用户名: 密码: 验证码:
透明纳米氧化锆分散液及其纳米颗粒膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锆(ZrO2)具有化学惰性、热稳定性优异、硬度高、折光指数高等优点,其涂层可广泛用作高耐刮伤涂层、金属材料的防腐涂层、微电子装置的高耐磨涂层和绝缘涂层、食品包装用高阻隔涂层、光学(高折光指数)涂层、隔热涂层等等。纯无机ZrO2涂层虽然综合性能突出,但制备时常需要非常高的真空度或后期高温处理,限制了其实际应用领域。将纳米ZrO2颗粒与聚合物复合制备聚合物基纳米复合涂层具有制备条件温和、易于大规模应用的优点,但涉及纳米颗粒分散的难题,涂膜的透明性不高,即使解决了纳米颗粒的分散问题,在高含量ZrO2时,由于热力学的原因仍易发生相分离而产生团聚现象,涂膜透光率变差,因此,无法实现高透明性高ZrO2含量纳米复合涂层的制备。在本文中,我们以非水合成纳米ZrO2晶粒为原料,硅烷偶联剂为改性剂,通过透明ZrO2分散液的制备以及以此为基础的纳米颗粒涂料的制备、涂覆、固化制得了高透明性高ZrO2含量纳米颗粒涂层,由于涂层中不含有聚合物粘结剂,避免了ZrO2纳米粒子和聚合物之间的相分离问题。本文详细研究了非水合成纳米ZrO2晶粒在不同介质中的分散与稳定行为,并以制得的溶剂型或水性透明ZrO2分散液为基础,制备了纳米ZrO2颗粒膜,考察了涂膜的制备工艺与结构、性能之间的关系。主要研究内容与结果如下:
     以缩水甘油基氧丙基三甲氧基硅烷(GPTMS)、β-氨丙基三乙氧基硅烷(APTES)和异氰酸酯基丙基三乙氧基硅烷(IPTES)作为改性剂,研究了非水合成纳米ZrO2晶粒在四氢呋喃(THF)、甲苯、吡啶、丙酮、水等分散介质中的分散与稳定行为。以THF作为分散介质,用GPTMS、APTES和IPTES改性纳米ZrO2时均可以得到透明的分散液;以吡啶或甲苯作分散介质时,采用APTES和IPTES可得到透明ZrO2分散液;用二甲基甲酰胺作为分散介质时,只有以IPTES为改性剂时可以得到透明分散液。GPTMS改性的纳米ZrO2粒子在THF中具有较好的贮存稳定性,IPTES改性的纳米ZrO2粒子在吡啶中具有较好的贮存稳定性。FTIR、13C-NMR、29Si-NMR及TGA结果表明,GPTMS、APTES和IPTES以不同的接枝模式键合到了纳米ZrO2颗粒的表面,使ZrO2表面分别带上了环氧基、氨基和乙氧基官能团。HRTEM和动态激光光散射表征表明,纳米ZrO2晶粒在THF中达到了初级粒径分散水平且单分散性好。APTES改性后的纳米ZrO2在少量盐酸或少量氢氧化钠存在下均可以再分散到水中,制得纳米ZrO2晶粒水性透明分散液,分散液的透明程度主要取决于水溶液的pH值和APTES/ZrO2摩尔比。
     以GPTMS改性的纳米ZrO2/THF分散液为原料,六氟磷酸二苯碘鎓盐为紫外光阳离子引发剂,采用浸涂或旋涂工艺涂覆,在紫外光照射下引发纳米ZrO2颗粒表面的环氧基团进行交联固化,得到了透明、均匀、表面光滑且内部致密的纳米ZrO2颗粒膜,实现了结晶性纳米ZrO2颗粒膜的室温制备。考察了GPTMS/ZrO2摩尔比、分散液中ZrO2含量及涂膜工艺对纳米ZrO2颗粒膜表面形貌的影响。SEM观察结果表明,GPTMS/ZrO2摩尔比在0.15-0.3之间,旋涂速度在1000-2500rpm或浸涂速度在50-150mm/min范围内,均可以得到表面平整无开裂的纳米ZrO2颗粒膜。紫外-可见光谱结果显示,通过改变浸涂速度或旋涂速度可以精确控制ZrO2颗粒膜的厚度,利用膜厚的控制调节其光学特性,可以有效调控不同波长范围内的增透现象。纳米压痕仪和椭圆偏振仪测试表明,纳米ZrO2颗粒膜的微硬度、弹性模量和折光指数随GPTMS/ZrO2摩尔比的减小而增大,即随ZrO2的含量增加而增大。制得的纳米ZrO2颗粒膜的ZrO2含量较高,超过70wt%,透明性佳,折光指数高达1.77(632nm波长处),微硬度1.0GPa以上。
     以AAPTMS改性的纳米ZrO2水分散液为原料,1,4-丁二醇二缩水甘油醚(BBDGE)作为交联剂,采用浸涂工艺或旋涂工艺涂覆于聚碳酸酯基材,在低的加热温度条件下,制备了具有优异综合性能的纳米ZrO2颗粒膜。考察了AAPTMS/ZrO2摩尔比及pH值对纳米ZrO2水分散液透明性及粒径分布的影响,并研究了AAPTMS/ZrO2摩尔比对AAPTMS-ZrO2颗粒膜的表面形貌、折光指数和力学性能的影响。HRTEM和动态光散射表明,当AAPTMS/ZrO2摩尔比大于0.12,pH在13-14之间时,可以得到透明的纳米ZrO2水分散液,且粒径分布均匀。SEM和紫外-可见光谱表明,在所采用的涂膜工艺下制得的AAPTMS-ZrO2颗粒膜表面平整且透光率高。椭圆偏振仪、纳米压痕仪、纳划伤测试和纸带摩擦测试结果表明,AAPTMS-ZrO2颗粒膜的折光指数、微硬度、弹性模量和耐划伤性均随AAPTMS/ZrO2摩尔比的减小而增大。制得的AAPTMS-ZrO2颗粒膜的ZrO2含量高,超过80wt%,折光指数高达1.77,可明显改善PC基材的耐刮伤性能,在透明塑料光学涂层方面具有较好的应用前景。
Zirconia (ZrO2) material possessing the advantages of chemical inertness, excellent thermal stability, high refractive index and high hardness, is an ideal candidate to construct functional coatings with great potential applications as optical coatings, scratch resistant coatings, barrier coatings for polymer substrates, and etc. Inorganic ZrO2 coatings could be fabricated by filtered cathodic vacuum arc, ion beam induced chemical vapor deposition and sputtering. The resulted ZrO2 films generally have high quality with refractive index as high as 2.1-2.3. But all the processes involved have to be conducted under extremely high vacuum using special and expensive apparatus, which limits their large scale application and causes high cost. Sol-gel process using zirconium alkoxide is alternative choice for preparation of inorganic ZrO2 thin coatings. However, to dense and crystallize the ZrO2 phase, annealing at high temperature is usually employed, limiting their application on plastic substrate. Polymer/ZrO2 organic-inorganic nanocomposite coatings fabricated via a sol-gel process or blending with ZrO2 nanoparticles have been developed quickly in recent years. This approach is mild and the obtained organic-inorganic hybrid film can be applied large-scalely on various substrates. The shortcoming of nanocomposite coatings lies in its difficulty to achieve high ZrO2 level because phase separation of ZrO2 nanoparticles easily takes place. To work out this problem, it had better to avoid using polymer. Recently, we have successfully fabricated homogeneous ZrO2 nanoparticles dispersions deagglomerated at primary particle size level using nonaqueous synthesized ZrO2 nanoparticles with the help of ligands. These dispersions make it possible to construct transparent ZrO2 nanoparticle films with high ZrO2 content. In this article, the dispersion behaviors of ZrO2 nanoparticles in various organic solvents or water were investigated. Highly transparent ZrO2 nanoparticles coatings with high refractive index and prominent mechanical properties were fabricated from the transparent solvent-based or waterborne ZrO2 nanoparticles dispersions. The detailed experiments and results are described as follows.
     ZrO2 nanocrystals (4 nm), synthesized from zirconium-(IV) isopropoxide isopropanol complex and benzyl alcohol, were dispersed and functionalized in organic solvents using three kinds of bi-functional silane coupling agent (SCA), 3-glycidoxypropyltrimethoxysilane (GPTMS),3-aminopropyltriethoxysilane (APTES) and 3-isocyanatopropyltriethoxysilane (IPTES). Completely transparent ZrO2 dispersions were achieved in tetrahydrofuran (THF) with all three SCAs, in pyridine and toluene with APTES and IPTES, and in N, N-dimethylformamide with IPTES. Dynamic laser scattering (DLS) measurements and high resolution transmission electron microscopical (HRTEM) observation indicated that the ZrO2 nanocrystals are dispersed on primary particle size level. Fourier transform infrared spectroscopy, solid-state 13C-NMR and 29Si-NMR spectroscopy and thermogravimetric analysis demonstrated that all three SCAs are chemically attached to the surface of the ZrO2 nanoparticles, however, in different bonding modes. Except for GPTMS/ZrO2/THF dispersion and IPTES/ZrO2/pyridine dispersion, all other transparent dispersions have poor long-term stability. The increasing polarity, due to high amount of APTES attached and high hydrolysis and condensation degree of the bonded APTES, and the aggregation, due to inter-particle coupling via the bonded triethoxysilyl group, are the causes of the poor long-term stability for the ZrO2 dispersions with APTES and IPTES, respectively. Nevertheless, the APTES-functionalized ZrO2 precipitates can be de-agglomerated in water to get a stable and transparent aqueous ZrO2 dispersion via addition of a little hydrochloric acid or sodium hydroxide.
     UV-curable ZrO2 nanoparticle coatings, prepared by dispersing highly-crystalline ZrO2 nanoparticles in tetrahydrofuran with the aid of 3-glycidoxypropyl-trimethoxysilane (GPTMS) and following addition of a cationic photoinitiator, were cast on silicon wafers (or glass substrates) by dip-coating or spin-coating and photopolymerized to get transparent ZrO2 nanoparticle films. Ellipsometrical characterization indicates that the refractive index of the film changes from 1.63 to 1.77 at wavelength of 632 nm when the molar ratio of GPTMS-to-ZrO2 decreases from 0.30 to 0.15. Nano-indentation tests show that the films exhibit robust mechanical performance though they are not heat-treated.
     Highly-crystalline ZrO2 nanoparticles were functionalized with 3-(N-amino-ethyl)aminopropyltrimethoxysilane (AAPTMS) and dispersed in water at primary particle size level under basic condition (pH value of 13-14). The aqueous ZrO2 nanoparticles dispersion was cast on polycarbonate substrate with 1,4-butanediol digylcidyl ether as the cross-linker and then heated at 120℃for 1h to obtain ZrO2 nanoparticles films with as high as 81 wt% of ZrO2. The ZrO2 nanoparticle films are highly transparent and have refractive index changing from 1.70 to 1.77 at wavelength of 632 nm as the amount of AAPTMS attached to ZrO2 nanoparticles decreases. Nanoindentation tests show that the hardness of the film reaches 1.7 GPa, while punched tape abrasion and nanoscratch tests reveal that the films exhibit prominent scratch resistant performance.
引文
[1]Seekkuarachchi I.N., Kumazawa H., Aggregation and Disruption Mechanisms of Nanoparticulate Aggregates.1. Kinetics of Simultaneous Aggregation and Disruption. [J]. Ind. Eng. Chem. Res.,2008,47:2391-2400.
    [2]Seekkuarachchi I.N., Kumazawa H., Aggregation and Disruption Mechanisms of Nanoparticulate Aggregates.2. Dispersion of Aggregates Using a Motionless Mixer. [J]. Ind. Eng. Chem. Res.,2008,47:2401-2413.
    [3]Lee C.S., Lee J.S., Oh S.T., Dispersion control of Fe2O3 nanoparticles using a mixed type of mechanical and ultrasonic milling. [J]. Mater. Lett.,2003,57: 2643-2646.
    [4]Tohru S.S., Yoshio S., Keishi N.,Keijiro H., Effect of Ultrasonication on the Microstructure and Tensile Elongation of Zirconia-Dispersed Alumina Ceramics Prepared by Colloidal Processing. [J]. J. Am. Ceram. Sec.,2001,84:2132-2134.
    [5]Lin H. W., Hwu W. H.,Ger M. D., The dispersion of silver nanoparticles with physical dispersal procedures. [J]. J. Mater. Process. Technol.2008,206:56-61.
    [6]Bo J., Xiaotao Z., Fangyuan T., Zhihong W., Jian L., Qingrong W.,Xingdong Z., Surface modification on nanoscale titanium dioxide by radiation:Preparation and characterization. [J]. J. Appl. Polym. Sci.,2006,100:3510-3518.
    [7]Espiard P., Guyot A., Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:2. Grafting process onto silica. [J]. Polymer,1995,36:4391-4395.
    [8]Stoeva S., Klabunde K.J., Sorensen C.M.,Dragieva I., Gram-Scale Synthesis of Monodisperse Gold Colloids by the Solvated Metal Atom Dispersion Method and Digestive Ripening and Their Organization into Two-and Three-Dimensional Structures. [J]. J. Am. Chem. Soc.,2002,124:2305-2311.
    [9]Shah P.S., Holmes J.D., Johnston K.P., Korgel B.A., Size-Selective Dispersion of Dodecanethiol-Coated Nanocrystals in Liquid and Supercritical Ethane by Density Tuning. [J]. J. Phys. Chem. B,2002,106:2545-2551.
    [10]Isaacs S.R., Choo H., Ko W.B., Shon Y.S., Chemical, thermal, and ultrasonic stability of hybrid nanoparticles and nanoparticle multilayer films. [J]. Chem. Mater., 2006,18:107-114.
    [11]Grasset F., Saito N., Li D., Park D., Sakaguchi I., Ohashi N., Haneda H., Roisnel T., Mornet S., Duguet E., Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. [J]. J. Alloys Compd.,2003,360:298-311.
    [12]Posthumus W., Magusin P.C.M.M., Brokken-Zijp J.C.M., Tinnemans A.H.A.,van der Linde R., Surface modification of oxidic nanoparticles using 3-methacryl-oxypropyltrimethoxysilane. [J]. J. Colloid Interface Sci.2004,269:109-116.
    [13]Watts B., Thomsen L., Fabien J.R., Dastoor P.C., Understanding the Conformational Dynamics of Organosilanes:r-APS on Zinc Oxide Surfaces. [J]. Langmuir,2002,18:148-154.
    [14]Turgeman R., Gershevitz O., Palchik O., Deutsch M., Ocko B.M., Gedanken A.,Sukenik C.N., Oriented Growth of ZnO Crystals on Self-Assembled Monolayers of Functionalized Alkyl Silanes. [J]. Cryst. Growth Des.,2003,4:169-175.
    [15]Hong R., Pan T., Qian J., Li H., Synthesis and surface modification of ZnO nanoparticles. [J]. Chem. Eng. J.,2006,119:71-81.
    [16]Schneider G., Decher G., Functional Core/Shell Nanoparticles via Layer-by-Layer Assembly:Investigation of the Experimental Parameters for Controlling Particle Aggregation and for Enhancing Dispersion Stability. [J]. Langmuir,2008,24: 1778-1789.
    [17]Egerton T.A., Everall N.J., Tooley I.R., Characterization of TiO2 Nanoparticles Surface Modified with Aluminum Stearate. [J]. Langmuir,2005,21:3172-3178.
    [18]Li C.C., Chang M.H., Colloidal stability of CuO nanoparticles in alkanes via oleate modifications. [J]. Mater. Lett.,2004,58:3903-3907.
    [19]Guo T.P., Oyoung C., Ying W., Thomas H. H., Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. [J]. J. Mater. Chem.,2006,16:2800-2808.
    [20]Wang H., Xu P., Zhong W., Shen L., Du Q., Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. [J]. Polym. Degrad. Stab.,2005,87:319-327.
    [21]Aymonier C., Bortzmeyer D., Thomann R., Mulhaupt R., Poly(Methyl methacrylate)/Palladium Nanocomposites:Synthesis and Characterization of the Morphological, Thermomechanical, and Thermal Properties. [J]. Chem. Mater.,2003, 15:4874-4878.
    [22]Mustafa M.D., Mine M., Patrice C., Gerhard W., PMMA/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization. [J]. Macromol. Rapid Commun.,2006,27:763-770.
    [23]Shamim N., Hong L., Hidajat K., Uddin M.S., Thermosensitive-polymer-coated magnetic nanoparticles:Adsorption and desorption of Bovine Serum Albumin. [J]. J. Colloid Interface Sci.,2006,304:1-8.
    [24]Hawkins T.L., Roy A., Santillan C., DNA purification and isolation using a solid-phase. [J]. Nucleic Acids Res.,1994,22:4543-4544.
    [25]Prodelalov J., Rittich B., Spanov A., Petrov K.,Benes M.J., Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. [J]. J. Chromatogr., A,2004, 1056:43-48.
    [26]Chiang C.L., Sung C.S., Wu T.F., Chen C.Y., Hsu C.Y., Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells. [J]. J. Chromatogr., B, 2005,822:54-60.
    [27]Akihiro M., Seiichi N., Masato I., Mitsuhiko O., Hisao I., Kenzo S., Induction of efficient apoptosis and cell-cycle arrest in tumor cells by adenovirus-mediated mutant. [J]. Pathology International,200.6,56:126-134.
    [28]Mahanivong C., Bian D., Reisfeld R.A., Huang S., A simplified cloning strategy for the generation of an endothelial cell selective recombinant adenovirus vector. [J]. J. Virol. Methods,2006,135:127-135.
    [29]Khanna P.K., Singh N., Charan S., Viswanath A.K., Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. [J]. Mater. Chem. Phys.,2005, 92:214-219.
    [30]Sun Y., Xia Y., Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process. [J]. Adv. Mater.,2002,14:833-837.
    [31]徐光年,乔学亮,邱小林,陈建国,单分散球形纳米银粒子的制备新方法及其抗菌性能.[J].稀有金属材料与工程,2008,37:1669-1671.
    [32]佘广为,许秀艳,复合涂料中纳米TiO2降解污染物和抗菌性能研究.[J].化 工进展,2003 22:1193-1195.
    [33]Chen S., Liu W.,Yu L., Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. [J]. Wear,1998,218:153-158.
    [34]易书理,余国贤,周晓龙,金亚清,李承烈,纳米LaF3在润滑油中的分散稳定性对其摩擦学性能的影响.[J].华东理工大学学报(自然科学版),2006,32:1392-1395.
    [35]欧雪梅,葛长路,汪剑,王博,朱华,润滑油添加剂分散纳米铜的摩擦学性能.[J].中国矿业大学学报,2005,34:640-643.
    [36]孙昂,严立,朱新河,徐久军,史雅琴,高玉周,表面修饰纳米TiO2的表征及改善润滑油摩擦性能.[J].大连海事大学学报,2003,29:25-29.
    [37]Xiao J.Q., Jiang J.S., Chien C.L., Giant magnetoresistance in nonmultilayer magnetic systems. [J]. Phys. Rev. Lett.,1992,68:3749-3756.
    [38]Berkowitz A.E., Mitchell J.R., Carey M.J., Giant magnetoresistance in heterogeneous Cu-Co alloys. [J]. Phys. Rev. Lett.,1992,68:3745-3750.
    [39]Hobden J., Nanoparticle films make for flexibility:Nanotechnology. [J]. Mater. Today,2009,12:10-10.
    [40]Grasset F., Starukh G., Spanhel L., Girard S.A., Su D.S., Klein A., From ZnO Colloids to Nanocrystalline Colored ZnxTiyOw-zNz Spinel Films. [J]. Adv. Mater., 2005,17:294-297.
    [41]Burgard D., Goebbert C., Nass R., Synthesis of Nanocrystalline, Redispersable Antimony-Doped SnO2 Particles for the Preparation of Conductive, Transparent Coatings [J]. J. Sol-Gel Sci. Technol.,1998,13:789-792.
    [42]Goebbert C., Bisht H., Dahoudi N.A., Nonninger R., Aegerter M.A.,Schmidt H., Wet Chemical Deposition of Crystalline, Redispersable ATO and ITO Nanoparticles [J]. J. Sol-Gel Sci. Technol.,2000,19:201-204.
    [43]Berber M., Bulto V., Kli R., Hahn H., Transparent nanocrystalline ZnO films prepared by spin coating. [J]. Scr. Mater.,2005,53:547-551.
    [44]Lee D., Rubner M.F., Cohen R.E., All-Nanoparticle Thin-Film Coatings. [J]. Nano Lett.,2006,6:2305-2312.
    [45]Li C., O K.P., Ma H., Shi S., Multifunctional Multilayer Films Containing Polyoxometalates and Bismuth Oxide Nanoparticles. [J]. J. Phys. Chem. B,2009,113: 8043-8048.
    [46]Wu Y.J., Li J., Koga T., Kuwabara M., Low-temperature synthesis of barium titanate thin films by nanoparticles electrophoretic deposition [J]. J. Electroceram., 2008,21:189-192.
    [47]Hasan S.A., Kavich D.W., Dickerson J.H., Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. [J]. Chem. Commun., 2009,25:3723-3725.
    [48]Ling X.Y., Phang I.Y., Vancso G.J., Huskens J., Reinhoudt D.N., Stable and Transparent Superhydrophobic Nanoparticle Films. [J]. Langmuir,2009,25: 3260-3263.
    [49]Vakarelski I.U., Maenosono R., Kwek J.W., Thermal modification of layer-by-layer assembled gold nanoparticle films. [J]. Colloids Surf., A: Physicochemical and Engineering Aspects,2009,340:193-198.
    [50]Shin Y.J., Zhang Q., Hua F., Time dependent conductive behavior of the layer-by-layer self-assembled SnO2 nanoparticle thin film. [J]. Thin Solid Films,2008, 516:3167-3171.
    [51]Prevo B.G., Fuller J.C., Velev O.D., Rapid deposition of gold nanoparticle films with controlled thickness and structure by convective assembly. [J]. Chem. Mater.,2005,17:28-35.
    [52]Brouwer E.A.M., Kooij E.S., Hakbijl M., Wormeester H., Poelsema B., Deposition kinetics of nanocolloidal gold particles. [J]. Physicochemical and Engineering Aspects,2005,267:133-138.
    [53]Liu B.T., Yeh W.D., Antireflective surface fabricated from colloidal silica nanoparticles. [J]. Physicochemical and Engineering Aspects 2010,356:145-149.
    [54]Michna A., Adamczyk Z., Siwek B., Ocwieja M., Silver nanoparticle monolayers on poly(ethylene imine) covered mica produced by colloidal self-assembly. [J]. J. Colloid Interface Sci.,2010,345:187-193.
    [55]王海燕,李隆玉,董永芬,李新建,γ-Fe2O3/硅纳米孔柱阵列湿敏元件的湿 敏性能研究.[J].传感技术学报2008,21:1093-1096.
    [56]Miyata T., Ohtani Y., Kuboi T., Minami T., Stability of nano-thick transparent conducting oxide films for use in a moist environment. [J]. Thin Solid Films,2008, 516:1354-1358.
    [57]Granqvist C.G, Hultaker A., Transparent and conducting ITO films:new developments and applications. [J]. Thin Solid Films,2002,411:1-5.
    [58]Lin H., Kumon S., Kozuka H., Yoko T., Electrical properties of sol-gel-derived transparent titania films doped with ruthenium and tantalum. [J]. Thin Solid Films, 1998,315:266-272.
    [59]Kozuka H., Zhao G.., Yoko T., Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. [J]. Thin Solid Films, 1996,277:147-154.
    [60]周婧,赵高凌,韩高荣,锗掺杂二氧化钛薄膜的溶胶凝胶法制备和性能研究.[J].功能材料,2009,40:2000-2003.
    [61]Guerra E.M., Silva G.R., Mulato M., Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method. [J]. Solid State Sci.,2009,11: 456-460.
    [62]赵松楠,吕海兵,晏良宏,酸碱分步催化对溶胶-凝胶ZrO2薄膜光学性能的影响.[J].强激光与粒子束,2009,21:1179-1182.
    [63]Xu D., Xu Y., Chen D., Guo G., Gui L., Tang Y., Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates. [J]. Chem. Phys. Lett.,2000,325:340-344.
    [64]Yoshida T., Minoura H., Electrochemical Self-Assembly of Dye-Modified Zinc Oxide Thin Films. [J]. Adv. Mater.,2000,12:1219-1222.
    [65]Yoshida T., Tochimoto M., Schlettwein D., Wohrle D., Sugiura T.,Minoura H., Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. [J]. Chem. Mater.,1999,11: 2657-2667.
    [66]甘晓燕,李晓民,于伟东,纳米晶ZnO薄膜的电化学沉积及其光电化学性能研究.[J].材料工程,2008,10:64-67.
    [67]Cao C., Wang H.,Zhu H., Carbon nitride films deposited from organic solutions by electrodeposition. [J]. Diamond Relat. Mater.,2000,9:1786-1789.
    [68]Fu Q., Cao C.B., Zhu H.S., Preparation of carbon nitride films with high nitrogen content by electrodeposition from an organic solution. [J]. J. Mater. Sci. Lett.,2004, 18:1485-1488.
    [69]胡飞,江毅,梁建,p型Cu2O半导体薄膜的电化学沉积研究.[J].人工晶体学报,2009,38:952-96.
    [70]Benedic F., Assouar M.B., Mohasseb F., Elmazria O., Alnot P.,Gicquel A., Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride. [J]. Diamond Relat. Mater.,2004,13:347-353.
    [71]Eaton S.C., Sunkara M.K., Ueno M., Walsh K.M., Modeling the effect of oxygen on vapor phase diamond deposition inside micro-trenches. [J]. Diamond Relat. Mater., 2001,10:2212-2219.
    [72]Pastorelli R., Ferrari A.C., Beghi M.G., Bottani C.E., Robertson J., Elastic constants of ultrathin diamond-like carbon films. [J]. Diamond Relat. Mater.,9:825-830.
    [73]Liu Y., Liu C., Chen Y., Tzeng Y., Tso P.,Lin I., Effects of hydrogen additive on microwave plasma CVD of nanocrystalline diamond in mixtures of argon and methane. [J]. Diamond Relat. Mater.,13:671-678.
    [74]Kuo D.H., Liao W.C., A new class of Ti-Si-C-N coatings obtained by chemical vapor deposition, Part Ⅲ. [J]. Thin Solid Films,2002,419:11-17.
    [75]Kuo D.H., Huang K.W., A new class of Ti-Si-C-N coatings obtained by chemical vapor deposition, Part 1. [J]. Thin Solid Films,2001,394:71-79.
    [76]Kuo D.H., Huang K.W., A new class of Ti-Si-C-N coatings obtained by chemical vapor deposition--part Ⅱ:low-temperature process. [J]. Thin Solid Films,2001,394: 80-88.
    [77]Asenjo B., Chaparro A.M., Gutirez M.T., Herrero J.,Klaer J., Study of CuInS2/buffer/ZnO solar cells, with chemically deposited ZnS-In2S3 buffer layers. [J]. Thin Solid Films,2007,515:6036-6040.
    [78]Akyuz I., Kose S., Atay F., Bilgin V., Some physical properties of chemically sprayed Znl-xCdxS semiconductor films. [J]. Mater. Sci. Semicond. Process.,2007, 10:103-111.
    [79]Oladeji I.O., Chow L., Synthesis and processing of CdS/ZnS multilayer films for solar cell application. [J]. Thin Solid Films,2005,474:77-83.
    [80]Lu Y.M., Chang C.M., Tsai S.I., Wey T.S., Improving the conductance of ZnO thin films by doping with Ti. [J]. Thin Solid Films,2004,447-448:56-60.
    [81]Minami T., Yamamoto T.,Miyata T., Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering. [J]. Thin Solid Films, 2000,366:63-68.
    [82]Lin S.S., Huang J.L.,Sajgalik P., The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering. [J]. Surf. Coat. Technol.,2005, 191:286-292.
    [83]Chung J.L., Chen J.C.,Tseng C.J., Preparation of TiO2-doped ZnO films by radio frequency magnetron sputtering in ambient hydrogen-argon gas. [J]. Appl. Surf. Sci., 2008,255:2494-2499.
    [84]Chung J.L., Chen J.C.,Tseng C.J., Electrical and optical properties of TiO2-doped ZnO films prepared by radio-frequency magnetron sputtering. [J]. J. Phys. Chem. Solids,2008,69:535-539.
    [85]Himpsel F.J., Ortega J.E., Mankey G.J., Willis R.F., Magnetic nanostructures. [J]. Adv. Phys.,1998,47:511-597.
    [86]Pak S.C., Penrose W., Hesketh P.J., An ultrathin platinum film sensor to measure biomolecular binding. [J]. Biosensors and Bioelectronics,2001,16:371-379.
    [87]Chuah GK., An investigation into the preparation of high surface area zirconia. [J]. Catal. Today,1999,49:131-139.
    [88]Laidani N., Speranza G., Nefedov A., Calliari L.,Anderle M., Characterization of carbon and zirconia films deposited on polycarbonate for scratch-proof coating applications. [J]. Diamond Relat. Mater.,1998,7:1394-1402.
    [89]Balamurugan A., Kannan S., Rajeswari S., Structural and electrochemical behaviour of sol-gel zirconia films on 316L stainless-steel in simulated body fluid environment. [J]. Mater. Lett.,2003,57:4202-4205.
    [90]Liu J.F., Nistorica C., Gory I., Skidmore G., Mantiziba F.M.,Gnade B.E., Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices. [J]. Thin Solid Films,2005,492:6-12.
    [91]Ewa T., Holger S., Vancso G.J., Natasha S., Influence of Grain Size and Humidity on the Nanotribological Properties of Wear-Resistant Nanostructured ZrO2 Coatings: An Atomic Force Microscopy Study. [J]. J. Am. Ceram. Soc.,2005,88:2498-2503.
    [92]Oliveira A.P., Torem M.L., The influence of precipitation variables on zirconia powder synthesis. [J]. Powder Technol.,2001,119:181-193.
    [93]Li M., Making spherical zirconia particles from inorganic zirconium aqueous sols. [J]. Powder Technol.,2003,137:95-98.
    [94]Noh H.J., Seo D.S., Kim H., Lee J.K., Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. [J]. Mater. Lett.,2003, 57:2425-2431.
    [95]Ma T., Huang Y., Yang J., He J., Zhao L., Preparation of spherical zirconia powder in microemulsion system and its densification behavior. [J]. Mater. Des.,2004, 25:515-519.
    [96]张渊明,霍慧芳,庞先杰,ZrO2超细粒子的制备与表征.[J].暨南大学学报(自然科学版),1998,19:64-68.
    [97]杨晶,连建设,董奇志,自蔓延法制备ZrO2-Y2O3纳米粒子的影响因素.[J.].功能材料与器件学报,2003,9:272-275.
    [98]廖学红,王刚,杨水彬,微波合成非晶形ZrO2纳米粒子.[J].湖北师范学院学报(自然科学版),2003,23:44-47.
    [99]Dodd A.C., McCormick P.G., Synthesis of nanocrystalline ZrO2 powders by mechanochemical reaction of ZrCl4 with LiOH. [J]. J. Eur. Ceram. Soc.,2002,22: 1823-1829.
    [100]常鹰,李溪滨,用乳液法制备ZrO/纳米球形颗粒.[J].粉末冶金技术,2007,25:364-368.
    [101]Joo J., Yu T., Kim Y.W., Park H.M., Wu F., Zhang J.Z.,Hyeon T., Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. [J]. J. Am. Chem. Soc.,2003,125:6553-6557.
    [102]Mizuno M., Sasaki Y., Lee S.,Katakura H., High-Yield Sol-gel Synthesis of Well-Dispersed, Colorless ZrO2 Nanocrystals. [J]. Langmuir,2006,22:7137-7140.
    [103]Markus N., Georg G., Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. [J]. Chem. Eur. J.,2006,12:7282-7302.
    [104]Luo K., Zhou S., Wu L., Gu G., Dispersion and Functionalization of Nonaqueous Synthesized Zirconia Nanocrystals via Attachment of Silane Coupling Agents. [J]. Langmuir,2008,24:11497-11505.
    [105]Zhou S., Garnweitner G, Niederberger M., Antonietti M., Dispersion Behavior of Zirconia Nanocrystals and Their Surface Functionalization with Vinyl Group-Containing Ligands. [J]. Langmuir,2007,23:9178-9187.
    [106]Chen H., Zeng Y., Ding C., Microstructural characterization of plasma-sprayed nanostructured zirconia powders and coatings. [J]. J. Eur. Ceram. Soc.,2003,23: 491-497.
    [107]Liang B., Ding C., Phase composition of nanostructured zirconia coatings deposited by air plasma spraying. [J]. Surf. Coat. Technol.,2005,191:267-273.
    [108]Lima R.S., Kucuk A., Berndt C.C., Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. [J]. Surf. Coat. Technol.,2001,135:166-172.
    [109]Zhao S., Ma F., Xu K.W., Liang H.F., Optical properties and structural characterization of bias sputtered ZrO2 films. [J]. J. Alloys Compd.,2008,453: 453-457.
    [110]Pamu D., Sudheendran K., Krishna M.G., Raju K.C.J., Bhatnagar A.K., Ambient temperature stabilization of crystalline zirconia thin films deposited by direct current magnetron sputtering. [J]. Thin Solid Films,2009,517:1587-1591.
    [111]Varanasi V.G., Besmann T.M., Payzant E.A., Starr T.L., Anderson T.J., Thermodynamic analysis and growth of ZrO2 by chloride chemical vapor deposition. [J]. Thin Solid Films,2008,516:6133-6139.
    [112]Trinh D.H., Ottosson M., Collin M., Reineck I.,Hultman L., Nanocomposite thin films grown by reactive dual radio-frequency magnetron sputtering. [J]. Thin Solid Films,2008,516:4977-4982.
    [113]Tiwari S.K., Adhikary J., Singh T.B.,Singh R., Preparation and characterization of sol-gel derived yttria doped zirconia coatings on AISI 316L. [J]. Thin Solid Films, 2009,517:4502-4508.
    [114]Hana S., Nishioka K., Horita S., Enhancement of the crystalline quality of reactively sputtered yttria-stabilized zirconia by oxidation of the metallic target surface. [J]. Thin Solid Films,2009,517:5830-5836.
    [115]Shin J., Li P., Mazumder J., Pulsed laser deposition of the yttria-stabilized zirconia films. [J]. Thin Solid Films,2008,517:648-651.
    [116]王英波,鲁雄,赵婧,冯波,脉冲电化学沉积制备n-HA/ZrO2复合涂层.[J].稀有金属材料与工程,2009,38:1071-1075.
    [117]Li H., Khor K.A., Kumar R.,Cheang P., Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. [J]. Surf. Coat. Technol.,2004,182:227-236.
    [118]Sangermano M., Voit B., Sordo F., Eichhorn K.J., Rizza G., High refractive index transparent coatings obtained via UV/thermal dual-cure process. [J]. Polymer, 2008,49:2018-2022.
    [119]Molina C., Moreira P.J., Ferreira R.A.S., Messaddeq Y., Planar and UV written channel optical waveguides prepared with siloxane-poly(oxyethylene)-zirconia organic-inorganic hybrids. Structure and optical properties. [J]. J. Mater. Chem.,2005, 15:3937-3945.
    [120]Lee S., Shin H. J. S., Yoon M.D.,Yi K., Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. [J]. J. Mater. Chem.,2008, 18:1751-1755.
    [121]Zhou S., Wu L., Phase Separation and Properties of UV-Curable Polyurethane/ Zirconia Nanocomposite Coatings. [J]. Macromol. Chem. Phys.,2008,209: 1170-1181.
    [122]Aprillya R., Yanjing L., Richard O.C., Ionic Self-Assembly of Ultrahard ZrO2/Polymer Nanocomposite Thin Films. [J]. Adv. Mater.,1998,10:1087-1091.
    [123]Ashis D., De S.K., Conductivity relaxation in zirconia nanoparticles dispersed in conducting polymer. [J]. J. Appl. Polym. Sci.,2007,105:2225-2235.
    [124]梁丽萍,张磊,徐耀,章斌,PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究.[J].物理学报,200,55:6175-6183.
    [125]Gittins D. I., Susha A. S., Schoeler B., Caruso E, Dense Nanoparticulate Thin Films via Gold Nanoparticle Self-Assembly. [J]. Adv. Mater.,2002,14:508-512.
    [126]Lee D., Rubner M.F., Cohen R.E., All-Nanoparticle Thin-Film Coatings. [J]. Nano Lett.,2007,7:1444-1444.
    [1]Isaacs S.R., Choo H., Ko W.B., Shon Y.S., Chemical, Thermal, and Ultrasonic Stability of Hybrid Nanoparticles and Nanoparticle Multilayer Films. [J]. Chem. Mater.,2005,18:107-114.
    [2]Mrabet D., Zahedi Niaki M.H., Do T.O., Synthesis of Nanoporous Network Materials with High Surface Areas from the Cooperative Assemblage of Alkyl-Chain-Capped Metal/Metal Oxide Nanoparticles. [J]. J. Phys. Chem. C,2008, 112:7124-7129.
    [3]Lee S., Shin H. J. S., Yoon M. D., Yi K., Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. [J]. J. Mater. Chem.,2008, 18:1751-1755.
    [4]Corbierre M.K., Cameron N.S., Sutton M., Laaziri K., Lennox R.B., Gold Nanoparticle/Polymer Nanocomposites:Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density. [J]. Langmuir,2005,21: 6063-6072.
    [5]Frank B., Volker S., Horst E., Sergej N., Reiner M., Preparation of Scratch-and Abrasion-Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles. [J]. Macromol. Chem. Phys.,2003,204:375-383.
    [6]Chen H., Zhou S., Gu G., Wu L., Modification and Dispersion of Nanosilica. [J]. J. Dispersion Sci. Technol.,2005,25:837-848.
    [7]Chen G., Zhou S., Gu G., Yang H.,Wu L., Effects of surface properties of colloidal silica particles on redispersibility and properties of acrylic-based polyurethane/silica composites. [J]. J. Colloid Interface Sci.,2005,281:339-350.
    [8]Guo Z., Pereira T., Choi O., Wang Y., Hahn H.T., Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. [J]. J. Mater. Chem.,2006,16:2800-2808.
    [9]Zhong Z., Jian Y., Zhao Xia G., Preparation of Functionalized Core-Shell Alumina/Polystyrene Composite Nanoparticles. [J]. Macromol. Chem. Phys.,2005, 206:1558-1567.
    [10]Scholz S., Kaskel S., Surface functionalization of ZrO2 nanocrystallites for the integration into acrylate nanocomposite films. [J]. J. Colloid Interface Sci.,2008,323: 84-91.
    [11]Zhou S., Wu L., Phase Separation and Properties of UV-Curable Polyurethane/ Zirconia Nanocomposite Coatings. [J]. Macromol. Chem. Phys.,2008,209:1170-1181.
    [12]Daniels M.W., Francis L.F., Silane Adsorption Behavior, Microstructure, and Properties of Glycidoxypropyltrimethoxysilane-Modified Colloidal Silica Coatings. [J]. J. Colloid Interface Sci.,1998,205:191-200.
    [13]Mennig M., Oliveira P.W., Frantzen A., Schmidt H., Multilayer NIR reflective coatings on transparent plastic substrates from photopolymerizable nanoparticulate sols. [J]. Thin Solid Films,1999,351:225-229.
    [14]Csgor M., Nacken M., Sameti M., Lehr C.M., Schmidt H., Modified silica particles for gene delivery. [J]. Mater. Sci. Eng., C,2003,23:93-97.
    [15]Yuan J., Zhou S., Gu G.,Wu L., Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings [J]. J. Mater. Sci.,2005,40: 3927-3932.
    [16]Campo A.d., Sen T., Lellouche J.P.,Bruce I.J., Multifunctional magnetite and silica-magnetite nanoparticles:Synthesis, surface activation and applications in life sciences. [J]. J. Magn. Magn. Mater.,2005,293:33-40.
    [17]Mohapatra S., Pramanik N., Mukherjee S., Ghosh S.K.,Pramanikl P., A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications [J]. J. Mater. Sci.,2007,42:7566-7574.
    [18]Iida H., Nakanishi T., Osaka T., Surface modification of γ-Fe2O3 nanoparticles with aminopropylsilyl groups and interparticle linkage with a,co-dicarboxylic acids. [J]. Electrochim. Acta,2005,51:855-859.
    [19]An Y., Chen M., Xue Q., Liu W., Preparation and self-assembly of carboxylic acid-functionalized silica. [J]. J. Colloid Interface Sci.,2007,311:507-513.
    [20]Ukaji E., Furusawa T., Sato M., Suzuki N., The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. [J]. Appl. Surf. Sci.,2007,254:563-569.
    [21]Carriere D., Moreau M., Barboux P., Boilot J. P., Spalla O., Modification of the Surface Properties of Porous Nanometric Zirconia Particles by Covalent Grafting. [J]. Langmuir,2004,20:3449-3455.
    [22]He W., Guo Z., Pu Y., Yan L., Si W., Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization. [J]. Appl. Phys. Lett., 2004,85:896-898.
    [23]Pawsey S., Yach K.,Reven L., Self-Assembly of Carboxyalkylphosphonic Acids on Metal Oxide Powders. [J]. Langmuir,2002,18:5205-5212.
    [24]Turner M.R., Duguet E., Labrugere C., Characterization of silane-modified ZrO2 powder surfaces. [J]. Surf. Interface Anal.,1997,25:917-923.
    [25]Joo J., Yu T., Kim Y.W., Park H.M., Wu F., Zhang J.Z.,Hyeon T., Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. [J]. J. Am. Chem. Soc.,2003,125:6553-6557.
    [26]Mizuno M., Sasaki Y., Lee S.,Katakura H., High-Yield Sol-gel Synthesis of Well-Dispersed, Colorless ZrO2 Nanocrystals. [J]. Langmuir,2006,22:7137-7140.
    [27]Garnweitner G., Goldenberg L.M., Sakhno O.V., Markus A., Markus N., Joachim S., Large-Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in Organic-Inorganic Nanocomposites for Efficient Volume Holography. [J]. Small,2007,3:1626-1632.
    [28]Zhou S., Garnweitner G., Niederberger M., Antonietti M., Dispersion Behavior of Zirconia Nanocrystals and Their Surface Functionalization with Vinyl Group-Containing Ligands. [J]. Langmuir,2007,23:9178-9187.
    [29]Georg G., Markus N., Nonaqueous and Surfactant-Free Synthesis Routes to Metal Oxide Nanoparticles. [J]. J. Am. Ceram. Soc.,2006,89:1801-1808.
    [30]Vandenberg E.T., Bertilsson L., Liedberg B., Uvdal K., Erlandsson R., Elwing H., Lundstr I., Structure of 3-aminopropyl triethoxy silane on silicon oxide. [J]. J. Colloid Interface Sci.,1991,147:103-118.
    [31]Innocenzi P., Brusatin G., Babonneau F., Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials. [J]. Chem. Mater.,2000,12: 3726-3732.
    [32]Innocenzi P., Brusatin G., Guglielmi M., Bertani R., New Synthetic Route to (3-Glycidoxypropyl)trimethoxysilane-Based Hybrid Organic-norganic Materials. [J]. Chem. Mater.,1999,11:1672-1679.
    [1]Daniels M.W., Francis L.F., Silane Adsorption Behavior, Microstructure, and Properties of Glycidoxypropyltrimethoxysilane-Modified Colloidal Silica Coatings. [J]. J. Colloid Interface Sci.,1998,205:191-200.
    [2]Cs gor, Nacken M., Sameti M., Lehr C.M., Schmidt H., Modified silica particles for gene delivery. [J]. Mater. Sci. Eng., C,2003,23:93-97.
    [3]Chu L., Daniels M.W., Francis L.F., Use of (Glycidoxypropyl) trimethoxysilane as a Binder in Colloidal Silica Coatings. [J]. Chem. Mater.,1997,9:2577-2582.
    [4]Georg G., Markus N., Nonaqueous and Surfactant-Free Synthesis Routes to Metal Oxide Nanoparticles. [J]. J. Am. Ceram. Soc.,2006,89:1801-1808.
    [5]Garnweitner G., Goldenberg L.M., Sakhno O.V., Markus A., Markus N.,Joachim S., Large-Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in Organic-Inorganic Nanocomposites for Efficient Volume Holography. [J]. Small,2007,3:1626-1632.
    [6]Oliver W.C.,Pharr G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. [J]. J. Mater. Res.,1992,12:1564-1583.
    [7]Innocenzi P., Brusatin G, Guglielmi M., Bertani R., New Synthetic Route to (3-Glycidoxypropyl) trimethoxysilane-Based Hybrid Organic-norganic Materials. [J]. Chem. Mater.,1999,11:1672-1679.
    [8]Innocenzi P., Brusatin G., Babonneau F., Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials. [J]. Chem. Mater.,2000,12: 3726-3732.
    [9]Park M.S., Joo W., Kim J.K., Porous Structures of Polymer Films Prepared by Spin Coating with Mixed Solvents under Humid Condition. [J]. Langmuir,2006,22: 4594-4598.
    [10]Park M.S., Kim J.K., Broad-Band Antireflection Coating at Near-Infrared Wavelengths by a Breath Figure. [J]. Langmuir,2005,21:11404-11408.
    [11]Park M.S., Kim J.K., Breath Figure Patterns Prepared by Spin Coating in a Dry Environment. [J]. Langmuir,2004,20:5347-5352.
    [12]Rajendran M., Ghanashyam Krishna M., Bhattacharya A.K., Low temperature preparation of orthoferrite thin-films by an inorganic sol-gel process. [J]. Thin Solid Films,2001,385:230-233.
    [13]Sellinger A., Weiss P.M., Nguyen A., Lu Y., Assink R.A., Gong W., Brinker C.J., Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. [J]. Nature,1998,394:256-260.
    [1]Zhou S., Garnweitner G., Niederberger M., Antonietti M., Dispersion Behavior of Zirconia Nanocrystals and Their Surface Functionalization with Vinyl Group-Containing Ligands. [J]. Langmuir,2007,23:9178-9187.
    [2]Markus N., Georg G., Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. [J]. Chem. Eur. J.,2006,12:7282-7302.
    [3]Oliver W.C., Pharr G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. [J]. J. Mater. Res.,1992,12:1564-1583.
    [4]Innocenzi P., Brusatin G., Babonneau F., Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials. [J]. Chem. Mater.,2000,12: 3726-3732.
    [5]Innocenzi P., Brusatin G,. Guglielmi M., Bertani R., New Synthetic Route to (3-Glycidoxypropyl) trimethoxysilane-Based Hybrid Organic-norganic Materials. [J]. Chem. Mater.,1999,11:1672-1679.
    [6]Lee S., Shin H.J.S., Yoon M.D.,Yi K., Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. [J]. J. Mater. Chem.,2008,18:1751-1755.
    [7]Sellinger A., Weiss P.M., Nguyen A., Lu Y., Assink R.A., Gong W.,Brinker C.J., Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre [J]. Nature,1998,394:256-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700