用户名: 密码: 验证码:
水域动载荷条件下复杂矿体开采安全技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着市场对矿产资源的强劲需求,复杂环境条件下矿体的开采已经成为行业关注的热点。由于金属矿体赋存条件的复杂性、岩体变形的各向异性、开采方法的差异性,目前我国金属矿床的“三下”开采技术还不成熟,尚未形成一套成熟的技术和装备,对于特殊条件的“三下”开采还处于探索阶段。由于“三下”开采涉及的危险因素复杂,如何预先评估开采布设工程、外部扰动要素对周边重要构筑物的影响程度,采取相应的预防措施,成为“三下”开采成功的关键。
     论文以我国第二大硫铁矿山——安徽新桥硫铁矿矶山东部矿体开采的复杂环境为对象展开研究,结合25年从事金属矿山工作的现场实践和理论基础,以水域动荷载限定条件下的复杂矿体安全开采作为一个开放的动态、非线性系统为出发点,在理论分析、现场测试、室内试验、现场试验的基础上,通过帷幕注浆工程,借助数值计算模拟方法,针对复杂矿体开采的关键因素,对铁路线、河流和边坡的作用和影响进行重点研究。
     论文取得如下创新性成果:
     (1)自主开发了价格低廉、性能优异的改性粘土固化浆液,首次大规模在新桥矿区高含水区域的截流帷幕使用。固化浆液具有抗冲刷能力、材料费用低、结石率高(近似达100%)、堵水性能稳定等特点,与传统的水泥浆液相比,降低注浆材料费用81%;首创了高速高效粘土输料、自动粉碎、高速搅拌的粘土制浆工艺,制浆速度提高60%,工作效率提高80%,改善了浆液质量,彻底解决了设备经常损坏维修难题。
     (2)在现场详勘、试验的基础上,提出分区不等距大孔距布设注浆孔方式,利用改良性粘土固化浆液为主(90%)、粉煤灰固化浆液为辅(10%),形成封堵断层、溶洞的大规模、高强度注浆工艺。与传统的等距布孔相比,优化后的布设注浆孔的钻探工程量减少36.01%。帷幕注浆工程的堵水率达77.96%,减少了露天采坑的涌水量,塌陷区地表趋于稳定,公路、铁路及河流等敏感区域塌陷现象消除。
     (3)克服了3DEC等三维数值分析软件无法进行空间几何凹体运算的限制,根据边坡凹形台阶的坡顶和坡底坐标数据,利用三棱锥逼近法,通过编程自动形成了凹陷露天矿采坑的凹形几何边坡体,真实再现了露天矿边坡的几何形状,满足了节理划分、赋值和计算的需要,提高了分析结果的可靠度和精确度。
     (4)基于3DEC离散元软件平台,建立了水域动荷载限定条件下的矿体复杂区域的3DEC实体三维模型,论证了开采主体设计的总体布局、开拓工程、采场结构参数等的合理性、安全性,最大限度真实模拟了工程体对外部开挖单因素、多因素激励的响应,评估了敏感区域的应力、位移、速度等特征指数。
     (5)提出了有效帷幕注浆防止外围水流渗透,定量评估铁路沉降、可靠预控工程灾害发生的“三下”资源安全高效开采模式,减少开采的盲目性,确保地表构筑物(水体)的安全。
Great attention has been paid on mining technology of ore deposit with difficult environmental condition along with the increasing requirement on mineral resources. Qualified mining technology and equipment of ore deposit below railway, river and buildings (shortly, DRRB) are limited because of complicated existence condition of ore body and different features of rock deformation. Influence degree of mining activities and surrounding disturbance on surface buildings or structures should be estimated and correspondent preventive measures should be considered, based on evaluation of underground engineering works, in order to extract safely DRRB.
     Xinqiao Mining Corporation, Ltd. (XMC), Tongling, Anhui province, China, is one of the largest pyrite mines in China. Eastern part of ore deposit located below a railway and a small river and is a kind of typical DRRB. Because safe mining process of ore deposit under dynamic load and water body is a open, dynamic and non-linear system, function and influence of mining activates and surrounding disturbance on railway, river and slope of open-pit are studied in detail using such comprehensive researching means as theoretical analysis, field measurement, laboratorial experiment and numerical simulation in this paper. Main conclusions and creative results are summarized as follows:
     (1)Improved clay cementing mixture was developed and used in curtain grouting practice in XMC. The mixture is good in crush-resistance, low in material cost (81% lower than that of conventional cement slurry), high in concretion rate (nearly 100%) and excellent in water-blocking result. Clay slurry-making technology characterized in effective transportation, automatic crushing and fast mixing system was also invented. The new technology could not only raise slurry-making capability and effectiveness by 60% and 80% respectively, but also improve slurry quality and system reliability.
     (2)Grouting drill holes were arranged in varying large space and improved clay or fly ash cementing slurry (10% in proportion) was poured into drill hole so that fault and cave could be filled. Number of drill hole was reduced by 36% and water-block rate was increased by 78%, respectively, compared to conventional hole design with fixed space. Water inflow from open-pit was obviously reduced and serious surface subside within railway and river area was avoided as a result of curtain grouting.
     (3) Computation method of geometrical dip by three dimensional simulation soft 3DEC was improved. Geometrical slope of dip open-pit was automatically represented by 3DEC soft using triangular pyramid approaching method, according to coordinate data of slope roof and bottom. The numerical model of the slope could meet reliability and accuracy requirement for subsequent numerical simulation.
     (4)Three dimensional model of ore deposit and related development works below dynamic load and water body was established by 3DEC soft. Overall arrangement of development works and structural size of stope were evaluated, response of development works to influencing factors were simulated, and stress, displacement and velocity of surrounding rocks around DRRB, based on analysis of the model.
     (5)Curtain grouting engineering based on results of theoretical analysis, field investigation, mechanical parameters measurement, dynamic load survey and CT goaf detection is useful for safe mining of DRRB. Mining model of DRRB based on numerical simulation is helpful to optimize development works including shaft and tunnel.
引文
[1]连达军,汪云甲.“三下”开采综合评价体系研究[J].中国矿业大学学报,2005,34(1):97-101
    [2]韩书义.水体下金属矿床开采的探讨[J].矿业快报,2000,336(6):3-5
    [3]康永华,孔凡铭,张文.试论水体下采煤的综合研究技术体系[J].煤矿开采,2001,6(1):9-11,35
    [4]冯鹏,关夏农.浅议“三下”采煤技术体系[J].太原科技,2003,(3):49-51
    [5]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000
    [6]王喜兵.复杂“三下”矿山建设及开采的实践与探讨[J].矿业工程,2004,2(5):12-14
    [7]王兵,题正义.水体下综放开采技术的研究[J].矿业工程,2007,5(1):22-24
    [8]姜孝文,曾照民,刘宏博等.沉坑水体下采煤的实践[J].煤矿安全,2002,33(10):43,44
    [9]易智.新桥硫铁矿“三下”开采安全技术研究[硕士学位论文].长沙:中南大学,2008
    [10]李其昌.金阳公路保安矿柱开采技术研究[硕士学位论文].长沙:中南大学,2003
    [11]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].中国矿业大学出版社,2003
    [12]C.Gonzalez Nicieza. The new three-dimensional subsidence influence function denoted by n-k-g[J]. Int.J.Rock Mech.and Min.Sci.,2005,42(3):372-387
    [13]K.B.Singh,T.N.Singh.Ground movements over longwall workings in the Kamptee coalfield,India[J]. Engineering Geology,1998,50(1):125-139
    [14]刘宝琛,廖国华著.煤矿地表移动的基本规律[M].北京:中国煤炭工业出版社,1965
    [15]P.Mainil.Contribution to the study of ground movements under the influence of mining operations[J].International Journal of Rock Mechanics and Mining Science & Geomechanics,1965,2(2): 225-228
    [16]萨武斯脱维奇A.地下开采对地表的影响[M].北京:煤炭工业出版社,1955
    [17]周国栓,崔继宪.建筑物下采煤[M].北京:煤炭工业出版社,1983
    [18]X.L Yao,B-N.Whittaker,D.J.Reddish.Influence of overburden mass behavioural properties on subsidence limit characteristics[J].Mining Science and Technology,1991,13(2):167-173
    [19]麻凤海,范学理,王泳嘉.岩层移动动态过程的离散单元法分析.煤炭学报,1996,8(4):388-392
    [20]邓喀中,开采岩体中的结构效应[M].徐州:中国矿业大学出版社,1998
    [21]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2002
    [22]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [23]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791
    [24]钱鸣高.对中国煤炭工业发展的思考[J].中国煤炭,2005,31(6):5-9
    [25]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126
    [26]许家林.岩层采动裂隙分布与应用[M].徐州:中国矿业大学出版社,2003
    [27]张东升,马立强.特厚坚硬岩层组下保水采煤技术[J].采矿与安全工程学报,2006,23(1):62-65
    [28]王永清,伍佑伦.崩落法回采时顶板岩层崩落过程监测与分析[J].金属矿山,2006(11):17-19
    [29]徐金海,刘克功,卢爱红.短壁开采覆岩关键层黏弹性分析与应用[J].岩石力学与工程学报,2006,25(6):1148-1150
    [30]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出影响影响的研究[J].岩石力学与工程学报,2007,26(7):1478-1450
    [31]邓喀中.开采沉陷中的岩体结构效应研究[博士学位论文].徐州:中国矿业大学,1993
    [32]麻凤海.岩层移动的时空过程[博士学位论文].沈阳:东北大学,1996
    [33]杨硕等.水平移动曲面的力学预测法[J].煤炭学报,1995,2(2):214-217
    [34]李春雷,谢谟文,李晓璐.基于GIS和概率积分法的北洺河铁矿开采沉陷预测及应用[J].岩石力学与工程学报,2007,26(6):1243-1250
    [35]蔡怀恩.开采沉陷预计的方法及发展趋势[J].露天采矿技术,2007,(4):43-44,76
    [36]蔡美峰,李春雷,谢谟文等.北洺河铁矿开采沉陷预计及地表变形监测与分析[J].北京科技大学学报,2008,30(2):109-114
    [37]杨逾,刘文生,缪协兴等.我国采煤沉陷及其控制研究现状与展望[J].中国矿业,2007,16(7):43-46
    [38]夏小刚,黄庆享,张守刚.PCA法在非充分采动条件下地表沉陷分级中的应用[J].采矿与安全工程学报,2008,25(1):54-58
    [39]吴立新,王金庄,刘延庆,等.建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994
    [40]蔡嗣经编著,矿山充填力学基础,冶金工业出版社,1994.6
    [41]胡炳南.条带开采中煤柱稳定性分析[J].煤炭学报,1995,20(4):205-208
    [42]张华兴,赵有星.条带开采研究现状及发展趋势[J].煤矿开采,2000,40(3):5-7
    [43]Michael Cullen. Geothchnical studies of retreat pillar coal mining at mining at shallow depth [D]. McGill University,Montrcal,Canada Ph..D.thesis,2002
    [44]郭文兵,邓喀中.条带开采的非线性理论研究及应用[M].徐州:中国矿业大学出版社,2005
    [45]梁希峰.铁路桥下工业煤柱安全开采技术研究[硕士学位论文].沈阳:辽宁工程技术大学工程,2007
    [46]严茂荣.大水头煤矿铁路下综放开采岩层与地表移动规律研究[硕士学位论文].西安:西安科技大学,2008
    [47]李兴尚.建筑物下条带开采冒落区注浆充填减沉技术的理论研究[博士学位论文].徐州:中国矿业大学,2008
    [48]张吉雄.矸石直接充填综采岩层移动控制及其应用研究[博士学位论文].徐州:中国矿业大学,2008
    [49]焦传武,仲惟林,耿德庸.条带法开采实施建筑物保护的实践与认识.煤炭冶金出版社,1995
    [50]段敬民.矿山塌陷区房屋抗采动理论及加固技术研究[博士学位论文].成都:西南交通大学,2005
    [51]Yao X L. Modelingofminingsubsideneewithrefereneetosurfaeestrueturebehavior. [D].Unversity of Nottingham,1992
    [52]彭云奇.康家湾矿大型水体下防水矿柱安全开采的研究与设计[硕士学位论文].长沙:中南大学硕士论文,2002
    [53]胡光林.急倾斜坚硬顶板中厚煤层防水煤柱合理留设研究[硕士学位论文].重庆:重庆大学,2005
    [54]高明飞,王兰健,邢程等.浅谈海下采煤中的水文地质工作[J].煤矿开采,2000,43(S):18-20
    [55]李佩全.淮南矿区水体下采煤的实践与认识[J].中国煤炭,2001,27(4)30-32,42
    [56]蔡振宇,杨本生,刘新河.水体下煤层开采的相似材料模拟研究[J].中国矿业,2003,12(3):62,63
    [57]康永华,靳仁昌.水体下放顶煤开采研究现状及其发展趋势[J].煤矿开采,2003,8(1):15-18
    [58]武雄,于青春,汪小刚等.地表水体下煤炭资源开采研究[J].岩石力学与工程学报,2006,25(5):1029-1036
    [59]谢会生.复杂积水区下煤层的开采与治理[J].湖南安全与防灾,2008,(163):41,42
    [60]薛少波,武雄,徐能雄.大型水库下压煤开采研究思路思考[J].中国煤炭地质,2008,20(S):48-50
    [61]姚金蕊,李夕兵,周子龙.“三下”矿体开采研究[J].地下空间与工程学报,2005,1(7):1073-1075
    [62]Hsieh P, Neumann S P, Simpson E S, Stiles G. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media,2, Methodology with application to fractured rocks[J]. Water Resources Research,1985:21(11):1667-1676
    [63]Harstad H, Teufel LW, Lorenz J C. Characterization and simulation of naturally fractured tight gas sandstone [A]. Technical Conference&Exhibition held in Dallas[C],1995
    [64]朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990
    [65]肖裕行,王泳嘉,卢世宗等.裂隙岩体水力等效连续介质存在性的评价[J].岩石力学与工程学 报,1999,18(1):75-80
    [66]Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [J]. Journal of Applied Mathematics and Mechanics,1960,24:85-864
    [67]张有天.从岩石水力学观点看儿个重大工程事故[J].水利学报,2000(5):6-9
    [68]Louis C. and Y.N.T. Maini. Determination of in situ hydraulic parameters in jointedrock[A], Proc.2nd congr. ISRM,1970
    [69]Cacas M C, Ledoux E, de Marshyq Peaudecerf P. Moedling fracture flow Calibration and validation, 1.The flow,1990,26(3):479-489
    [70]Long, J. C. S., 1.S. Remer, C. R. Wilson, and P. A. equivalents for networks of discontinuous fractures Witherspoon, Porous media[J], Water Resour. Res.,198218(3),645-658
    [71]Wang, M.,Discrete fractures fluid flow in fractured rocks[D].Univ. ofArizona modeling,Arizona and field U. S.A.applications 2000
    [72]李地元,李夕兵,张伟.裂隙岩体的流固耦合研究现状与应用展望[J].水利与建筑工程学报,2007,5(1):1-4,11
    [73]唐红梅,陈洪凯,关明芳.边坡渗流研究现状及趋势分析[J].重庆交通学院学报,2006,25(1):78-83
    [74]薛翊国.锦屏一级水电站左岸渗流模型分析与高边坡稳定性评价[博士学位论文].吉林:吉林大学,2006
    [75]周济福。渗流力学研究的现状和发展趋势[J].力学与实践,2007,29(3):1-6
    [76]李顺才,陈占清,缪协兴.破碎岩体渗流的试验及理论研究综述[J].山东科技大学学报(自然科学版),2008,27(3):37-43
    [77]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181
    [78]陈洪凯.三峡工程永久船闸岩体渗流与排水机理研究[博士学位论文].重庆:重庆建筑大学,1996
    [79]刘建坤,吴宏伟,赵洪勇.应力状态和湿化路径对非饱和边坡的瞬态渗流状况的影响[J].兰州大学学段(自然科学版),2001,37(1):102-108
    [80]凌道盛.有自由面渗流分析的虚节点法[J].浙江大学学报(工学版),2002,36(3):243-46
    [81]McEnroe B. M., Schroeder P R. Leach ate collection in landfills:steady case[J]. Journal of Engineering.1988,114(5):1052-62
    [82]McDonald, M. G, Harbaugh, A. W U. S. G S. modular ground-water flow model:designed to be understood and adapted. Hydraulics and Hydrology in the Small Computer Age,Proceedings of the Specialty Conference. ASCE, New York,1985:1225-1230
    [83]Arnould M.,heavy metals.Clement CGouvenot D et al. New sorbing grouts for radioactive and toxicGeology[J]. Environmental Geol,1991, (30):127-139
    [84]Aaltonen, J., Olofsson B. Direct current (DC) resistimeasurements in long-term groundwater monitoring programmes [J]. Environmental Geol.2002,41(6):662-671
    [85]Arnould M.,heavy metals.Clement CGouvenot D et al. New sorbing grouts for radioactive and toxic[J].Geology.1991, (30):127-139
    [86]杜嘉鸿.地下建筑注浆工程简明手册[S].北京:科学出版社,1993
    [87]G.S.Littlejohn.ChemicalGrouting-1. [J].Ground Enineering,1985,4
    [88]ArrindV.Shroff. Grouting Technology in Tunneling and Dam Construction[M].1993.
    [89]杨米加,陈明雄,贺永年.注浆理论的研究现状与发展方向[J].岩石力学与工程学报,2001.20(6):839-841.
    [90]郝哲,王介强,刘斌.岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492-496.
    [91]罗平平等.岩体注浆理论研究现状及展望[J].山东科技大学学报(自然科学版),2005.24(1):26-28.
    [92]殷金虎,贺子奇.地下工程注浆材料与注浆技术的研究应用现状[J].2007,(9):13-15
    [93]霍利杰等.粉煤灰水泥充填注浆材料性能研究[J].建井技术,2008,29(6):21-22,17.
    [94]姚直书等.高强钻井井壁新型高强微膨胀节间注浆材料研究及应用[J].中国煤炭,2009,35(1):36-38
    [95]李建硕等.新型井下注浆材料工程性能及模拟试验研究[J].能源技术与管理,2008,(2):41-43
    [96]张高展,丁庆军.新型抗水分散和抗水溶蚀双液注浆材料的设计与应用[J].新型建筑材料,2007,(12):58-61
    [97]翟华等.封孔注浆材料的试验研究[J].煤矿安全,2008(3):14-17
    [98]郑玉辉裂隙岩体注浆浆液与注浆控制方法的研究[博士学位论文].长春:吉林大学2005[J].
    [99]陈永贵.粘土固化注浆帷幕对渗滤液的阻渗机理与环境效应[博士学位论文].长沙:文中南大学2004
    [100]李兴尚建筑物下条带开采冒落区注浆充填减沉技术的理论研究[博士学位论文].徐州:中国矿业大学,2008,5
    [101]戴俊,岩石动力学特性与爆破理论[M].冶金工业出版社,2002.5:159-160
    [102]孟吉复,惠鸿斌,爆破测试技术[M].冶金工业出版社,1992.3
    [103]J.W.Dally,W.L.Fourney,D.C.Hollowoiy Influence of Containment of Borehole Pre.on Explosive Induced Fracture.Int.J.of Rk Mech.&Min.Sci.1975 Japan
    [104]J.W.Dally,W.L.Fourney,A.L-Pederson:A Dynamic Photoelastic Evaluation of some Current Practices in Smooth wall Blasting Mining Enging,1978.2
    [105]G. Harries:Theory of Blasting.Drilling&Blasting Technology.Chapt 5.1977.5
    [106]潘井澜,爆破破岩机理的探讨[J].爆破,1994.1-6
    [107]杨小林,王梦恕,爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116
    [108]夏祥.爆炸荷载作用下岩体损伤特征及安全阈值研究[博士学位论文].武汉:中国科学院武汉岩土所,2006:13
    [109]Chen S.G, Zhao J., Zhou Y. X.. UDEC modeling of a field explosion test[J]. International Journal of Blasting and Fragmentation.2000, (4):149-163
    [110]Wu Chengqing, Hao Hong, Zhou Yingxin. Fuzzy-random probabilistic analysis of rock mass responses to explosive loads[J]. Computers and Geotechnics.1999, (25):205-225
    [111]张世雄,胡建华,阳生权等.地下工程爆破振动监测与分析[J].爆破,2001,18(2):49-52
    [112]黄照平,宋一乐.爆破震动对残留岩体的影响及控制[J].武汉汽车工业大学学报.1999,21(6):90-93
    [113]Hao Hong,Wu Chengqing, Wu Zu. Scaled-distance relationships for chamber blast underground storage of explosives[J]. International Journal of Blasting and Fragmentation.2001,5(1):57-90
    [114]Hao Hong, Wu Yaokun, Ma Guowei, etc.. Characteiistics of surface ground motions induced by blasts in jointed rock mass[J]. Soil Dynamics and Earthquake Engineering.2001,(21):85-98
    [115]赵坚,陈寿根,蔡军刚,宋宏伟.用Udec模拟爆炸波在节理岩体中的传播[J].中国矿业大学学报,2002,31(2):111-115
    [116]Cundall P.A. A computer model for simulating progressively large scale moments in blocky rock system[A]. Proceedings of the symposium of the international society of rock mechanics [C]. 1971,(1):1-8
    [117]Schneider L. C. A Surrey of Blasting Vibration Regulations[J]. International Journal of Blasting and Fragmentation.2001,5(3):133-156
    [118]崔新壮,李卫民,段祝平等.爆炸应力波在各向同性损伤岩石中的衰减规律研究[J].爆炸与冲击,2001,21(1):76-80
    [119]何翔,吴样云,李永池等.石灰岩中爆炸成坑和地冲击传播规律的试验研究[[J].岩石力学与工程学报,2002,23(5):725-729
    [120]科泽列夫C.A.,扎普罗日茨B.D.,捷尔希科夫C.P.地下大爆破对地面建筑物的震动影响[J].国外金属矿山,2002,(2):32-36
    [121]孟吉复,惠鸿斌.爆破测试技术[M].北京:冶金工业出版社,1992
    [122]曹孝君,吴青山,张继春等.顺层岩质边坡的爆破振动控制标准试验研究[J].岩石力学与工程学 报,2003,22(11):1924-1928
    [123]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346
    [124]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析[J].岩石力学与工程学报,2004,23(8):1318-1324
    [125]张作光,何江达,王开云等.金安桥电站溢洪道边坡地震效应及动力稳定性[J].四川水利,2005,(4):37-40
    [126]许红涛.岩石高边坡爆破动力稳定性研究[博士学位论文].武汉:武汉大学,2006
    [127]王泳嘉,刘连峰.三维离散单元法及其在边坡工程中的应用[J].中国矿业,1996,5(1):34-39
    [128]张丙印,师瑞锋,侯瑜京.昌马水库枢纽工程右岸岩石边坡稳定性的离散元法分析[J].水力发电学报,2002,76(1):73-81
    [129]王卫华,李夕兵.离散元法及其在岩土工程中的应用综述[J].岩土工程技术,2005,19(4):177-181
    [130]张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999
    [131]徐艳杰,张楚汉,王光纶等.三峡高边坡的爆破荷载确定及动力稳定分析[J].水利水电技术,1999,30(5):29-31
    [132]王书法,李树忱,李术才等.节理岩质边坡变形的DDA模拟[J].岩土力学,2002,23(3):352-354
    [133]孙东亚,彭一江,王兴珍.DDA数值方法在岩质边坡倾倒破坏分析中的应用[J].岩石力学与工程学报[J],2002,21(1):39-42
    [134]吴建宏,大西有三,石根华等.三维非连续变形分析(3D DDA)理论及其在岩石边坡失稳数值仿真中的应用[J].岩石力学与工程学报,2003年,22(6):937-942
    [135]陈嘉生,姜立春.移动荷载作用下边坡体动力响应测试分析[J].金属矿山.2007,11:32-34
    [136]JIANG Lichun,CHEN Jiasheng.Erosion characteristic of slope sandstone soaking in acid mine drainage [J]. J. Cent. South Univ. Technol,.2007,14(2):236-42.
    [137]陈嘉生等.新桥矿变异函数结构分析及勘探工程优化[J].金属矿山.2004,10:43-45
    [138]姜立春,陈嘉生.高陡边坡地下水渗流场三维有限元分析及其实例研究[J].湘潭矿业学院学报.2003,18(3):24-28
    [139]姜立春,陈嘉生.新桥矿下盘边坡局部失稳的成因分析[J].矿业研究与开发,2003,23(5):32-33
    [140]宋振骐.实用矿山压力控制[M].中国矿业大学出版社,1988
    [141]周维恒,张强.岩石力学数值计算方法[M].北京:中国电力出版社,2005
    [142]张有天,周维恒.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999
    [143]Louis C.Rock Hydraulics in Rock Mechanics[M].Edited by L. Muller Udine,1974:299-387.
    [144]Lomize G M. Flow in Fractured Rock[M]. Moscow:Gosemergoizdat,1951.
    [145]Amadei B. Illangasekare T A. Mathematical model for flow and solute transport in nonhomogeneous rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences & Goemechanics,1994, 18:719-731
    [146]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(4):133-136
    [147]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报,2003,22(10):1651-1655
    [148]刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律实验研究[J].岩石力学与工程学报,2002,21(8):1194-1198
    [149]Snow D. Rock fracture spacing, openings and porosities [J]. J. Soil Mech. Founda.Div. ASCE,1968,94: 73-91
    [150]左迎辉等.移动荷载下饱和半空间的动力响应[J].岩石力学与工程学报,2005,24(23):4352-4357
    [151]孙宏磊等.移动列车荷载作用下路轨系统及饱和半空间土体动力响应[J].岩石力学与工程学 报,2007,26(8):1705-1712
    [152]基于Betti-Rayleigh动力互易定理求解移动荷载引起的地基土振动[J].岩石力学与工程学报,2009,28(7):1467-1476
    [153]Biot M A. General theory of three-dimensional consolidation[J]. J.Appl. Phys.,1941,12:155-164.
    [154]Cole J D,Huth J H. Stresses produced in a half plane by moving loads[J]. J. Appl. Mech.,1958,20(5):433-436.
    [155]孙广忠,岩体结构力学[M].北京:科学出版社,1988
    [156]孙玉科等.中国露天矿边坡稳定性研究[M].北京:中国科学技术出版社,1999
    [157]朱洪文.应用统计[M].北京:高等教育出版社,2004
    [158]黄仁东,古德生.声波CT层析成像技术在新桥硫铁矿的应用[J].湘潭矿业学院学报,2004,19(1):12-15
    [159]黄仁东金属矿山隐患空区声波层析成像识别及其安全控制技术研究[博士学位论文].长沙:中南大学2005
    [160]姜立春.深凹露天矿高陡边坡失稳安全环境分析及工程控制研究[博士学位论文].长沙:中南大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700