用户名: 密码: 验证码:
超分子催化合成天然苯甲醛的绿色化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯甲醛是世界第二大主要香料,仅次于香兰素,广泛用于食品、饮料、医药、化妆品等领域。随着人们对食品安全问题的不断深化,天然苯甲醛日益受到消费者的青睐且代表着良好的市场价值,因此天然苯甲醛的生产受到广泛的关注。本文立足于我国资源丰富的肉桂油(主要成分为肉桂醛),旨在建立一种清洁有效、反应条件温和的由天然肉桂油制备天然苯甲醛的方法,使用多种绿色技术,包括使用超分子金属卟啉、环糊精等绿色催化剂,以分子氧或双氧水等为绿色氧化剂,以水为绿色溶剂等技术来实现天然苯甲醛的高效的清洁液相合成。并通过实验、各种测试手段、原位表征、量子化学ab initio计算模拟及动力学等方法进行反应的机理研究。
     本文首先研究了金属卟啉超分子催化分子氧氧化肉桂醛制备苯甲醛。该方法中,四苯基锰卟啉(MnTPPCl)仅以ppm级的用量就可以高效催化肉桂醛氧化,显示出很高的催化活性和选择性,苯甲醛的收率达71%。这是因为锰具有可变的价态和合适的还原电势,容易生成活性中间体金属高价氧代物的缘故。
     本文重点研究了β-环糊精(β-CD)及其衍生物催化肉桂醛制备苯甲醛。因为水是一种便宜的清洁的溶剂,有益于生态环境和食品安全;而且,水相有机反应是绿色化学的一个重要研究方向。
     在β-CD催化肉桂醛碱性水解制备苯甲醛体系中,通过FT-IR、~1H NMR、ROESY、UV-Vis以及Gaussian 03分子模拟对β-CD/肉桂醛包结物进行分析表征,确定肉桂醛与β-CD形成了摩尔比为1:1的包结物,包结常数为329M-1(298K),且肉桂醛的醛基与β-CD的仲羟基之间存在氢键。氢键促进了氧负离子(O-)的生成以及外来的氢氧根离子(OH-)对肉桂醛的亲核进攻,从而促进了肉桂醛的逆羟醛缩合反应。然而,乙醛和肉桂醛的羰基都具有α-H,可以发生羟醛缩合反应,且苯甲醛自身也容易发生聚合反应和歧化反应,从而降低了苯甲醛的收率,仅为42%。动力学研究表明,β-CD的参与使肉桂醛碱性水解的反应活化能由空白实验的57.11kJ/mol降到了45.27 kJ/mol,从而加速了反应的进行。从活化能的角度解释β-CD的催化作用,是本文最大的创新。
     在β-CD的水溶性衍生物——2-羟丙基-β-环糊精(2-HP-β-CD)催化肉桂醛碱性水解制备苯甲醛的体系中,通过联合使用DSC、~1H NMR、ROESY以及荧光光谱等各种分析手段,确定肉桂醛与2-HP-β-CD形成了摩尔比为1:1的包结物,包结常数为928M-1(298K),且肉桂醛与2-HP-β-CD之间存在着强烈的氢键;进一步的动力学研究和增溶性研究表明主客体分子间相互作用力的方式和强度与主体对客体的增溶性、客体的活化有着直接的因果关系,也就是说环糊精超分子作为催化剂,是通过与底物形成包结物来活化底物,提高反应选择性的,而这种催化能力的大小,主要依赖于主客体之间包结能力的大小。因此,2-HP-β-CD是更有效的催化剂,显著地提高了肉桂醛碱性水解制备苯甲醛的反应选择性,苯甲醛收率达70%。
     在β-CD催化次氯酸钠或者双氧水氧化肉桂醛制备苯甲醛的体系中,苯甲醛的收率前者可达到76%,后者可达78%。显然,双氧水是更合适的氧化剂,也是更清洁的氧化剂。并以天然肉桂油(含93%肉桂醛)为原料,对β-CD/H_2O_2-NaHCO_3氧化体系进行了放大反应,苯甲醛的收率达67%。借助in situ FT-IR、GC-MS等测试手段,通过设计实验,认为β-CD与肉桂醛首先形成包结物,H_2O_2与HCO_3~-形成过氧酸根离子HCO_4~-,HCO_4~-对被包结的肉桂醛显示出强烈的亲核氧化性,并且肉桂醛与β-CD之间的氢键也促进了HCO_4~-对肉桂醛的亲核氧化,先生成大量的环氧化产物和少量的苯甲醛,环氧化产物可进一步氧化为苯甲醛。
     放大实验的成功,表明肉桂油/β-CD/H_2O_2-NaHCO_3体系在温和的反应条件(常压,60℃)下实现了天然苯甲醛的高效的清洁水相合成,此体系兼有环境友好和良好的经济性,具有潜在的工业应用价值,同时为芳香醛类香料的合成提供理论基础和技术基础,为应用于食品等领域的其他有机中间体的生产提供一条环境友好的途径。
In total amount of spice in the world, benzaldehyde is the second largest perfume after vanillin. With more cares about food quality from consumers, natural benzaldehyde is more and more popular and represents a strong market advantage. As a result, the synthesis of natural benzaldehyde is drawing much attention. Based on the rich natural cinnamal oil, of which cinnamaldehyde is the main composition, we have developed a clean and efficient process to produce benzaldehyde from cinnamaldehyde under much milder conditions, using various green technologies including green oxidant, green solvent and green catalyst. Moreover, the mechanism has been investigated by experiments, various characteristic methods, in-situ characterization, ab initio computational methods and kinetics methods.
     In this paper, oxidative cleavage of cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins in the presence of dioxygen had been investigated at first. MnTPPCl showed excellent activity for the oxidation at the ppm level and 71% yield of benzaldehyde was obtained at 60℃and ambient atmosphere. It was attributed to manganese having variable valence and appropriate reduction potential to facilitate formation of high valent metal-oxo ligand, which was verified by UV-vis spectroscopy.
     Then, this paper focused on the conversion of cinnamaldehyde to benzaldehyde catalyzed byβ-cyclodextrin (β-CD) or its derivatives. It is because water is good for environment and food safety as a cheap and clean solvent. Moreover, organic reactions in aqueous solution have been one of roles of green chemistry.
     Inβ-CD catalytic alkaline hydrolysis system, various analysis methods, e.g., FT-IR, UV-Vis, ~1H NMR, ROESY and Gaussian 03 had been utilized to demonstrate the formation of 1:1 (molar ratio) complexes betweenβ-CD and cinnamaldehyde and the inclusion equilibrium constant was 329 M~(-1) at 298K. Furthermore, the aldehyde group forms hydrogen bond with the secondary alcohol ofβ-CD. It is the hydrogen bond that facilitates formation of the oxygen anion (O-) and the nucleophilic addition of external hydroxide ion with cinnamaldehyde, which results into the acceleration ofβ-CD over alkaline hydrolysis of cinnamaldehyde. However, both acetaldehyde and cinnamaldehyde ownα- proton to the carbonyl group, the crossed Aldol condensation reaction also took place. In addition, benzaldehyde was prone to its own disproportionation and polymerization reactions. As a result, the yield of benzaldehyde decreased to be only 42% at 50℃and ambient atmosphere. From the results of kinetic analysis, it could be found that the activation energy for the hydrolysis of cinnamaldehyde to benzaldehyde decreased from 57.11 kJ/mol in the absence ofβ-CD to 45.27 kJ/mol in the presence ofβ-CD. It is the first time to clarity whyβ-CD can promote the reaction from the perspective of the activation energy.
     In 2-hydroxypropyl-β-cyclodextrin (2-HPβ-CD) catalytic alkaline hydrolysis system, the combination of DSC, FT-IR, UV-Vis, 1H NMR, ROESY and fluorescence measurements was used to verify the formation ofβ-CD/cinnamaldehyde inclusion complex with molar ratio of 1:1 and the inclusion equilibrium constant was 928 M~(-1) at 298K. Moreover, the aldehyde group forms strong hydrogen bond with 2-HPβ-CD. The further investigation on kinetic studies and solubilization indicated that weak molecular interactions between guest and the CDs had a direct relevance on their solubilization efficiency, and the binding abilities among CDs and substrate mainly affected the hydrolysis reactivity. Then, 2-HPβ-CD conferred high activity and selectivity for the alkaline hydrolysis of cinnamaldehyde and the yield of benzaldehyde was 70% at 50℃and ambient atmosphere.
     Inβ-CD/NaClO orβ-CD/H2O2 oxidation system, at 60℃and ambient atmosphere, the yield of benzaldehyde was 76% in the presence of NaClO and was 78% in the presence of H2O2. Obviously, H_2O_2 is a cleaner and more appropriate oxidant than NaClO. A large-scale experiment for the conversion of natural cinnamal oil ( 93% cinnamaldehyde ) to benzaldehyde in H_2O_2 -NaHCO_3 oxidation system was carried out and the yield of benzaldehyde was 67%. Peroxymonocarbonate ion (HCO_4~-) was easily formed by H_2O_2 with HCO_3~-, which shows a strong nucleophilic oxidation toward the included cinnamaldehyde. Furthermore, the non-covalent intermolecular interactions betweenβ-CD and cinnamaldehyde promoted the nucleophilic oxidation. Therefore, trace amount of benzaldehyde and large amount of the corresponding epoxide were obtained. The epoxide was further oxidized to benzaldehyde by HCO_4~-. These processes were verified by in situ FTIR spectra, theoretical method and GC-MS.
     The success of amplification experiment indicated that theβ-CD/H_2O_2 -NaHCO_3 oxidation system achieved a clean and efficient process for producing natural benzaldehyde from natural cinnamal oil in water at 60℃and ambient atmosphere, which has both environmentally-friendly and good economy. The benign, mild and straightforward methodology for the conversion of cinnamaldehyde to benzaldehyde may find its potential application in industrial operation and offer theoretical and technical foundation and a general method for the clean synthesis of other similar natural aromatic fragrant compounds.
引文
[1]张承曾等.天然香料手册[M].轻工业出版社:北京, 1989, 109.
    [2] Krings U, Berger RG. Biotechnological production of flavours and fragrances [J]. Appl. Microbiol. Biotechnol, 1998, 49: 1-8.
    [3] Clark GS. Benzaldehyde. An aroma chemical profile [J]. Perfumer and Flavorist, 1995, 20: 53-60.
    [4] Hiroshi O, Seihachiro N, Kiichi M. Inhibition of experimental pulmonary metastasis in mice byβ-cyclodextrin-benzaldehyde [J]. J Cancer Res Clin Oncology, 1986, 112(3): 216-220.
    [5] Wolken WAM, Tramper J, Van Der Werf MJ. Amino acid-catalysed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds [J]. Flavor Frag J, 2004, 19: 115-120.
    [6] Code of Federal Regulations, Title 21, section 101, part 22; http://www.access.gpo.gov.
    [7] H.H.勃拉图斯著.香料化学[M]. ,刘树文译,顾永康校.轻工业出版社:北京, 1984, 208-209.
    [8]唐辉,陈治平,张华,景文娟.野巴旦杏中制备天然苯甲醛[J].食品科学, 2005, 26 (9): 362-364.
    [9]易封萍,李伟光,刘雄民等.天然肉桂油臭氧化制取苯甲醛[J].精细化工, 1996, 13(6): 32-34.
    [10]易封萍,李伟光,刘雄民等.臭氧化制取苯甲醛和茴香脑的研究[J].广西大学学报(自然科学版), 1998, 23(1): 54-56.
    [11]易封萍,邹德正,李飘英等.八角茴香油和肉桂油的臭氧化反应研究[J].广西科学院学报, 1999, 15(2): 49-51.
    [12]吴倩,梁红军,裴锐南等.肉桂醛臭氧化反应吸收过程研究[J].广西大学学报(自然科学版),1999, 24(3): 205-207.
    [13]吴倩,刘雄民,李伟光等.肉桂醛臭氧化反应过程的碘量法跟踪[J].精细化工, 2001, 18(1): 56-58.
    [14] Liu XM, Yi FP. The Safety Measures of Ozonide in Ozonize Reaction [C]. CJSEM SE. Nanjing, China, Oct 7-11, 1996.
    [15]梁红军,刘雄民,李伟光等.肉桂醛臭氧化反应传递过程研究[J].广西大学学报(自然科学版), 2001, 4: 304-307.
    [16]崔建国,王春水,廖小华等.相转移催化条件下从桂叶油制备天然苯甲醛的研究[J].化学世界, 2002, 6: 315-317.
    [17] Pittet AO, Muralidhara R, Liberman AL. Process for preparing natural benzaldehyde and acetaldehyde, natural benzaldehyde and acetaldehyde compositions, products produced thereby and organoleptic utilities therefor [P]. US4683342.
    [18] Charles W. Process for preparing natural benzaldehyde and acetaldehyde, natural benzaldehyde and acetaldehyde compositions, products produced thereby and organoleptic utilities therefor [P]. US 4617419.
    [19] Bach H, Brundin E, Gick W. Process for the preparation of 2-methylene aldehydes [P]. US4346239.
    [20] Stueben KC, Deem ML. Surfactant-promoted aldol reactions [P]. US4215076.
    [21]陈良坦,黄泰山,朱建清,赖桂勇.天然苯甲醛制备方法[P].CN1634837A.
    [22]陈良坦,彭渤,张来英等.胶束催化肉桂油水解制备苯甲醛[J].精细化工, 2007, 24(3): 261-264.
    [23] Wolken WAM, ten Have R, van der Werf MJ. Amino acid-catalyzed conversion of citral: cis?trans isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde [J]. J Agric Food Chem, 2000, 48(11): 5401–5405.
    [24]叶金大,周文勇.一种桂叶油水解制备天然苯甲醛的新方法[P]. CN1179934C.
    [25]李伟光,粟桂娇,刘雄民等.以桂枝叶、桂皮为原料直接生产天然苯甲醛的方法[P]. CN1749231A.
    [26]诸富根,周山花,杨磊.制备苯甲醛的液-液非均相反应过程[J].精细化工, 2002, 19(11): 678-681.
    [27]吕秀阳,高飞.近临界水中苯甲醛的绿色合成方法[P]. CN1226264C.
    [28]高飞,吕秀阳.近临界水中苯甲醛合成新方法[J].高校化学工程学报, 2006, 20(4): 544-547.
    [29]吕秀阳,任浩明.近临界水中氨水催化肉桂醛连续水解制备苯甲醛的方法[P]. CN 1834080A.
    [30] Lu XY, Li Z, Gao F. Base-Catalyzed Reactions in NH3-Enriched Near-Critical Water [J]. Ind Eng Chem Res, 2006, 45(12): 4145-4149.
    [31] Hagedorn S, Kaphammer B. Microbial biocatalysis in the generation of flavor and fragrance chemicals [J]. Annu Rev Microbiol, 1994, 48: 773 -800.
    [32] Krings U, Berger RG. Biotechnological production of flavours and fragrances [J]. ApplMicrobiol Biotechnol, 1998, 49: 1- 8.
    [33] Cheetham PSJ. The use of biotranformations for the production of flavorus and fragrances [J]. Trends Biotechol, 1993, 35: 478- 488.
    [34] Berger RG, Neuhauser K, Drawert F. High productivity fermentation of volatile flavours using a strain of Ischnoderma benzoinum [J]. Biotechnol Bioeng, 1987, 30: 987.
    [35] Kawabe T, Morita H. Volatile components in culture fluid of Polyporus tuberaster [J]. J Food Agr Chem, 1993, 41: 637- 640.
    [36] Krings U, Hinz M, Berger RG. Degradation of [2H] phenylalanine by the basidiomycete Ischnoderma benzoinum [J]. J Biotechnol, 1996, 51: 123-129.
    [37] Lapadatescu C, Feron G, Vergoignan C, et al. Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomitus squalens [J]. Appl Microbiol Biot, 1997, 47: 708-714.
    [38] Lomascolo A, Asther M, Navarro D, et al. Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 resin [J]. Lett Appl Microbiol, 2001, 32: 262-267.
    [39] J. W.斯蒂德, J. L.阿特伍德著,赵耀鹏,孙震译.超分子化学[M].化学工业出版社:北京, 2006.
    [40]张中强,涂华民,葛旭升.超分子化学的研究与进展[J].河北师范大学学报(自然科学版), 2006, 30(4): 453-458.
    [41] Oshovsky GV, Reinhoudt DN, Verboom W. Supramolecular chemistry in water [J]. Angew Chem Int Ed. 2007, 46: 2366– 2393.
    [42] Louis M, Alexia BL, Philippe M, et al. Supramolecular and core-shell naterials from self- assembled fibers [J]. Chem Commun(Camb), 2010, 46: 1464-1466.
    [43] Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378: 703-706.
    [44] Breslow R, Duggan PJ, Light JP. Cyclodextrin-B12, a potential enzayme coenzyme mimic [J]. J Am Chem Soc, 1992, 114: 3982-3983.
    [45]堪东中,万雷,方江邻等.二元羧酸与4, 4′联吡啶氢键缔合组装主链型超分子液晶[J].高分子学报, 2002,(6): 734-737.
    [46] Chang SK, Hamilton AD. Molecular recognition of bioligically interesting substrate-synthesis of an artificial receptor for barbiturates employing 6 hydrogenbonds[J]. J Am Chem Soc, 1988, 110: 1318-1320.
    [47]游效曾.配位化学进展[M].北京:高等教育出版社, 2000, 192-196.
    [48] Liang JL, Huang JS, Yu XQ, et al. Metalloporphyrin-mediated asymmetric nitrogen-atom transfer to hydrocarbons: aziridination of alkenes and amidation of saturated C-H bonds catalyzed by chiral ruthenium and manganese porphyrins [J]. Chem Eu. J, 2002, 8(7): 1563-1572.
    [49] Mukherjee M, Ray AR. Biomimetic oxidation of L-arginine with hydrogen peroxide using water-soluble resin-supported iron-porphyrin catalyst [J]. J Mol Catal A, 2007, 266: 207-214.
    [50] Gallo E, Buonomenna MG, Vigano L, et al. Heterogenization of ruthenium porphyrin complexes in polymeric membranes: Catalytic aziridination of styrenes [J]. J Mol Catal A, 2008, 282: 85-91.
    [51] Hasobe T, Imakori H, Fukuzumi S, Kamat PV. Nanostructured assembly of porphyrin clusters for light energy conversion [J]. J Mater Chem, 2003, 13(10): 2515-2520.
    [52] Loewe RS, Lammi RK, Diers JR, et al. Design and synthesis of light-harvesting rods for intrinsic rectification of the migration of excited-state energy and ground-state holes [J]. J Mater Chem, 2002, 12: 1530-1552.
    [53] Montes VA, Perez-Bolivar C, Estrada LA, et al. Ultrafast Dynamics of Triplet Excitons in Alq3-Bridge-Pt(II) porphyrin electroluminescent materials [J]. J Am Chem Soc, 2007, 129(42): 12598-12599.
    [54] Mody TD. Pharmaceutical development and medical applications of porphyrin-type macrocycles [J]. J Porphyr Phthalocya, 2000, 4(4): 362-367.
    [55] Yao Z, Borbas KZ, Lindsey JS. Soluble precipitable porphyrins for use in targeted molecular brachytherapy [J]. New J Chem, 2008, 32(3): 436-451.
    [56] Stockert JC, Canete M, Villanueva A, et al. Porphycenes: facts and prospects in photodynamic therapy of cancer [J]. Curr. Med. Chem, 2007, 14(9): 997-1026.
    [57] Johanson U, Marandi M, Sammelselg V, Tamm J. Electrochemical properties of porphyrin-doped polypyrrole films [J]. J Electroanal Chem, 2005, 575(2): 267-273.
    [58] Richeter S, Jeandon C, Gisselbrecht JP, et al. Syntheses and optical and electrochemical properties of porphyrin dimers linked by metal ions [J]. J Am Chem Soc, 2002, 124: 6168-6179.
    [59] Sanchez L, Sierra M, Martin N, et al. Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs [J]. Angew Chem Int Edit, 2006, 45 :4637-4641.
    [60] Fujitsuka M, Hara M, Tojo S, et al. Fast exciton migration in porphyrin-functionalized polypeptides [J]. J Phys Chem B, 2005, 109: 33-35.
    [61] Huszank R, Horvath OA. Heme-like, water-soluble iron(II)porphyrin: thermal and photoinduced properties, evidence for sitting-atop structure [J]. Chem Commun, 2005: 224-226.
    [62] Takagi S, Tryk DA, Inoue H. Photochemical energy transfer of cationic porphyrin complexes on Clay Surface [J]. J Phys Chem B, 2002, 106: 5455-5460.
    [63] Biesaga M, Pyrzyska K, Trojanowicz M. Porphyrins in analytical chemistry. A review [J]. Talanta, 2000, 51: 209-224.
    [64] Li ZJ, Pan JM. Advances in synthesis and application of the derivatives of porphyrin as reagents in analytical chemistry [J]. Rev Anal Chem, 2002, 21: 167-231.
    [65] Nakamura M, Hoshino A, Ikezaki A, Ikeue T. Chemical shift of meso-carbon: a powerful probe to determine the coordination structure and electron configuration of ferric porphyrin complexes [J]. Chem Commun, 2003: 1862-1863.
    [66]纪红兵,佘远斌.绿色氧化与还原[M] .北京:中国石化出版社, 2005.
    [67] Chen J, Che CM. A practical and mild method for the highly selective conversion of terminal alkenes into aldehydes through epoxidation-isomerization with ruthenium(IV)- porphyrin catalysts [J]. Angew Chem Int Ed, 2004, 43: 4950-4954.
    [68] Merlau ML, Grande WJ, Nguyen ST, Hupp JT. Enhanced activity of manganese(III) porphyrin epoxidation catalysts through supramolecular complexation [J]. J Mol Catal A, 2000, 156: 79-84.
    [69] Kurek SS, Michorczyk P, Balisz AM. The oxidation of styrene in the presence of thiols and iron porphyrin [J]. J Mol Catal A, 2003, 194: 237-248.
    [70] Zhou XT, Ji HB, Xu JC, et al. Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild coditions [J]. Tetrahedron Lett, 2007, 48(15): 2691-2695.
    [71] Ji, HB,Yuan QL, Zhou XT, et al. Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetra phenylporphyrin chloride in the presence of molecular oxygen [J]. Bioorg Med Chem Lett, 2007, 17 (22): 6364-6368.
    [72] Zhou XT, Ji HB,Yuan QL. Baeyer-Villiger oxidation of ketones catalyzed by iron(III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen [J]. J Porphyr Phthalocya, 2008, 12(2): 94-100.
    [73] Zhou XT, Ji HB, Cheng, Z, et al. Selective oxidaiton of sulfides sulfides to sulfoxides catalyzed by ruthenium(III)meso-tetraphenylporphyrin chloride in the presence of molecular oxygen [J]. Bioorg Med Chem Lett, 2007, 17(16): 4650-4653.
    [74] Zhou XT, Ji HB, Yuan QL, et al. Highly efficient biomimetic oxidation of sulfides to sulfones by hydrogen peroxide in the presence of manganese meso-Tetraphenyl porphyrin [J].中国化学, 2008, 26(6): 1114-1118.
    [75] Schneiderman E, Stalcup AM. Cyclodextrins: a versatile tool in separation science [J]. J Chromatogr, B, 2000, 745: 83-102.
    [76] Koblenz TS, Wassenaar J, Reek JNH. Reactivity within a confined self-assembled nanospace [J]. Chem Soc Rev, 2008, 37:247- 262.
    [77] Oshovsky GV, Reinhoudt DN, Verboom W. Supramolecular chemistry in water [J]. Angew Chem Int Ed, 2007, 46: 2366- 2393.
    [78] Li XH, Jin ZY, Wang J. Complexation of allyl isothiocyanate byα- andβ-cyclodextrin and its controlled release characteristics[J]. Food Chem, 2007, 103: 461- 466.
    [79] Gornas P, Neunert G, Baczynski K, Polewski K. Beta-cyclodextrin complexes with chlorogenic and caffeic acids from coffee brew: Spectroscopic, thermodynamic and molecular modelling study[J]. Food Chem, 2009, 114: 190- 196.
    [80] Jullian C, Orosteguis T, Perez-Cruz F, et al. Complexation of morin with three kinds of cyclodextrin A thermodynamic and reactivity study[J]. Spectrochimica Acta Part A, 2008, 71: 269- 275.
    [81] Roy DK, Deb N, Ghosh BC, Mukherjee AK. Inclusion of riboflavin inβ-cyclodextrin: A fluorimetric and absorption spectrometric study [J]. Spectrochimica Acta Part A, 2009, 73: 201- 204.
    [82] Segura-Sanchez F, Bouchemala K, Lebasa G, et al. Elucidation of the complexation mechanism between(+)-usnic acid and cyclodextrins studied by isothermal titration calorimetry and phase-solubility diagram experiments[J]. J Mol Recognit, 2009, 22: 232-241.
    [83]李光水,夏文水.β-环糊精与肉桂醛包合物的制备及热分解动力学研究[J].食品科学, 2005, 26 : 142- 145.
    [84] Posada LR, Shi J, Kakuda Y, Xue SJ. Extraction of tocotrienols from palm fatty acid distillates using molecular distillation [J]. Sep Purif Technol, 2007, 57: 220-229.
    [85] Hassoune H, Rhlalou T, Verchere JF. Studies on sugars extraction across a supportedliquid membrane: Complexation site of glucose and galactose with methyl cholate [J]. J Membrane Sc, 2008, 315:180-186.
    [86] Cabrera K. Applications of silica-based monolithic HPLC columns[J]. J Sep Sci, 2004, 27: 843-852.
    [87] Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system [J]. Adv Drug Deliv Rev. 1999, 36: 125–141.
    [88] Ono N, Arima H, Hirayama F, Uekama K. A moderate interaction of maltosyl-α-cyclodextrin with caco-2 cells in comparison with the parent cyclodextrin [J]. Biol Pharm Bull. 2001, 24: 395–402.
    [89] Michael C, Sébastien T, Anne P, et al. Complexation of monosulfonated triphenylphosphine with chemically modifiedβ-cyclodextrins: effect of substituents on the stability of inclusion complexes [J]. J Incl Phenom Macro Chem, 2005, 51: 79- 85.
    [90] Tang JJ, Cline Love L J. Formation constants of polynuclear aromatic compounds andβ-cyclodextrin inclusion complexes inβ-cyclodextrin modified moblie phase high performance liquid chromatography system [J]. Analyt Chim, 1997, 344:137-143.
    [91] Li CJ. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update [J]. Chem Rev, 2005, 105: 3095-3165.
    [92] Lubineau A, Auge J. Water-promoted organic reactions: Michael addition of nit roalkanes to methyl vinyl ketone under neutral conditions [J]. Tetrahedron Lett, 1992, 33: 8073.
    [93] Itoh J, Fuchibe K, Akiyama T. Mannich-type reaction in water in the presence of a surfactant [J]. Synthesis-Stuttgart, 2006, 23: 4075-4080.
    [94] Ji HB, Huang LQ, Shi DP, Zhou XT. Beta-cyclodextrin as supramolecular catalyst in liquid-phase organic synthesis [J]. Chin J Org Chem, 2008; 28(12): 2072-2080.
    [95] Komiyama M, Bender ML. Thermodynamic studies of the cyclodextrin- accelerated cleavage of phenyl esters [J]. J Am Chem Soc., 1978, 100(14): 4576-4579.
    [96] Breslow R, Trainor G, Ueno A. Optimization of metallocene substrates forβ-cyclodextrin reactions [J]. J Am Chem Soc, 1983, 105(9): 2739-2744.
    [97] Menger FM, Ladika M. Origin of rate accelerations in an enzyme model: the p-nitrophenyl ester syndrome [J]. J Am Chem Soc, 1987, 109(10): 3145-3146.
    [98] Tee OS, Mazza C, Du XX. Chain length effects in the cleavage of aryl esters by cyclodextrins. Different transition states for m- and p-nitrophenyl alkanoates [J]. J Org Chem, 1990, 55(11): 3603-3609.
    [99] Monteiro JB, Chiaradia LD, Tiago AS, et al. Enzymatic hydrolysis of diloxanide furoate in the presence ofβ-cyclodextrin and its methylated derivatives [J]. Int J Pharm, 2003, 267: 93-100.
    [100] Fernandez MA, Rita H, Rossi D. Changing mechanisms in theβ-cyclodextrin-mediated hydrolysis of phenyl esters of perfluoroalkanoic acids [J]. J Org Chem, 2003, 68: 6887-6893.
    [101] Fernandez MA, Rita H. PH dependent effect ofβ-cyclodextrin on the hydrolysis rate of trifluoroacetate esters [J]. J Org Chem, 1997, 62: 7554-7559.
    [102] Tang B, Wang X, Wang J, Yu CG, Chen ZZ, Ding Y. Study on the supramolecular multirecognition mechanism ofβ-naphthol/β-cyclodextrin/anionic surfactant in a tolnaftate hydrolysis system [J]. J Phys Chem B, 2006, 110(17): 8877-8884.
    [103] Gaidamauskas E, Norkus E, Butkus E, Crans DC, Grinciene˙G. Deprotonation ofβ-cyclodextrin in alkaline solutions [J]. Carbohyd Res, 2009, 344: 250–254.
    [104] Monflier E, Fremy G, Castanet Y, Mortreux A. Molecular recognition between chemically modifiedβ-cyclodextrin and dec-1-ene: new prospects for biphasic hydroformylation of water-insoluble olefins [J]. Angew Chem Int Ed, 1995, 34: 2269- 2271.
    [105] Mathivet T, Méliet C, Castanet Y, et al. Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modifiedβ-cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity [J]. J Mol Catal A: Chem, 2001, 176: 105–116.
    [106] Sieffert N, Wipff G. Adsorption at the liquid-liquid interface in the biphasic rhodium catalyzed hydroformylation of olefins promoted by cyclodextrins: a molecular dynamics study [J]. J Phys Chem B, 2006, 110: 4125-4134.
    [107] Leclercq L, Sauthier M, Castanet Y, et al. Two-phase hydroformylation of higher olefins using randomly methylatedα-cyclodextrin as mass transfer promoter: a smart solution for preserving the intrinsic properties of the rhodium/trisulfonated triphenylphosphine catalytic system [J]. Adv Synth Catal, 2005, 347: 55–59.
    [108] Monflier E, Tilloy S, Bertoux F, Castanet Y, Mortreux A. New prospects for the palladium-catalyzed hydrocarboxylation of higher alpha-olefins in a two-phase system: the use of chemically modified beta-cyclodextrin [J]. New J Chem, 1997, 21: 857-859.
    [109] Tilloy S, Bertoux F, Mortreux A, Monflier E. Chemically modifiedβ-cyclodextrins in biphasic catalysis: a fruitful contribution of the host-guest chemistry to the transition-metal catalyzed reactions [J]. Catal Today, 1999, 48: 245-253.
    [110] Escola JM, Botas JA, Aguado J, et al. Modified Wacker TBHP oxidation of 1-dodecene [J]. Appl Catal A: Gen, 2008, 335: 137–144.
    [111] Monflier E, Blouet E,. Barbaux Y, Mortreux A. Wacker oxidation of 1-decene to 2-decanone in the presence of a chemically modified cyclodextrin system: a happy union of host-guest chemistry and homogeneous catalysis [J]. Angew Chem Int Ed,1994, 33: 2100- 2102.
    [112] Chan WK, Yu WY, Che CM, et al. A cyclodextrin-modified ketoester for stereoselective epoxidation of alkenes [J]. J Org Chem, 2003, 68: 6576-6582.
    [113] Banfi S, Colonna S, Julia S. Asymmetric catalytic epoxidation by means of cyclodextrins [J]. Synth Commun, 1983, 13: 1049-1052.
    [114] Hu Y, Harada A, Takahashi S. Cyclodextrin-hydrogen peroxide a new system for asymmetric epoxidation [J]. Synth Commun, 1988, 18: 1607-1610.
    [115] Colonna S, Banfi S, Papagni A. Catalytic asymmetric epoxidation in the presence of cyclodextrins [J]. Gazz Chim Ital, 1985, 115: 81-83.
    [116] Sakuraba H, Tanaka Y. Asymmetric epoxidation of unfunctionalized olefins via formation of crystalline cyclodextrin complexes [J]. Org Prep Proced Int, 1998, 30: 226-229.
    [117] Ji HB, Shi DP, Shao M, Li Z, Wang LF. Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of beta-cyclodextrin. Tetrahedron Lett. 2005, 46: 2517–2520.
    [118] Shi DP, Ji HB, Li Z.β-Cyclodextrin promoted oxidation of primary amines to nitriles in water [J]. Front Chem Eng China, 2009, 3: 196-200.
    [119] Ji HB, Hu XF, Shi DP, Li Z. Controllable oxidation of sulfides to sulfoxides and sulfones with aqueous hydrogen peroxide in the presence of beta-cyclodextrin [J]. Russi J Org Chem. 2006, 742(7): 959-964.
    [120]昊翰轩睿.中国天然苯甲醛产品价格走势监测报告. http:// www. ibaogao. com.cn / view/10/683112.shtml
    [121] Ji HB, Shi DP, Hu XF, Pei LX, Li Z. Recovery ofβ-Cyclodextr in and Quick Quantitative Determ ination of Organic Compounds from Aqueous System [J]. J South China University of Techno(Natural Science Edition). 2007, 435(4): 1-5.
    [1]易封萍,刘雄民,李伟光等.肉桂油制苯甲醛的反应过程研究[J].林产化学与工业, 1997, 17(3): 73- 77.
    [2]张承曾等.天然香料手册[M].轻工业出版社:北京, 1989, 109.
    [3]诸富根,周山花,杨磊.制备苯甲醛的液-液非均相反应过程[J].精细化工, 2002, 19(11): 678-681.
    [4]诸富根,周山花,靳秀琴.苯甲醛生产方法和装置[P]. CN1425639.
    [5]崔建国,王春水,廖小华等.相转移催化条件下从桂叶油制备天然苯甲醛的研究[J].化学世界, 2002, 6: 315-317
    [6]陈良坦,黄泰山,朱建清,赖桂勇.天然苯甲醛制备方法[P]. CN1634837A.
    [7] Pittet AO, Muralidhara R, Liberman AL. Process for preparing natural benzaldehyde and acetaldehyde, natural benzaldehyde and acetaldehyde compositions, products produced thereby and organoleptic utilities therefor [P]. US4683342.
    [8]吕秀阳,高飞.近临界水中苯甲醛的绿色合成方法[P]. CN1226264C.
    [9]高飞,吕秀阳.近临界水中苯甲醛合成新方法[J].高校化学工程学报, 2006, 20(4): 544-547.
    [10]易封萍,李伟光,刘雄民等.天然肉桂油臭氧化制取苯甲醛[J].精细化工, 1996, 13(6): 32- 34.
    [11]易封萍,李伟光,刘雄民等.臭氧化制取苯甲醛和茴香脑的研究[J].广西大学学报(自然科学版), 1998, 23(1): 54-56.
    [12]梁红军,刘雄民,李伟光等.肉桂醛臭氧化反应传递过程研究[J].广西大学学报(自然科学版), 2001, 4: 304-307.
    [13] Mansuy D. Cytochromes P-450 and model systems: great diversity of catalyzed reactions [J]. Pure Appl Chem, 1994, 66(4): 737-744.
    [14] Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes [J]. Chem. Rev, 2004, 104(9): 3947-3980.
    [15] Montanari F, Casella L. Metalloporphyrin catalyzed oxidation [M], Kluwer Academic Publisher: New York, 1994.
    [16] Merlau ML, Grande WJ, Nguyen ST, Hupp JT. Enhanced activity of manganese(III) porphyrin epoxidation catalysts through supramolecular complexation [J]. J Mol Catal A, 2000, 156(1-2): 79-84.
    [17] Gross Z, Ini S. Remarkable effects of metal, solvent, and oxidant on metalloporphyrin- catalyzed enantioselective epoxidation of olefins [J]. J Org Chem, 1997, 62(16): 5514-5521.
    [18] Guo CC, Liu XQ, Li ZP, Guo DC. Selective catalysis of mu-oxo- bismetalloporphyrins for 2-methylbutane oxidation with PhIO under mild conditions [J]. Appl Catal A, 2002, 230: 53-60.
    [19] Elemans JAAW, Bijsterveld EJA, Rowan AE, Nolte RJM. Manganese porphyrin hosts as epoxidation catalysts-Activity and stability control by axial ligand effects [J]. Eur J Org Chem, 2007, 5: 751-757.
    [20] Maraval V, Ancel JE, Meunier B. Manganese (III) porphyrin catalysts for the oxidation of terpene derivatives: A comparative study [J]. J Catal, 2002, 206(2): 349-357.
    [21] Monti D, Pastorini A, Mancini G, Borocci S, Tagliatesta P. Structural effects on the NaOCl epoxidation of styrene in micellar media catalysed by amphiphilised Mn(III) metalloporphyrins [J]. J Mol Catal A, 2002, 179(1-2): 125-131.
    [22] Benedito FL, Nakagaki S, Saczk AA, et al. Study of metalloporphyrin covalently bound to silica as catalyst in the ortho-dianisidine oxidation [J]. Appl Catal A, 2003, 250(1): 1-11.
    [23] Nam W, Oh SY, Sun YJ, et al. Factors affecting the catalytic epoxidation of olefins byiron porphyrin complexes and H2O2 in protic solvents [J]. J Org Chem, 2003, 68(20): 7903-7906.
    [24] Rebelo SLH, Simoes MMQ, Neves MGPM, et al. Oxidation of bicyclic arenes with hydrogen peroxide catalysed by Mn(III) porphyrins [J]. J Mol Catal A, 2005, 232: 135-142.
    [25] Naik R, Joshi P, Umbarkar S, Deshpande RK. Polystyrene encapsulation of manganese porphyrins: highly efficient catalysts for oxidation of olefins [J]. Catal Commun, 2005, 6(2): 125-129.
    [26] Tangestaninejad S, Moghadam M, Mirkhani V, Kargar H. Efficient and selective hydrocarbon oxidation with sodium periodate under ultrasonic irradiation catalyzed by polystyrene-bound Mn(TPyP)[J]. Ultrason Sonochem, 2006, 13(1): 32-36.
    [27] Mirkhani V, Moghadam M, Tangestaninejad S, Kargar H. Mn(Br8TPP)Cl supported on poly styrene-bound imidazole: An efficient and reusable catalyst for biomimetic alkene epoxidation and alkane hydroxylation with sodium periodate under various reaction conditions [J]. Appl Catal A, 2006, 303(2): 221-229.
    [28] Yuan Y, Ji HB, Chen YX, et al. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst [J]. Org Process Res Dev, 2004, 8: 418-420.
    [29] Zhou XT, Ji HB, Xu JC, et al. Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild conditions [J]. Tetrahedron Lett, 2007, 48: 2691-2695.
    [30] Zhou XT, Ji HB, Cheng Z, et al. Selective oxidation of sulfides to sulfoxides catalyzed by ruthenium(III)meso- tetraphenylporphyrin chloride in the presence of molecular oxygen [J]. Bioorg Med Chem Lett, 2007, 17: 4650-4653.
    [31] Ji HB, Yuan QL, Zhou XT, Pei LX, Wang LF. Highly e.cient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium ( III ) meso- tetraphenylporphyrin chloride in the presence of molecular oxygen [J]. Bioorg Med Chem Lett, 2007, 17: 6364-6368.
    [32] Wang LZ, She YB, Zhong RG, et al. A green process for oxidation of p-nitrotoluene catalyzed by metalloporphyrins under mild conditions [J]. Org Process Res Dev, 2006,10: 757-761.
    [33] Alder AD, Longo FR, Finarelli JD, et al. A simplified synthesis for meso-tetraphenylporphyrin [J]. J Org Chem, 1967, 32 : 476.
    [34] Nam W, Baek SJ, Lee KA, et al. Nickel complexes as antioxidants-inhibitio of aldehyde autoxidation by nickel tetrazamacrocycles [J]. Inorg Chem, 1996, 35: 6632-6633.
    [35] Qi JY, Qiu LQ, Lam KH, et al. Highly efficient epoxidation of cyclic alkenes catalyzed by ruthenium complex [J]. Chem Commun, 2003, 9: 1058-1059.
    [36] Krishnan R, Vancheesan S. Polynuclear manganese complexes catalyzed epoxidation of olefins with molecular oxygen [J]. J Mol Catal A, 2002, 185(1-2): 87-95.
    [37] Zhang R, Horner JH, Newcomb M. Laser flash photolysis generation and kinetic studies of porphyrin-manganese-oxo intermediates. Rate constants for oxidations effected by porphyrin-MnV-oxo species and apparent disproportionation equilibrium constants for porphyrin-MnIV-oxo species [J]. J Am Chem Soc, 2005, 127: 6573-6582.
    [38] Haber J, Mlodnicka T, Poltowicz J. Metal-dependent reactivity of some metalloporphyrins in oxidation with dioxygen [J]. J Mol Catal, 1989, 54: 451-461.
    [39] Nam W, Kim HJ, Kim SH, Ho RYN, Valentine JS. Metal complex-catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehydes. a mechanistic study [J]. Inorg Chem, 1996, 35: 1045-1049.
    [40] Zhou XT, Ji HB. Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins [J]. Chem Eng J, 2010, 156(2): 411-417.
    [1]张承曾等.天然香料手册[M].轻工业出版社:北京, 1989, 109.
    [2] Wolken WAM, Tramper J, Van Der Werf MJ. Amino acid-catalyzed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds [J]. Flavor Frag J, 2004, 19: 115-120.
    [3]诸富根,周山花,杨磊.制备苯甲醛的液-液非均相反应过程[J].精细化工, 2002, 19(11): 678-681.
    [4]叶金大,周文勇.一种桂叶油水解制备天然苯甲醛的新方法[P]. CN1179934C .
    [5]李伟光,粟桂娇,刘雄民等.以桂枝叶、桂皮为原料直接生产天然苯甲醛的方法[P]. CN1749231A.
    [6]崔建国,王春水,廖小华等.相转移催化条件下从桂叶油制备天然苯甲醛的研究[J].化学世界, 2002, 6: 315-317.
    [7]陈良坦,黄泰山,朱建清,赖桂勇.天然苯甲醛制备方法[P]. CN1634837A.
    [8] Pittet AO, Muralidhara R, Liberman AL. Process for preparing natural benzaldehyde and acetaldehyde, natural benzaldehyde and acetaldehyde compositions, products produced thereby and organoleptic utilities therefor [P]. US4683342A.
    [9]高飞,吕秀阳.近临界水中苯甲醛合成新方法[J].高校化学工程学报, 2006, 20: 544-547.
    [10] Demko ZP, Sharpless KB. Preparation of 5-substituted 1H-tetrazoles from nitriles in water [J]. J Org Chem, 2001, 66: 7945-7950
    [11] Li CJ. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update [J]. Chem Rev, 2005, 105: 3095-3165.
    [12] Ji HB, Huang LQ, Shi DP, Zhou XT. Beta-Cyclodextrin as supramolecular catalyst in liquid-phase organic synthesis [J]. Chin J Org Chem, 2008, 28(12): 2072-2080.
    [13] Lopez O, Marinescu L, Bols M. New cup-shapedα-cyclodextrin derivatives and a study of their catalytic properties in oxidation reactions [J]. Tetrahedron, 2007, 63: 8872–8880.
    [14] Chan WK, Yu WY, Che CM, Wong MK. A cyclodextrin-modified ketoester forstereoselective epoxidation of alkenes. J Org Chem, 2003, 68: 6576-6582.
    [15] Schneiderman E, Stalcup AM. Cyclodextrins: a versatile tool in separation science [J]. J Chromatogr, B, 2000, 745: 83-102.
    [16] Koji K. Porphyrin-cyclodextrin supramolecular complexes as myoglobin model in water [J]. Colloid Polym Sci, 2008, 286: 79-84.
    [17] Takahashi K. Organic reactions mediated by cyclodextrins [J]. Chem Rev, 1998, 98(5): 2013-2033.
    [18] Reynaldo V, Robert C, Alex F, et al. Supramolecular assembly ofβ-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase [J]. J Mol Cat B, 2005, 35: 79-85.
    [19] Tsimachidis D, Cesla P, Hajek T, et al. Capillary electrophoretic chiral separation of Cinchona alkaloids using a cyclodextrin selector [J]. J Sep Sci, 2008, 31: 1130-1136.
    [20] Tastan P, Akkaya EU. A novel cyclodextrin homodimer with dual-mode substrate binding and esterase activity [J]. J Chem Molecular Catalysis A: Chem, 2000, 157: 261-263.
    [21] Ji HB, Shi DP, Hu XF, Pei LX, Li Z. Recovery ofβ-Cyclodextr in and Quick Quantitative Determ ination of Organic Compounds from Aqueous System [J]. J South China University of Techno(Natural Science Edition), 2007, 435(4): 1-5.
    [22] Carlotti ME, Sapino S, Cavalli R, Trotta M, Trotta F, Martina K. Inclusion of cinnamaldehyde in modifiedγ-cyclodextrins [J]. J Incl Phenom Macrocycl Chem, 2007, 57: 445-450.
    [23] Zhang QF, Jiang ZT, Zhao Q, Yang L, Shao M. Study on the molecular microcapsules of cinnamaldehyde withβ-cyclodextrin [J]. Food Fermentation Indus, 2006, 32: 68-71.
    [24] Li GS, Xia WS. Kinetics of thermal decomposition of the inclusion complex of cinnamaldehyde andβ-cyclodextrin[J]. Food Sci, 2005, 26: 142-145.
    [25] Liu L, Guo QX. Use of quantum chemical methods to study cyclodextrin chemistry[J]. J Incl Phenom Macro Chem, 2004, 50: 95-103.
    [26] Nascimento Jr. CS, Anconi CPA, Dos Santos HF, De Almeida WB. Theoretical studyof the alpha-cyclodextrin dimer [J]. J Phys Chem A, 2005, 109: 3209–3219.
    [27] Blenke C, Silva VJD, Junqueira GMA, et al. Theoretical study of structure and properties of a molecular reactor based on the urea-linkedβ-cyclodextrin dimer [J]. J Mol Struc: Theochem, 2007, 809: 95–102.
    [28] Caron L, Canipelle M, Tilloy S, et al. Unexpected Effect of Cyclodextrins on Water-Soluble Rhodium Complexes [J]. Eur J Inorg Chem, 2003, 2003: 595-599.
    [29] Britto M, Nascimento J CS, Dos Santos HF. Structural analysis of cyclodextrins: a comparative study of classical and quantummechanical methods [J]. Quim Nova, 2004, 27: 882-888.
    [30] Yan CL, Xiu ZL, Li XH, Teng H, Hao C. Theoretical study for quercetin/β-cyclodextrin complexes: quantum chemical calculations based on the PM3 and ONIOM2 method [J]. J Incl Phenom Macro Chem, 2007, 58: 337-344.
    [31] Casadesús R, Moreno M, Lafont AG, Lluch JM, Repasky MP. Testing electronic structure methods for describing intermolecular H···H interactions in supramolecular chemistry [J]. J Comput Chem, 2004, 25: 99-105.
    [32] Frisch M J, Trucks GW, Schlegel HB. Gaussian 03, revision D.01; Gaussian Inc.: Wallingford, CT, 2003.
    [33] Tong LH. Cyclodextrin chemistry_base and application [M], Beijing: Science Press, 2001.
    [34] Denadai AML, Santoro MM, Lopes MTP, Chenna A, Sousa FB, Avelar GM, Gomes MRT, Guzman F, Salas CE, Sinisterra RD. A Supramolecular complex between proteinases andβ-cyclodextrin that preserves enzymatic activity [J]. Biodrugs, 2006, 20: 283–291.
    [35] Schneider HJ, Hacket F, Rudiger V, Ikeda H. NMR studies of cyclodextrins and cyclodextrin complexes [J]. Chem Rev, 1998, 98: 1755–1786.
    [36] Ji HB. Highly shape-selective, biomimetic, and efficient deprotection of carbonyl compounds masked as ethylene acetalor dioxolanes produced from 1,2-ethanediol [J]. Eur J Org Chem, 2003, 18: 3659-3662.
    [37] Ji HB, Shi DP, Shao M, Li Z, Wang LF. Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of beta-cyclodextrin [J]. Tetrahedron Lett, 2005, 46: 2517-2520.
    [38] VanEtten RL, Jennings HJ, Smith ICP. The mechanism of the cycloamylose-accelerated cleavage of phenyl esters [J]. J Am Chem Soc 1967, 89: 3253-3262.
    [39] Gelb RI, Schwartz LM, Bradshaw JJ, Laufer DA. Acid dissociation of cyclohexaamylose and cycloheptaamylose [J]. Bioorg Chem, 1980, 9: 299-304.
    [40] Gaidamauskas E, Norkus E, Butkus E, Crans DC, Grinciene˙G. Deprotonation ofβ-cyclodextrin in alkaline solutions [J]. Carbohyd Res, 2009, 344: 250-254.
    [41] Komiyama, M., Bender, ML. Thermodynamic studies of the cyclodextrin-accelerated cleavage of phenyl esters [J]. J Am Chem Soc, 1978, 100: 4576- 4579.
    [1] Wolken WAM, Tramper J, Van Der Werf MJ. Amino acid-catalysed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds [J]. Flavor Frag J, 2004, 19: 115-120.
    [2]张承曾等.天然香料手册[M].轻工业出版社:北京, 1989, 109.
    [3] Krings U, Berger RG. Biotechnological production of -avours and fragrances [J]. Appl Microbiol Biotechnol, 1998, 49: 1–8.
    [4]易封萍,李伟光,刘雄民等.天然肉桂油臭氧化制取苯甲醛[J].精细化工, 1996, 13(6): 32- 34..
    [5]高飞,吕秀阳.近临界水中苯甲醛合成新方法[J].高校化学工程学报, 2006, 20(4): 544-547.
    [6]陈良坦,黄泰山,朱建清,赖桂勇.天然苯甲醛制备方法[P]. CN1634837A.
    [7]崔建国,王春水,廖小华等.相转移催化条件下从桂叶油制备天然苯甲醛的研究[J].化学世界, 2002, 6: 315-317.
    [8] Pittet AO, Muralidhara R, Liberman AL. Process for preparing natural benzaldehyde and acetaldehyde, natural benzaldehyde and acetaldehyde compositions, products produced thereby and organoleptic utilities therefor [P]. US4683342A.
    [9]诸富根,周山花,杨磊.制备苯甲醛的液-液非均相反应过程[J].精细化工, 2002, 19(11): 678-681.
    [10]叶金大,周文勇.一种桂叶油水解制备天然苯甲醛的新方法[P]. CN1179934C.
    [11] Dalgarno SJ, Power NP, Atwood JL. Metallo-supramolecular capsules [J]. Coord Chem ReV, 2008, 252: 825–841.
    [12] Koblenz TS, Wassenaar J, Reek JNH. Reactivity within a confined self-assembled nanospace [J]. Chem Soc ReV, 2008, 37: 247–262.
    [13] Oshovsky GV, Reinhoudt DN, Verboom W. Supramolecular Chemistry in Water [J]. Angew Chem Int Ed, 2007, 46: 2366–2393.
    [14] Ji HB, Huang LQ, Shi DP, Zhou XT. beta-Cyclodextrin as supramolecular catalyst in liquid-phase organic synthesis [J]. Chin J Org Chem, 2008, 28(12): 2072-2080.
    [15] Chan WK, Yu WY, Che CM, Wong MK. A cyclodextrin-modified ketoester for stereoselective epoxidation of alkenes [J]. J Org Chem, 2003, 68: 6576- 6582.
    [16] Ji HB, Shi DP, Shao M, et al. Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of beta-cyclodextrin [J]. Tetrahedron Lett, 2005, 46(14): 2517-2520.
    [17] Reddy MA, Bhanumathi N, Rao KR. A symmetric synthesis of 2-azido-1-arylethanols from azido aryl ketone-beta-cyclodextrin complexes and sodium borohydride in water [J]. Chem Commun, 2001, 19: 1974-1975.
    [18] Surendra K, Krishnaveni N S, Nageswar YVD. Highly regioselective ring opening of oxiranes with phenoxides in the presence of beta-cyclodextrin in water [J]. J Org Chem, 2003, 68(12): 4994-4995.
    [19] Fernandez MA, Rossi RH. PH dependent effect ofβ-cyclodextrin on the hydrolysis rate of trifluoroacetate esters [J]. J Org Chem, 1997, 62(22): 7554-7559.
    [20] Schneiderman E, Stalcup AM. Cyclodextrins: a versatile tool in separation science [J]. J Chromatogr, B, 2000, 745: 83-102.
    [21] Koji K. Porphyrin-cyclodextrin supramolecular complexes as myoglobin model in water [J]. Colloid Polym Sci, 2008, 286: 79-84.
    [22] Chen HY, Ji HB. Alkaline hydrolysis of cinnamaldehyde to benzaldehyde in the presence ofβ-cyclodextrin [J]. AIChE J, 2010, 56(2): 466-476.
    [23] Uzqueda M, Martín C, Zomoza A, Sánchez M, Martínez-Ohárriz MC, Vélaz I. Characterization of complexes between naftifine and cyclodextrins in solution and in the solid state [J]. Pharm Res, 2006, 23: 980-988.
    [24] Nasongkla N, Wiedmann AF, Buening A, Beman M, Ray D, Bornmann WG, Boothman D, Gao JM. Enhancement of solubility and bioavailability ofβ-lapachone using cyclodextrin inclusion complexes [J]. Pharm Res, 2003, 20: 1626-1633.
    [25] Tong LH. Cyclodextrin chemistry_base and application, Beijing: Science Press, 2001.
    [26] Cramer FD. Pure and applied chemistry. 1995, 5, 143.
    [27] Divakar S, Maheswaran MM. Structural studies on inclusion compounds ofβ-cyclodextrin with some substituted phenols [J]. J Incl Phen Mol Recogn Chem, 1997, 27: 1113-1126.
    [28] Ilichev YU, Kuhnle W, Zachariasse KA. Intramolecular charge transfer in dual fluorescent 4-(Dialkylamino)benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl Substituents [J]. J Phys Chem A, 1998, 102: 5670- 5680.
    [29] Kim YH, Cho DW, Yoon M. Observation of Hydrogen-Bonding Effects on Twisted Intramolecular Charge Transfer of p-(N,N-Diethylamino)benzoic Acid in Aqueous Cyclodextrin Solutions [J]. J Phys Chem, 1996, 100: 15670-15676.
    [30] Jinag YB. Effect of cyclodextrin inclusion complex formation on the twisted intramolecular charge transfer ( TICT ) of the included compound: the p-dimethylaminobenzoic acid-β-cyclodextrin system [J]. J Photochem Photobiol A: Chem, 1995, 88: 109-116.
    [31] Kajtar M, Horvath-Toro C, Kuthi E, Szejtli J. A simple rulefor predicting circular dichroism induced in aromatic guests bycyclodextrin hosts in inclusion complexes [J]. Acta Chim Acad Soc Hungry, 1982, 110(3): 327.
    [32] Benesi HA, Hildebrand JH. A Spectrophotometric Investigation of the Interaction ofIodine with Aromatic Hydrocarbons [J]. J Am Chem Soc, 1949, 71: 2703- 2707.
    [33] Yong CW, Washington C, Smith W. Structural behaviour of 2-hydroxypropyl-β-cyclodextrin in water: molecular dynamics simulation studies [J]. Pharm Res, 2008, 25: 1092-1099.
    [34] Pluth MD, Bergman RG, Raymond KN. The acid hydrolysis of acetals catalyzed by a supramolecular assembly in basic solution [J]. J Org Chem, 2009, 74: 58-63.
    [35] Miller BG, Wolfenden R. Catalytic proficiency: the unusual case of OMP decarboxulase [J]. Annu Rev Biochem, 2002, 71: 847-885.
    [1] Surendra K, Krishnaveni NS, Kumar VP, et al. Selective and efficient oxidation of sulfides to sulfoxides with N-bromosuccinimide in the presence of beta-cyclodextrin in water [J]. Tetrahedron Lett, 2005, 46(27): 4581-4583.
    [2] Gross Z, Ini S. Remarkable effects of metal, solvent, and oxidant on metalloporphyrin- catalyzed enantioselective epoxidation of olefins [J]. J Org Chem, 1997, 62(16): 5514-5521.
    [3] Mirkhani V, Moghadam M, Tangestaninejad S, Kargar H. Mn(Br8TPP)Cl supported on poly styrene-bound imidazole: An efficient and reusable catalyst for biomimetic alkene epoxidation and alkane hydroxylation with sodium periodate under various reaction conditions [J]. Appl Catal A, 2006, 303(2): 221-229.
    [4] Massa A, De Lorenzo EM, Scettri A. Polymeric Ti(IV)glycolate. A heterogeneous catalyst for solvent-free sulfoxidation by tert-butylhydroperoxide [J]. J Mol Catal A, 2006, 250(1-2): 27-29.
    [5] Tucker CJ, Welker ME, Day CS, et al. Preparation of an aquocobaloxime 1,3-dienyl complexand its Diels-Alder reactions in water and organic solvents [J]. Organometallics, 2004, 23: 2257-2262.
    [6] Meijer A, Otto S, Engberts JBFN. Effects of the hydrophobicity of the reactants on Diels-Alder reactions in water [J]. J Org Chem, 1998, 63(24): 8989-8994.
    [7] Engberts JBFN. Diels-Alder reactions in water: enforced hydrophobic interaction and hydrogen bonding[J]. Pure Appl Chem, 1995, 67(5): 823-828.
    [8] Kong S, Evanseck JD. Density functional theory study of aqueous-phase rate acceleration and endo/exo selectivity of the butadiene and acrolein Diels-Alder reaction[J]. J Am Chem Soc, 122(42): 10418-10427.
    [9] Luo SZ, Mi XL, Liu S, et al. Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water [J]. Chem Commun, 2006: 3687-3689
    [10] Ranu BC, Banerjee S. Significant rate acceleration of the aza-Michael reaction in water[J]. Tetrahedron Lett, 2007, 48: 141-143.
    [11] Cao YJ, Lai YY, Wang X, et al. Michael additions in water of ketones to nitroolefins catalyzed by readily tunable and bifunctional pyrrolidine–thiourea organocatalysts [J]. Tetrahedron Lett, 2007, 48: 21-24.
    [12] Yan ZY, Niu YN, Wei HL, et al. Combining proline and‘click chemistry’: a class of versatile organocatalysts for the highly diastereo and enantioselective Michael addition in water [J]. Tetrahedron: Asymmetry, 2006, 17: 3288-3293.
    [13] Bensa D, Brunel JM, Buono G., et al. Highly efficient phosphazene base-catalyzed Michael addition of beta-ketoesters in water [J]. Synlett, 2001: 715-717.
    [14] Das S, Brudvig GW, Crabtree RH. Molecular recognition in homogeneous transition metal catalysis: a biomimetic strategy for high selectivity [J]. Chem Commun. 2008, 4: 413-424.
    [15] Schmuck C. Guest encapsulation within self-assembled molecular containers [J]. Angew Chem Int Ed, 2007, 46(31): 5830- 5833.
    [16] Wolken WAM, Tramper J, Van Der Werf MJ. Amino acid-catalysed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds [J]. Flavor Frag J, 2004, 19: 115-120.
    [17]崔建国,王春水,廖小华等.相转移催化条件下从桂叶油制备天然苯甲醛的研究[J].化学世界, 2002, 6: 315-317.
    [18]叶金大,周文勇.一种桂叶油水解制备天然苯甲醛的新方法[P]. CN1179934C.
    [19]李伟光,粟桂娇等.以桂枝叶、桂皮为原料直接生产天然苯甲醛的方法[P]. CN1749231A.
    [20] Pittet AO, Muralidhara R, Liberman AL. Process for preparing natural benzaldehyde and acetaldehyde, natural benzaldehyde and acetaldehyde compositions, products produced thereby and organoleptic utilities therefor [P]. US4683342.
    [21]诸富根,周山花,杨磊.制备苯甲醛的液-液非均相反应过程[J].精细化工, 2002, 19(11): 678-681.
    [22]吕秀阳,高飞.近临界水中苯甲醛的绿色合成方法[P]. CN1226264C.
    [23]易封萍,邹德正,李飘英等.八角茴香油和肉桂油的臭氧化反应研究[J].广西科学院学报, 1999, 15(2): 49-51.
    [24]梁红军,刘雄民,李伟光等.肉桂醛臭氧化反应传递过程研究[J].广西大学学报(自然科学版), 2001,(4): 304—307.
    [25] Liu XM, Yi FP. The Safety Measures of Ozonide in Ozonize Reaction. CJSEM SE, Nanjing, China, Oct 7-11, 1996.
    [26]吴倩,刘雄民,李伟光等.肉桂醛臭氧化反应过程的碘量法跟踪[J].精细化工, 2001, 18(1): 56-58.
    [27] Krings U, Berger RG. Biotechnological production of flavours and fragrances [J]. Appl Microbiol Biotechnol, 1998, 49: 1- 8.
    [28] Lapadatescu C, Feron G, Vergoignan C, Dijian A, Bonnarme P. Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomitus squalens [J]. Appl Microbiol Biotechnol, 1997, 47: 708-714.
    [29] Lomascolo A, Asther M, Navarro D, et al. Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 resin [J]. Lett Appl Microbiol, 2001, 32: 262-267.
    [30] Chen HY, Ji HB, Zhou XT, Xu JC, Wang LF. Aerobic oxidative cleavage of cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins under mild conditions [J]. Catal Commu, 2009, 10: 828-832.
    [31] Chen HY, Ji HB. Alkaline hydrolysis of cinnamaldehyde to benzaldehyde in the presence ofβ-cyclodextrin [J]. AIChE J, 2010, 56(2): 466-476.
    [32] Ji HB, Shi DP, Shao M, Li Z, Wang LF. Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of beta-cyclodextrin [J]. Tetrahedron Lett, 2005, 46(14): 2517-2520.
    [33]石东坡,纪红兵,胡晓芳,裴丽霞,李忠. ?-环糊精促进环己酮肟水解脱保护生成环己酮[J].化工学报, 2008, 59(9): 2241-2246.
    [34] Ji HB, Hu XF, Shi DP, Li Z. Controllable oxidation of sulfides to sulfoxides andsulfones with aqueous hydrogen peroxide in the presence of ?-cyclodextrin [J]. Russ J Org Chem, 2006, 42(7): 959-961.
    [35] Madhav B, Murthy SN, Reddy VP, et al. Biomimetic synthesis of quinoxalines in water [J]. Tetrahedron Lett, 2009, 50: 6025- 6028.
    [36] Krishnaveni NS, Surendra K, Reddy MA, et al. Highly efficient deprotection of aromatic acetals under neutral conditions usingβ-cyclodextrin in water [J]. J Org Chem, 2003, 68: 2018-2019.
    [37] Surendra K, Krishnaveni NS, Rao KR. The selective C-3 opening of aromatic 2,3-epoxy alcohols/epoxides with aromatic amines catalysed byβ-cyclodextrin in water[J]. Synlett, 2005,(3): 506-510.
    [38] Ji HB, Shi DP, Hu XF, Pei LX, Li Z. Recovery ofβ-cyclodextr in and quick quantitative determ ination of organic compounds from aqueous system [J]. J South China University of Techno(Natural Science Edition), 2007, 435(4): 1-5.
    [39] Strukul G. Catalytic oxidation with hydrogen peroxide as oxidant [M]. Kluwer: Dordrecht, 1992.
    [40] Edwards JO. In peroxide reaction mechanisms [M]. Interscience: New York, 1962; 67-106.
    [41] Drago RS, Frank KM, Yang YC, Wagner GW. Proceedings of 1997 ERDEC Scientific Conference on Chemical and Biological Defense Research [C], ERDEC, 1998.
    [42] Yao H, Richardson DE. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide [J]. J Am Chem Soc, 2000, 122: 3220-3221.
    [43] Flanagan J, Jones DP, Griffith WP, Skapski AC, West AP. On the existence of peroxocarbonates in aqueous solution [J]. J Chem Soc, Chem Commun, 1986: 20-21.
    [44] Adam A, Mehta M. KH(O2)CO2H2O2 - An oxygen-rich salt of monoperoxocarbonic acid [J]. Angew Chem, Int Ed, 1998, 37: 1387-1388.
    [45] Koblenz TS, Wassenaar J, Reek JNH. Reactivity within a confined self-assembled nanospace [J]. Chem Soc Rev, 2008, 37: 247-262.
    [46] Oshovsky GV, Reinhoudt DN, Verboom W. Supramolecular chemistry in water [J].Angew Chem Int Ed, 2007, 46: 2366-2393.
    [47] Bach RD, Glukhovtsev MN, Gonzalez C. High-level computational study of the stereoelectronic effects of substituents on alkene epoxidations with peroxyformic acid [J]. J Am Chem Soc, 1998, 120: 9902-9910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700