori JL, Amjadi M, Abolhasani D, Spectrofluorimetric determination of tin in canned foods[J]. J. Hazard. Mater. B,137(2006):16311635.
    [11]Denkhaus E, Beck F, Bueschler P, Gerhard R, Golloch A, Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin-mechanistic aspects and figures of merit[J]. Fresenius J. Anal. Chem 370(2001):735743.
    [12]Bolea E, Laborda F, Castillo JR, Sturgeon RE, Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry [J], Spectrochim. Acta, Part B 59(2004):505513.
    [13]Laborda F, Bolea E, Castillo JR, Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry:fundamentals, interferences, and applications[J]. Anal. Bioanal. Chem 388(2007):743751
    [14]Kobayashi T, Yoneyama H, Tamura H, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes[J], J. Electroanal. Chem.,177(1984): 281291.
    [15]Gupta RK, Singh RA, Dubey SS, Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene[J]. Sep. Purif. Technol.,38(2004):225232.
    [16]Kumar S, Verma R, Gangadharan S, Application of poly(aniline) as an ion exchanger for the separation of palladium, iridium, platinum and gold prior to their determination by neutron activation analysis[J]. Analyst,118(1993):1085.
    [17]Li XG, Feng H, Huang MR, Strong Adsorbability of Mercury Ions on Aniline/Sulfoanisidine CopolymerNanosorbents[J]. Chem. Eur. J.,15(2009):45734581.
    [18]Remya Devi PS, Kumar S, Verma R, Sudersanan M, Sorption of mercury on chemically synthesized polyaniline[J]. J. Radioanal. Nucl. Chem.,269(2009):217222.
    [19]Balarama Krishna MV, Karunasagar D, Rao SV, J. Arunachalam, Preconcentration and speciation of inorganic and methyl mercury in waters using polyaniline and gold trap-CVAAS[J]. Talanta 68(2005):329335.
    [20]Denkhaus E, Buschler P, Golloch A, Lattner D, CANAS'97 Colloqium Analytische Atomspektroskopie, ed. C. Vogt,R.Wennrich and G. Werner, Universitaet Leipzig und UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig,1998, p.197.
    [21]Jiang XJ, Gan WE, Wan LZ, Zhang HC, He YZ, Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode[J]. Spectrochimica Acta Part B 65(2010):171-175.
    [22]Zhang WB, Gan WE, Lin XQ, Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry [J]. Talanta 68(2006):13161321.
    [23]Macdiarmid AG, Epstein AJ, Poly anilines-a novel class of conducting polymers[J]. Faraday Discuss. Chem. Soc.88(1989):317-332.
    [1]Ruperez P, Saura-Calixto F, Dietary fibre and physicochemical properties of edible Spanish seaweeds[J], Eur. Food Res. Technol.,212(2001):349-354.
    [2]Jimenez-Escrig A, Jimenez-Jimenez I, Pulido R, Saura-Calixto F, Antioxidant activity of fresh and processed edible seaweeds[J], J. Sci. Food Agric.,81(2001):530-534.
    [3]Ruperez P, Mineral content of edible marine seaweeds[J]. Food Chem.,79(2002):23-26.
    [4]Moreda-Pineiro J, Alonso-Rodriguez E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D, Moreda-Pineiro A, Bermejo-Barrera P, Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed[J]. Anal. Chim. Acta 598(2007):95-102.
    [5]Garcia Salgado S, Quijano Nieto MA, Bonilla Simon MM, Assessment of total arsenic and arsenic species stability in alga samples and their aqueous extracts[J]. Talanta 75(2008):897-903.
    [6]Farias S, Smichowski P, Velez D, Montoro R, Curtosi A, Valdopivez C, Total and inorganic arsenic in antarctic macroalgae[J]. Chemosphere,69(2007):1017-1024.
    [7]Garcia Salgado S, Quijano Nieto MA, Bonilla Simon MM, Optimisation of sample treatment for arsenic speciation in alga samples by focussed sonication and ultrafiltration[J]. Talanta 68(2006):1522-1527.
    [8]Zhu ZL, Liu JX, Zhang SC, Na X, Zhang XR, Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer[J]. Anal. Chim. Acta 607(2008):136-141.
    [9]Howard AG, (Boro)hydride techniques in trace element speciation-Invited lecture[J]. J. Anal. At. Spectrom.,12(1997):267-272.
    [10]Naykki T, Peramaki P, Kujala J, Mikkonen A, Optimization of a flow injection hydride generation atomic absorption spectrometric method for the determination of arsenic, antimony and selenium in iron chloride/sulfate-based water treatment chemical[J]. Anal. Chim. Acta 439(2001): 229-238.
    [11]Li XH, Su YY, Xu KL, Hou XD, Lv Y, Simple and sensitive determination of arsenic by volatile arsenic trichloride generation atomic fluorescence spectrometry[J]. Talanta 72(2007): 1728-1732.
    [12]Pohl P, Zyrnicki W, Study of chemical and spectral interferences in the simultaneous determination of As, Bi, Sb, Se and Sn by hydride generation inductively coupled plasma atomic emission spectrometry[J]. Anal. Chim. Acta,468(2002):71-79.
    [13]Yamamoto M, Yasuda M, Yamamoto Y, Hydride-generation atomic absorption spectrometry coupled with flow injection analysis[J]. Anal. Chem.57(1985):1382-1385.
    [14]Welz B, Sucmanova M, L-cysteine as a reducing and releasing agent for the determination of antimony and arsenic using flow-injection hydride generation atomic-absorption spectrometry.l. optimization of the analytical parameters [J], Analyst,118(1993):1417-1423.
    [15]Bolea E, Arroyo D, Cepria G, Laborda F, Castillo JR, Elucidation of interference mechanisms caused by iron on stibine electrochemical generation by differential pulse anodic stripping voltametry. A case study[J]. Spectrochim Acta Part B 61(2006):96103.
    [16]Erdem N, Henden E, Inter-element interferences in the determination of arsenic and antimony by hydride generation atomic absorption spectrometry with a quartz tube atomizer[J]. Anal. Chim. Acta 505(2004):59-65.
    [17]Dedina J, Tsalev DL, Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester,1995, pp.91115.
    [18]He YH, Hou XD, Zheng CB, Sturgeon RE, Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry [J]. Anal Bioanal Chem 388 (2007):769774.
    [19]Zheng CB, Li Y, He YH, Ma Q, Hou XD, Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water[J]. J. Anal. At. Spectrom.,20(2005):746-750.
    [20]Amberger MA, Bings NH, Pohl P, Broekaert JAC, Investigation of electrochemical hydride generation coupled to microwave plasma torch optical emission spectrometry for the determination of arsenic:analytical figures of merit, interference studies and applications to environmentally relevant samples[J]. Int. J. Environ. Anal. Chem.,88(2008):625-636.
    [21]Arbab-Zavar MH, Hashemi M, Evaluation of electrochemical hydride generation for spectrophotometric determination of As(III) by silver diethyldithiocarbamate[J]. Talanta52(2000): 10071014.
    [22]Zhang WB, Gan WE, Lin XQ, Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry[J] Talanta 68(2006):1316-1321.
    [23]Hashemi M, Arbab-Zavar MH, Sarafraz-Yazdi A, Effect of cathodic electrolyte on the performance of electrochemical hydride generation from graphite cathode[J], Talanta 64(2004):644649.
    [24]Denkhaus E, Golloch A, Guo XM, Huang BL, Electrolytic hydride generation (EC-HG)—a sample introduction system with some special features[J]. J. Anal. At. Spectrom.,16(2001): 870878.
    [25]Laborda F, Bolea E, Castillo JR, Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry:fundamentals, interferences, and applications[J], Anal Bioanal Chem 388(2007):743751.
    [26]Lin YH, Wang XR, Yuan DX, Yang PY, Huang BL, Zhuang ZX, Flow injection-electrochemical hydride generation technique for atomic absorption spectrometry[J]. J. Anal. At. Spectrom.,7(1992):287-291.
    [27]Denkhaus E, Golloch A, Kampen TU, Nierfeld M, Telgheder U, Electrolytic hydride generation electrothermal atomic absorption spectrometry-in situ trapping of As on different pre-conditioned end-heated graphite tubes[J]. Fresenius'J. Anal. Chem.,361(1998):733737.
    [28]Machado LFR, Jacintho AO, Menegario AA, Zagatto EAG, Gine MF, Electrochemical and chemical processes for hydride generation in flow injection ICP-MS:determination of arsenic in natural waters[J], J Anal At Spectrom 13(1998):13431346.
    [29]Sima J, Rychlovsky P, Dedina J, Proceedings of ⅪⅤth Seminar on Atomic Spectrochemistry, High Tatras, Podbanske, September 1998, p.243.
    [30]Pyell U, Dworschak A, Nitschke F, Neidhart B, Flow injection electrochemical hydride generation atomic absorption spectrometry (FI-EHG-AAS) as a simple device for the speciation of inorganic arsenic and selenium [J]. Fresenius'J. Anal. Chem.,363(1999):495-498.
    [31]Schaumloffel D, Neidhart B, A FIA-system for As(III)/As(V)-determination with electrochemical hydride generation and AAS-detection[J]. Fresenius'J. Anal. Chem.,354(1996): 866-869.
    [32]Laborda F, Bolea E, Castillo JR, Tubular electrolytic hydride generator for continuous and flow injection sample introduction in atomic absorption spectrometry [J]. J. Anal. At. Spectrom 15(2000):103107.
    [33]Pohl P, Zapata IJ, Bings NH, Optimization and comparison of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer[J]. Anal. Chim. Acta,606(2008):9-18.
    [34]Hranicek J, Cerveny V, Rychlovsky P, Miniaturization of flow-through electrolytic cells for electrochemical generation of volatile compound in AAS[J]. Chem. Listy 102(2008):200-204.
    [35]Schermer S, Jurica L, Paumard J, Beinrohr E, Matysik FM, Broekaert JAC, Optimization of electrochemical hydride generation in a miniaturized electrolytic flow cell coupled to microwave-induced plasma atomic emission spectrometry for the determination of selenium[J]. Fresenius'J. Anal. Chem.,371(2001):740.
    [36]Zhang WB, Gan WE, Lin XQ, Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J]. Anal. Chim. Acta,539(2005):335.
    [37]BERGMA I, Rapid response atmospheric oxygen monitor based on fluorescence quenching[J]. Nature 218(1986):396.
    [38]Bolea E, Laborda F, Castillo JR, Flow injection electrochemical hydride generation of hydrogen selenide on lead cathode:Critical Study of the influence of experimental parameters[J]. Anal Sci.,19(2003):367372.
    [39]Ding WW, Sturgeon RE, Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration [J]. J. Anal. At. Spectrom.,11(1996):225-230.
    [40]Li X, Jia J, Wang ZH, Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry [J]. Anal. Chim. Acta,560(2006):153-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700