用户名: 密码: 验证码:
连续冷却30CrNi3MoV超高强钢固态相变行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前钢铁工业发展所面临资源和环境的压力越来越大,为保护环境,节约能源和原材料,研究和发展超高强度钢、减轻钢制品重量,提高钢铁产品附加值迫在眉睫。低合金超高强度钢由于成本相对低廉,生产工艺比较简单,因而具有广阔的发展应用前景。30CrNi3MoV钢是在原Cr-Ni-Mo系低合金超高强钢的基础上进行V微合金化,并适当调整其它合金元素含量而发展起来的。为充分发挥V微合金化的强化优势,生产中须配以合理、先进的控轧控冷或热处理工艺,才能使钢的性能得到最大限度的发挥。然而,目前对此钢的实际应用仍采用传统的淬火、回火热处理工艺,这一方面不利用钢材潜能的最大发挥,而且还浪费资源和能源,增加生产成本,不利于其推广应用。钢材先进生产工艺的制定有赖于对钢本身固态相变过程、组织控制的深入研究,以期澄清其相变过程的一般规律。为此,本文采用高精度差分膨胀测量和微观组织分析方法系统研究了30CrNi3MoV钢在连续冷却条件下的组织转变规律,并在此基础上探讨粒状贝氏体的形成机制、贝氏体相变的不完全性、形变热处理对贝氏体相变的影响,以及30CrNi3MoV钢中马氏体相变特征等,取得如下研究成果:
     (1)系统研究了30CrNi3MoV钢连续冷却过程中的相变行为。采用高精度线膨胀仪并结合显微组织分析,澄清了30CrNi3MoV钢以1~2000℃/min连续冷却至室温所发生的组织转变,绘制了过冷奥氏体连续冷却转变曲线(CCT图),并探讨了连续冷却速度对相变产物显微硬度的影响。结果表明:从1℃/min到2000℃/min,30CrNi3MoV钢过冷奥氏体连续冷却转变产物发生“粒状贝氏体→下贝氏体和少量上贝氏体→板条与片状混合马氏体”的逐步过渡;30CrNi3MoV钢的CCT图中没有出现珠光体转变区,只存在贝氏体转变和马氏体转变以及极少的先铁素体析出区;30CrNi3MoV钢发生马氏体相变的临界冷却速度在20~25℃/min之间,该钢具有相当好的淬透性;由于受到马氏体自回火过程引起沉淀强化的影响,30CrNi3MoV钢相变产物的显微硬度并非随冷却速度增大而均匀增大。
     (2)研究了30CrNi3MoV钢中贝氏体相变规律。结果表明:30CrNi3MoV钢过冷奥氏体缓慢冷却至室温,相变产物为Bg1和Bg2两种不同形态的粒状贝氏体,其中Bg1中粒状物分布较稀疏,形状和分布都不规则,而另一种Bg2中的粒状物分布较密集,且沿某一方向平行分布,在透射电镜下形状为短棒状,两者具有不同的形成机制;在连续冷却情况下,30CrNi3MoV钢中贝氏体相变不完全性普遍存在,因相变不完全而残留的奥氏体具有很高的富碳程度,且随冷速增大,富碳程度有所降低;在极缓慢冷却条件下,贝氏体相变后的残余奥氏体不具备进一步相变的驱动力而被永久保留下来,而若冷速足够快,富碳残余奥氏体将在低温区转变为高碳孪晶马氏体,使贝氏体相变呈现停滞现象。
     (3)利用能施加载荷的高精度线膨胀仪,研究了奥氏体未再结晶区变形对30CrNi3MoV钢贝氏体相变特征的影响,结果表明:由于变形使母相奥氏体中储存了较高的形变能,相当于为相变提供了一个额外的机械驱动力,使贝氏体转变所需最小化学驱动力降低,因而经奥氏体形变处理的30CrNi3MoV钢贝氏体相变起始温度Bs显著升高;经奥氏体形变30CrNi3MoV钢在以20℃/min连续冷却至室温后得到的相变产物中新增了少量粒状贝氏体组织;奥氏体区变形使30CrNi3MoV钢中贝氏体条或片尺寸减小、分布位向增多,贝氏体条或片彼此相互交叉,很多还相互穿越,使过冷奥氏体在贝氏体相变过程中表现出更大的稳定性。
     (4)通过对微观亚结构和相变动力学的分析,研究了30CrNi3MoV钢中马氏体相变特征。研究发现:淬火冷却30CrNi3MoV钢的相变产物包括板条状和针状两种马氏体形态,其中针状高碳马氏体发生了一定程度的自回火,析出了多种弥散细小的合金碳化物;30CrNi3MoV钢的马氏体相变过程中发生了碳的重新分配,造成低碳板条马氏体与高碳针状马氏体的形成在相变动力学曲线中截然分开,板条马氏体形成速率远高于针状马氏体。
     (5)研究了奥氏体化过程对30CrNi3MoV钢马氏体相变的影响。结果表明:V微合金化使得30CrNi3MoV钢奥氏体晶粒粗化温度在约1000℃,因此对该钢进行热处理时奥氏体化加热温度不能超过1000℃;在奥氏体化加热过程中,奥氏体化温度会通过以下两方面影响30CrNi3MoV钢Ms点,一是晶粒尺寸和位错缺陷组态,它们决定马氏体相变前母相奥氏体强度,二是碳及合金元素溶入奥氏体的程度,这两方面综合作用使得Ms点随奥氏体化温度升高先上升,后又随之下降;奥氏体化保温时间对30CrNi3MoV钢奥氏体晶粒尺寸长大的影响远不如奥氏体化温度那样显著,在900℃的奥氏体化的温度下延长保温时间并不能造成晶粒尺寸的粗化;30CrNi3MoV钢Ms点随奥氏体化保温时间的延长而单调升高,但Ms点的变化受到晶粒尺寸和奥氏体中位错缺陷组态双方面影响,致使Ms点并非随奥氏体晶粒尺寸长大而均匀升高。
The 30CrNi3MoV steel is a microalloyed Cr-Ni-Mo ultra-high strength steel by vanadium addition. The phase transformation behavior from the undercooled austenite in continuously-cooled 30CrNi3MoV steel was systematically studied by means of high-resolution dilatometric measurements and microstructural analysis. The formation mechanism of granular bainite, incompleteness phenomenon of bainitic transformation, effect of thermo-mechanical treatment on bainite transformation and the characteristics of martensitic transformation in 30CrNi3MoV steel were investigated, the conclusions were as follows:
     (1) The transformation behavior of 30CrNi3MoV steel in the process of continuous cooling from the austenite was systematically investigated. All the possible transformations in the experimental steel cooled at 1 ~ 2000℃/min were clarified, and the corresponding CCT diagram was constructed. It shows that the transformation products from the austenite of 30CrNi3MoV steel evolves as“granular bainite→low bainite plus a small amount of upper bainite→lath martensite and acicular martensite”with the increase of the applied cooling rate from 1 to 2000℃/min. In the CCT diagram, no pearlite transformation was detected in the explored 30CrNi3MoV steel except for forming bainite, martensite and a little pre-eutectoid ferrite. The critical cooling rate for the martensite transformation is in the range of 20~25℃/min.
     (2) Two kinds of granular bainites (named as Bg1 and Bg2, respectively) were formed in the investigated 30CrNi3MoV steel with slow cooling from the high-temperature austenite field at rates from 1 to 5 oC/min. All secondary particles existing in the Bg1 tend to be irregular, which results from the formation and growth of ferrite in an equiaxed way from carbon-poor austenite areas. Granules in the Bg2 are parallel to each other at some preferred orientations, and the massive matrix form by merging of the ferritic laths. Incomplete bainite transformation phenomenon occurs generally in the continuously-cooled 30CrNi3MoV steel, leading to the formation of small carbon-rich retained austenite region after the completion of bainite transformation.
     (3) The deformation of austenite in the un-recrystallizing stage has remarkable influence on the characteristics of bainitic transformation in the explored 30CrNi3MoV steel. The Bs temperature of the 30CrNi3MoV steel with deformation in austenite increased greatly due to the additional transformation driving force from the high storaged energy in deformed austenite. The size of bainite laths in the 30CrNi3MoV steel decreased remarkably with the deformation in austenite, and their distribution exhibit more orientations.
     (4) The martensitic transformation in the explored 30CrNi3MoV steel was investigated through kinetic analysis and the microstructure observation in this part. There are two kinds of martensite with different morphology in the quenched 30CrNi3MoV steel, that is, lath martensite and plate martensite. Redistribution of carbon atoms occurred in the process of martensite transformation in the 30CrNi3MoV steel, which results in the detachment between the formation of lath martensite and plate martensite on the kinetic curve of martensite transformation.
     (5) The size of the austenite grains begin to coarsen when the austenization temperature exceeding 1000℃. The Ms temperature of the 30CrNi3MoV steel increases with the increasing austenization temperature when lower than 950℃, but begins to decrease below that. The great increase of austenization holding time at 900℃will not lead to the obvious growth of the austenite grains. The Ms temperature of the 30CrNi3MoV steel increases remarkably with the extension of holding time at austenzation temperature, but do not increase homogeneously with the increasing grain size of the austenite obtained by holding different time.
引文
[1]牧正志,从微观组织世界看钢铁材料的魅力,热处理,2005,20(1):7-14
    [2]翁宇庆,中国钢铁材料发展现状及迈入新世纪的对策,钢铁, 2001, 36(10): 1-5
    [3]翁宇庆,超细晶钢——钢的组织细化理论与控制技术,北京:冶金工业出版社, 2003, 41
    [4]徐祖耀,我国应尽早发展高强度钢,中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告,薛群基主编,会议论文集,北京:化学工业出版社,2007,403—406
    [5] Y.X. Li, Z.Q. Lin, A.Q. Jiang, et al, Use of high strength steel sheet for lightweight and crashworthy car body, Materials and Design, 2003, 24: 177-182
    [6]朱文英,汽车轻量化与高强度钢板的开发进展,上海金属,2003,25(3):11-15
    [7] G. Buzzichelli, E. Anelli, Present status and perspectives of european research in the field of advanced structural steels, ISIJ International, 2002, 42(12): 1354-1363
    [8]姚贵升,抗延迟断裂性能优良的超高强度螺栓用钢,汽车工艺与材料, 2004,5: 7-10
    [9] C. Cordon, J. Robin, G. Rocheleau, Advanced high strength steel outer body panels in Ford Mustang[EB/OL], http://www.autosteel, org,2003
    [10] K. Alex A, Advanced high strength steels Formability [DB/UL], http://www.autosteel, org, 2003
    [11]万筱如,许昌淦等,高强度和超高强度钢,北京:机械工业出版社,1988,35
    [12]孙强,周重光,袁书强等,超高强度钢研究进展及其在军事上的应用,材料导报网刊,2006,(3): 14-16
    [13] Y. Tomita, Development of fracture toughness of ultra-high strength medium carbon low alloy for aerospace applications, International Materials Reviews, 2000, 45(1): 27-37
    [14] G. Krauss, Deformation and fracture in martensitic carbon steels tempered at low temperatures, Metall. Mater. Trans. A, 2001, 32(4): 861-877
    [15] N.G. Pokrovskaya, A. F. Petrakov and A. B. Shalkevich, Modern high-strength structural steels for aircraft engineering, Metal Science and Heat Treatment, 2002, 44(11): 520-524
    [16]刘宪民,王春旭,超高强度结构钢的历史及发展,钢铁,2001,36(增刊): 109-114
    [17]贾建军,成守权,谷臣清,新型D6ACL超高强度钢预应变淬火组织超细化研究,热加工工艺,2003,(2):19-21
    [18]杨超,田时雨,装甲钢动态性能与抗弹性能关系研究,兵器材料科学与工程,2002,25(1):3-7
    [19]范长刚,董瀚,雍岐龙等,低合金超高强度钢的研究进展,机械工程材料,2006,30(8):1-4
    [20]姜越等,超高强度马氏体时效钢的发展,特殊钢,2004,25(2): 1-5
    [21]徐祖耀,自主创新发展超高强度钢,上海金属,2009,31(2):1-6
    [22]杨柯等,真空冶金材料研究的部分新进展,真空,2004,41(3):9-14
    [23]刘振宝等,时效对超高强马氏体时效不锈钥组织与性能的影响闭,材料热处理学报,2005,26(4):52-58
    [24] G.R. Speich, D.S. Dabkowski, L.F. Porter, Strength and toughness of Fe-10Ni alloys containing C, Co, Mo and Cr, Metall. Trans., 1973, 4(1): 303-315
    [25] D.S. Dabkowski, Nickel, cobalt, chromium, steel, USA Patent: 3,502,462, 1970
    [26] P.M. Machmeier, C.D. Little, M.H. Horowitz, R.P. Oates, Development of a strong martensitic steel having good fracture toughness, Met. Technol., 1979: 291
    [27]万筱如,新型高合金二次硬化超高强度钢的发展,材料工程,1994,11:1001
    [28] J.M. Dahl, P.M. Novotny, Airframe and landing gear alloy, Advanced Materials & processes, 1999,(3): 23-25
    [29]钟平,Co-Ni超高强度钢的组织与性能,航空材料学报,2003,23: 14-16
    [30]徐祖耀,钢的组织控制与设计,上海金属,2007,29(1): 1-8,29(2):1-8
    [31] T.Y.Hsu, Design of structure, composition and heat treatment process for high strength steel, Invited paper, Pacific Rim Inter. Conf. Advanced Materials and Processing, 2007, Korea, Phase Transformation Session, Mater. Sci. Forum, 2007, 561-565: 2283-2286
    [32] J.G. Speer, D.K. Matlock, B.C. DeCooman, J.G. Schroch, Carbon partitioning into austenite after martensite transformation, Acta Mater., 2003, 51: 2611-2622
    [33]徐祖耀,钢热处理的新工艺,热处理,2007,22(1):1-11
    [34]徐祖耀,用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺,2008,23(2):1-5
    [35]俞德刚,谈育煦,钢的组织强度学,上海:上海科学技术出版社,1983,1-2
    [36] E.O. Hall, The deformation and ageing of mild steel:Ⅲdiscussion of results, Proc. Phys. Soc. Ser. B, 1951, 64: 747-753
    [37]雍岐龙,马鸣图,微合金钢—物理和力学冶金,北京:机械工业出版社,1989,65
    [38]孟繁茂,铌、钒、钛在特殊钢中的应用,微合金化技术,2001,1(1):28-33
    [39]徐祖耀,贝氏体相变简介,热处理,2006,21(2): 1-20
    [40] R. F. Mehl. Hardenability of Alloy Steels, ASM, Cleveland, Ohio, USA 1939, 1
    [41]方鸿生,王家军,杨志刚等,贝氏体相变,北京:科学出版社,1999:1-58
    [42] L.J. Habraken, Proceedings of the fourth International Conference on Electron Microscopy, Springer-Verlag, Berlin, 1958: 621-628
    [43]方鸿生,一种新的复相组织—仿晶界型铁素体/粒状贝氏体,金属热处理,2000(11):1-5
    [44]方鸿生,刘东雨,徐平光等,贝氏体钢的强韧化途径,机械工程材料,2001,25(6):1-6
    [45]王福明,李景慧,粒状贝氏体的形貌分析,金属热处理学报,1991,12(3):23-29
    [46]柴锋,杨才福,张永权,粒状贝氏体对超低碳含铜时效钢粗晶热影响区冲击韧性的影响,钢铁研究学报,2005,11(1):42-46
    [47]张明星,康沫狂,粒状贝氏体和粒状组织强韧化机制的研究,钢铁,1993,28(9):51-55
    [48] T. Lyman and A.R. Troiano, Trans. ASM, 1946, 37: 402-448
    [49]徐祖耀,刘世楷,贝氏体相变与贝氏体,北京:科学出版社,1991,32-55
    [50]俞德刚,王世道,贝氏体相变理论,上海:上海交通大学出版社,1998: 1-42
    [51] H.K.D.H. Bhadeshia, Nanostructured bainite,Mater. Sci. Eng. A, 1999, A273-275: 58-66
    [52] B.P.J Sandvik, The Bainite reaction in Fe-Si-C Alloys: The primary stage,Metall. Trans. A, 1982, 13A: 777-787
    [53]俞德刚,陈大军,郑经纮等,低中碳合金钢贝氏体铁素体的相变基元及其表面浮雕,金属学报,1988,(6):6-12
    [54] M.K. Kang, High-temperature transmission electron microscopy in situ study of lower bainite precipitation, Metall. Trans. A, 1990, (21): 853-858
    [55] H.I. Aaronson, J.M. Rigsbee, B.C. Muddle, Aspects of the surface relief definition of bainite,Scripta Mater., 2002, 47: 207-212
    [56] J.P. Hirth, G. Spanos, M.G. Hall, H.I. Aaronson, Mechanisms for the development of tent-shaped and invariant-plane-strain-type surface reliefs for plates formed during diffusional phase transformations, Acta Mater.,1998, 46: 857-868
    [57]徐祖耀,顾文桂,俞学节,贝氏体中的巨型台阶和碳化物,金属学报, 1983, 19(1):A12-A17
    [58] H.I. Aaronson,The mechanism of phase transformation in crystalline solids, Inst. Metals Monograph, 1969, 33: 220-227
    [59] T. Ko, S.A. Cottrell,The formation of bainite, ISIJ Trans., 1952, 30: 307-313
    [60]康沫狂,杨思品,钢中贝氏体,上海:上海科学技术出版社,1990
    [61]李承基,贝氏体相变理论,北京:机械工业出版社,1995
    [62]刘宗昌,任慧平,过冷奥氏体扩散型相变,北京:科学出版社,2007:258-307
    [63]刘宗昌,王海燕,任慧平,贝氏体铁素体形成机理求索,材料热处理学报,2007,28(1):53-58
    [64]方鸿生,邓海金,低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性,机械工程材料,1981,5(1):5-14
    [65]陈颜堂,白秉哲,方鸿生,中低碳空冷贝氏体钢的冲击磨损性能,钢铁研究学报,2001,13(3):40-43
    [66] F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, Very strong low temperature bainite, Materials Science Technolgy, 2002,18: 279-284
    [67] F. Abe, Bainitic and martensitic creep-resistant steels, Current Opinion in Solid State and Materials Science, 2004, 8: 305-311
    [68]徐平光,白秉哲,方鸿生,高强度低合金中厚钢板的现状与发展,机械工程材料,2001, 25(2):4-8
    [69]齐俊杰,黄运华,张跃,微合金化钢,北京:冶金工业出版社,2006:1-5
    [70] M. Korchynsky, Proceedings of Microalloying 1975, New York, Union Carbide Corp., 1977
    [71]东涛,付俊岩,试论我国钢的微合金化发展方向,中国冶金,2002,5: 16-19
    [72]翁宇庆,超细晶钢—钢的组织细化理论与控制技术,北京:冶金工业出版社,2003,10-26
    [73]王占学,控制轧制与控制冷却,北京:冶金工业出版社,1991,14-38
    [74] S. Floreen, Physical metallurgy of maraging steels,Metal1.Rev., 1968, 13B: 115-128
    [75]陈克明,苏杰,李荣等,无钴二次硬化超高强度钢合金设计,钢铁,2000,35(8): 42-46
    [76] P.M. Machmeier,C.D. Little,M.H. Horowitz,et a1.Development of a strong martensitic steel having good fracture toughness, Met. Techno1., 1979,291-296
    [77] A. Raghavan,P.M. Maehmeier, Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels, Metal1.Mater.Trans.A,1996,27A: 2510-2518
    [78] J.L. Marshall, J. Calderon, Hard-particle reinforced composite solders, Part1: microcharacterisation, Soldering and Surface Mount Technology, 1997, 9(2): 22-28
    [79]陈铭谟,贝氏体的转变机制和高强度贝氏体钢,北京:国防工业出版社,1989,90-106
    [80]范长刚,董瀚,时捷等,镍含量对2200MPa级超高强度钢力学性能的影响,金属热处理,2007,32(2):16-19
    [81] H.C.Chen, Y.S.Hwang, L. Chang, Effect of alloying elements on mechanical properties of high-strength cold-rolled steels, China Steel Technical Reports, 1996,(10): 32-42
    [82] C.N. Sastry, R. Padmanabhan, D. Dilipkumar, et al, Achieving optimum properties in ultrahigh-strength low-alloy steel, Metals Technology, 1981, 8: 454-457
    [83] W.S. Lee, T.T. Su, Mechanical properties and microstructural feature of AISI 4340 high- strength alloy steel under quenched and tempered conditions, J. Mater. Proc. Technol., 1999, 87: 198-206
    [84]尹志新,新型超高强度钢在高速强冲击载荷作用下的损伤及其细化后的疲劳行为,东北大学博士论文,2002
    [85]杨超,田时雨,装甲钢动态性能与抗弹性能关系研究,兵器材料科学与工程,2002, 25(1): 3-7
    [86] P.K. Jena, K. Siva Kumar, V. Rama Krishna, Studies on the role of microstructure on performance of a high strength armour steel, Engineering Failure Analysis, 2008, 15: 1088-1096
    [87]范长刚,董瀚,时捷,低合金超高强度钢的绝热剪切带分析研究,兵器材料科学与工程,2006,29(4): 30-33
    [88] Kasonde Maweja, Waldo Stumpf, Fracture and ballistic-induced phase transformation in tempered martensitic low-carbon armour steels,Materials Science and Engineering A, 2006, 432: 158–169
    [89]时捷,董瀚,王琪,刘燕林,硬度对装甲钢板抗弹性能的影响,钢铁研究学报,2000,12(3):36-41
    [90]范爱国译,钢装甲,兵器材料科学与工程,2001,6:29
    [91] M. Jahazi, B. Egbali, The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel, Journal of Materials Processing Technology, 2000, 103(2): 276-279
    [92] C. Xu, Q. Sun, X.Q. Chen, Research on transformation mechanism and microstructure evolution rule of vanadium-nitrogen microalloyed steels, Materials and Design, 2007, 28(9): 2523-2527
    [93] S. Shanmugam, N.K. Ramisetti, R.D.K. Misa, et al., Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels, Materials Science and Engineering A, 2007, 460–461: 335–343
    [94]尚成嘉,胡良均,杨善武,低碳微合金钢中针状铁素的形成与控制,金属学报,2005,41(5): 471-476
    [95]高宽,王六定,朱明等,低合金超高强度贝氏体钢的晶粒细化与韧性提高,金属学报,2007, 43(3):315-320
    [96] A. Ghosh, S. Das, S. Chatterjee, et al., Effect of cooling rate on structure and properties of an ultra-low carbon HSLA-100 grade steel, Materials Characterization,2006,56: 59–65
    [97]孙珍宝,朱谱藩,林慧国,合金钢手册,北京:冶金工业出版社,1991
    [98]万悠如,许昌淦,高强度及超高强度钢,机械工业出版社,1988
    [99]吕广庶,张远明,工程材料及成型技术基础,北京高等教育出版社,2001, 123
    [100]张世中,钢的过冷奥氏体转变曲线图集,北京:冶金工业出版社,1993,1-10
    [101] Y. C. Liu, F. Sommer, E.J. Mittemeijer, Abnormal austenite ferrite transformation behaviour in substitute Fe-base alloys, Acta Mater, 2003, 51(2): 507-519
    [102]林慧国,傅代直,钢的奥氏体转变曲线-原理、测试与应用,北京:机械工业出版社,1988,258-270
    [103]姚可夫,钱滨,石伟等,马氏体回火过程中组织转变量预测的实验研究,金属学报,2003,39:892-896
    [104]周维海,王存宇,付瑞东,一种显示铬钼钒钢奥氏体晶界的方法,理化检验-物理分册,2005,41(5):265-270
    [105]上海交通大学金相分析组,金相分析,北京:国防工业出版社,1982,38-40
    [106]范雄,金属X射线学,北京:机械工业出版社,1989,73-74
    [107] S. Liu, G. Liu,Y. Zhong, Transformation characteristics of medium carbon V-Ti-N microalloyed steel for non-quenched/tempered oil well tubes, Mater. Sci. Technol., 2004, 20: 357-362
    [108]范长刚,马鸣图,瓮宇庆等,中碳铬-镍-钼钢的超高强度和超低屈强比现象,机械工程材料,2006,30(8):48-51
    [109] K. Maweja, W. Stumpf,The design of advanced performance high strength low-carbon martensitic armour steels Microstructural considerations ,Materials Science and Engineering A,2008,480: 160-166
    [110] S. Maropoulos, S. Karagiannis, N. Ridley,The effect of austenitising temperature on prior austenite grain size in a low-alloy steel,Materials Science and Engineering A, 2008,483–484: 735–739
    [111]徐祖耀,马氏体相变与马氏体(第二版),北京:科学出版社,1999,16-39
    [112]林慧国,傅代直,钢的奥氏体转变曲线-原理、测试与应用,北京:机械工业出版社,1988,100-108
    [113]孙珍宝,合金钢手册,北京:冶金工业出版社,1984,686
    [114] E. Mazancováand K. Mazanec, Physical metallurgy characteristics of the M/A constituent formation in granular bainite, Journal of Materials Processing Technology, 1997, 64(1-3): 287-292
    [115]杨延清,陈彦,康沫狂,准贝氏体组织及新型系列准贝氏体钢,特殊钢,1999,4,35-37
    [116]张永权,张荣久,苏航,李丽,粒状贝氏体对10MnNiCr微合金钢力学性能的影响,钢铁,2003,11:45-47,39
    [117] I.A. Yakubtsov, P. Poruks, J.D. Boyd,Microstructure and mechanical properties of bainitic low carbon high strength plate steels, Materials Science and Engineering A,2008, 480: 109-116
    [118] F.G. Caballero, H.K.D.H. Bhadeshia, D.H. Maqella, et al, Design of novel high strength bainite steels, Materials and science technology, 2001, 17: 512-522
    [119]徐祖耀,刘世楷,贝氏体相变与贝氏体,北京:科学出版社,1991,181-182
    [120] H.K.D.H. Bhadeshia, Bainite: Overall transformation kinetics, J De Phy., 1982, C4: 443-448.
    [121] W. T. Reynolds, S. K. Liu, F. Z. Li, et al., An investigation of the generality of incomplete transformation to bainite in Fe-C-X alloys, Metall, Trans, 1990,21A:1479-1491
    [122] Y.K. Lee, H. C. Shin, Y.C. Jang, et al., Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe–3%Si–0.45%C–X steel, Scripta Mater. 2002,12: 805-809
    [123] H.A. Fletcher, A.J. Garratt-Reed, H.I. Aaronson, et al., A STEM method for investigating alloying element accumulation at austenite–ferrite boundaries in an Fe–C–Mo alloy, Scripta Mater., 2001, 45: 561-567
    [124] E. V. Pereloma, I. B. Timokhina, M. K. Miller, et al., Acta Mater., Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels, 2007, 55(8): 2587-2598
    [125] H.K.D.H. Bhadeshia, A. R. Waugh,Bainite: an atom-probe study of the incomplete reaction phenomenon, Acta metall et mater, 1982, 4: 775-784
    [126] J. W. Christian, D. V. Edmonds, Proceedings of an International Conference on Phase Transformations in Ferrous Alloys, AIME, 1984, 293
    [127] M. Hillert, Pro. Int Conf. on Solid to Solid Phase Transformations, TMS-AIME, New York, 1982,789
    [128] I. Stark, G.D.W. Smith, H.K.D.H. Bhadeshia, The distribution of substitutional alloying elements during the bainite transformation , Metall. Trans. A, 1990, 21A: 837-844
    [129] G.R. Purdy, M. Hillert, A solute drag treatment of the effect of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Metall Mater, 1995, 43(10): 3763-3774
    [130]徐祖耀,马氏体相变与马氏体(第二版),北京:科学出版社,1999,159-170
    [131]徐祖耀,刘世楷,贝氏体相变与贝氏体,北京:科学出版社,1991,198
    [132] V.M. Khlestov, EV. Komopleva and H.J.McQueen, Kinetics of austenite transformation during thermomechanical processes, Can. Metall. Quart., 1998(37):75-89
    [133] F. Boratto, R. Barbosa, S. Yue and J. J. Jonas, Proc. Of Int. Conf. On Phys. Metall. Of Thermomechanical Processing of Steels and Other Metals (Thermec-88), June 1988, ISIJ, Tokyo, Japan: 383-390
    [134]胡光立,谢希文,钢的热处理(原理和工艺),西安:西北工业大学出版社,1993,33-126
    [135]赵四新,王巍,毛大立,钢中贝氏体研究新进展,材料热处理学报,2006,27(4):1-6
    [136] M. Saeglitz, G. Krauss, Deformation, fracture, and mechanical properties of low- temperature - tempered martensite in SAE 43xxsteels, Metallurgical and Materials Transactions A, 1997, 28A(2): 377- 387
    [137]范长刚,董瀚,时捷等,2200 MPa级超高强度低合金钢的组织和力学性能,兵器材料科学与工程,2006,29(2):31-34
    [138] G.R. Speich, W.C. Leslie, Metall. Trans. B,Tempering of steel, 1972(3): 1043-1054
    [139]徐祖耀,Fe-C合金马氏体相变热力学,金属学报, 1979(15):329-338
    [140]刘云旭,金属热处理原理,北京,机械工业出版社,1981,111
    [141]徐祖耀,低碳钢中的残余奥氏体,上海金属, 1995,17(1):1-6
    [142]徐祖耀,李学敏,低碳马氏体形成时碳的扩散,金属学报,1983,19(2):A83-A88
    [143] C.S. Lee, K.A. Lee, D.M. Li,et al., Microstructural influence on fatigue properties of a high-strength spring steel Mater. Sci. Eng. A, 1998, 241: 30–37
    [144] Tither, G,The Development and Applications of Niobium-Containing HSLA Steels,HSLA Steels: Processing, Properties and Applications,1990,28(2):61-68
    [145] C.L. Davis, M. Strangwood, Preliminary study of the inhomogeneous precipitate distributions in Nb-microalloyed plate steels, J. Mater. Sci., 2002, 37: 1083–1090
    [146] W.J. Nam, C.S. Lee, D.Y. Ban, Effects of alloy additions and tempering temperature on the sag resistance of Si–Cr spring steels, Mater.,Sci. Eng. A 289 (2000) 8–17
    [147] S. Suzuki, G.C. Weatherly, D.C. Houghton, The response of carbonitride particles in HSLA steels to weld thermal cycles, Acta Metal,1987, 35: 341-351
    [148]齐俊杰,黄运华,张跃,微合金化钢,北京:冶金工业出版社,2006:78-78
    [149] T. Gladman, Metallurgical developments in carbon steels, Special Report 81, ISI, London, 1963: 68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700