用户名: 密码: 验证码:
磁场、雾化共同作用下电晕放电机理及对微小颗粒荷电与捕集的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁场雾化电晕放电技术是一种新式的电晕放电技术,在粉尘去除方面有独特的优势,不仅免清洗,而且效率高,在粘性粉尘去除方面有良好的应用前景。本课题研究了磁场电晕放电、雾化电晕放电和磁场雾化电晕放电的放电特性以及荷电特性,为磁场雾化电晕放电荷电器和磁场雾化电晕放电除尘器的实际应用奠定了理论基础。
     本课题的主要研究内容和结论如下:
     1)将磁场作用下的电晕放电和雾化电晕放电有效的结合在一起,设计了一种新式的荷电器。这种荷电器不但可以避免粘性粉尘的粘附,而且通过其对粉尘荷电后,更有利于静电捕集器捕捉细小的粉尘,为进一步设计更先进的去除粘性粉尘的装置提供了参考。
     2)研究了磁场作用下电晕放电的放电特性,指出了电流的变化规律。磁场负电晕放电中,放电电流的增长可能是因为磁场使自由电子发生偏转或者拉莫运动,增加了自由电子和空气分子的碰撞次数,但放电电流的增长仅仅是电晕区内电离过程的增强,和极间非电晕区自由电子和负离子的偏转无关。放电电流的增长主要是由两个因素决定,第一个是电晕区内自由电子和空气分子的碰撞次数,第二个是电晕区内电子的平均能量。随着电场或磁场的变化碰撞次数和自由电子的平均能量向不同的两个方向变化,所以放电电流的相对增长存在一个最大值。磁场影响下的电晕放电对静电除尘器而言,当极间平均电场强度是4 kV/cm时,使电晕区内的平均磁场强度在0.43T左右,电晕放电电流的相对增长最大,此时电除尘器的效率最高。
     3)研究了磁场作用下电晕放电荷电机理。利用磁场电晕放电预荷电器和传统预荷电器分别对细小粉尘进行荷电,然后利用静电捕集器进行捕集,结果表明磁场电晕放电更适合用于对细小粉尘的荷电。我们推断磁场电晕放电荷电机理可能是磁场的应用增加了荷电区负离子浓度。负离子浓度的提高对扩散荷电有利,从而有利于提高去除细小粉尘的效率。因此,说明磁场电晕放电预荷电器对细小粉尘的荷电能力要高于传统的电晕放电。
     4)对接地极雾化正负电晕放电进行了比较。接地极雾化电晕放电中,正电晕放电中存在电晕区扩大的现象,而负电晕放电中却不存在这种现象。原因是在接地极雾化负电晕放电中,由于负电晕放电可以形成稳定的特里切利脉冲放电模式,在电压突增之后,迅速的降低,这种放电模式限制了能量的连续输入,所以抑制了电晕区的扩展。而接地极雾化正电晕放电的多锥射流与平行板间形成的放电类似传统针-板式正电晕放电,这种放电容易形成稳定的辉光放电。在接地极雾化电晕放电中,由于电离得到了一定程度的提升,所以电晕区附近的空间电荷对电场的影响增强了。初步分析了接地极雾化电晕放电的电场分布。另外,在接地极雾化电晕放电中,流量要适当。分析了流量对电流和雾化液滴的影响。通过实验我们知道适当的流量有利于起晕电压的降低,流量过大则起晕电压随之增加。当流量恰当时,在接地极雾化电晕放电钟,液滴粒径分布以数十微米的为主。
     5)研究了磁场、雾化二者共同作用于电晕放电时的相互影响。磁场雾化电晕放电电流增加的可能原因是磁场的应用使自由电子和空气分子以及水分子的碰撞次数增加,而且水分子的电离能小于空气分子,所以更容易被电离;也有可能是磁场的应用使电晕区的放电通道发生扭曲,使整个电晕区的密度更加均匀,导致电离碰撞的效率被提高。另外,泰勒锥减小了两极之间的距离,并且泰勒锥尖端的曲率小于放电极曲率半径,所以在磁场和雾化的作用下,放电电流得到了大幅度的提升,而起晕电压则因为空间电荷的影响和放电极曲率的影响降低了。分析了固定磁场强度下,不同流量对放电影响。初步分析了磁场雾化电晕放电的电场分布,磁场雾化电晕放电的电场分布和传统电晕放电电场的分布一致,只是在磁场雾化电晕放电中空间电荷的浓度更大,对外加电场的影响增加了。
     6)磁场雾化电晕放电荷电器作用下,静电捕集器的效率高于磁场、雾化单独作用下荷电器的荷电效果。分析原因可能是磁场雾化的双重效果增加了极间电荷浓度,另外,液滴可能对粉尘粒子的捕集起辅助作用。在磁场雾化负电晕放电中,在电晕区内空间电荷积累的量大于其他几种放电方式,在荷电区内空间电荷形成的电场与原来电场方向相反,降低了负离子和液滴的迁移速度,所以进一步的增加了荷电区内负离子和带电液滴的浓度,因此,在四种荷电器中,磁场雾化电晕放电荷电器的荷电效率最高。
     7)利用密立根油滴仪测量较小液滴的荷电量和粒径,并根据液滴带电量与粒径分布的情况,初步分析了雾化电晕放电与磁场雾化电晕放电的荷电机理。
Magnetic field corona discharge with spraying water is a new-style technique, which has a particular advantage in capturing aerosol particles. This technique is promising for electrostatic precipitators because of its high efficiency and no-clean property. In the current study, both discharging and charging characteristics of magnetic field corona discharges, corona discharge with spraying and magnetic field corona discharge with spraying water were studied and compared. So the theoretical foundation of applying the technique of magnetic field corona discharge with spraying water in pre-chargers and electrostatic precipitators were established.
     The research contents and conclusions are as follows:
     1) The magnetic field corona discharges and corona discharges with spraying water were effectively combined, and a new-style pre-charger was designed. This new-style pre-charger can not only avoid conglutinations of glutinous aerosol particles, but also it is useful for electrostatic capturer to further capture fine aerosol particles after the dusts are charged by this pre-charger. This could provide helpful reference for the future design of more advanced devices in capturing glutinous aerosol particles.
     2) The discharge characteristics of magnetic field corona discharges were studied and the variations in current were revealed. In the magnetic field negative corona discharges, the corona discharge current was enhanced perhaps because the collisions between the gas molecules and free electrons increased in the ionization region due to the Larmor movements or deflexions of free electrons. It is assumed that the increase of the discharge currents only attributes to the enhanced ionization process in the small ionization region, but is not relevant to the lengthening trajectory of free electrons in the inter-electrode non-corona region. On the whole, the increase of the discharge current is mainly determined by two factors: (1) The collision number between the free electrons and the gas molecules in the ionization region; and (2) The mean energy of free electrons. The relative increase of collision number as well as the mean energy of free electrons changes along the two opposite directions with the changing magnetic field or electric field. Therefore, the relative increase of corona discharge current could achieve a maximum value. For the electrostatic precipitators with magnetic field corona discharges, the relative increase of the discharge current could attain the maximum value when the using magnetic field is about 0.43T and the mean electric field intensity is 4 kV/cm. And at the same time the electrostatic precipitators also achieve the highest efficiency.
     3) The charging mechanism of corona discharges was studied under magnetic field. The electrostatic capturer was used to capture aerosol particles after the dusts were respectively charged by magnetic field corona discharge pre-charger and conventional pre-charger. The results showed that it is adaptive for magnetic field corona discharge to charging fine dusts. According to this, the charging mechanism could be analyzed and revealed. When the magnetic field is used, the concentration of negative ions increases, which is favorable for diffusion charging. As a result, the capture efficiency is enhanced. So the capability for charging aerosol particles of magnetic field corona discharges was better than that of conventional pre-chargers.
     4) The comparative researches on both positive- and negative- earthed atomizing corona discharges were carried out. In the atomizing positive corona discharge, the volume of corona region expanded. But the similar phenomenon has not occurred in the atomizing negative corona discharge. The reason is that steady Trichel pulses was formed in negative corona discharge, so the voltage at first increased sharply, and then reduced quickly. As a result, both the energy input and expanding of ionization region were restrained due to this discharge mode. On the contrary, steady glow discharges could be formed in conventional needle-plate corona discharges, because the discharge configuration was formed between the numerous cone-jet mode and plate electrode, which was similar to needle-plate configuration. In the atomizing corona discharge, the influence of space charges on electric field was enhanced near the corona region because of the enhanced ionization. The distribution of electric field was primarily analyzed in the atomizing corona discharge. Otherwise, the proper flux is essential. The influences of flux on both currents and atomizing drips were analyzed. The corona starting voltage decreased when the proper flux was used, but increased when the excessive flux was selected. Given the proper flux, the drips of several tens microns were dominated in granulometric distribution.
     5)The mutual influences between magnetic field and electric field were studied when both magnetic field and electric field were used in corona discharges. The reason why the discharge currents were enhanced is that the collision numbers increase between free electrons and air molecules or water molecules, moreover, the ionization of water molecules is easier than air molecules because the ionization energy of water molecules is lower than that of air molecules. Another possible reason for the currents increasing is the distortion of discharge alleyway of corona plasma when the magnetic field was applied. When the magnetic field was used, the entire corona plasma is more uniform. So the efficiency of ionization collisions was enhanced. Otherwise, the interelectrode distance was decreased because of the thaler tapers, and the curvature radius of thaler tapers was smaller than that of the discharge electrode. Therefore, the discharge currents were obviously enhanced. But the corona starting voltage decreased because of the influences of both space charges and curvature radius of discharge electrode. The influences of flux on discharges were analyzed when the magnetic field was fixed. And the electric field distribution was primary analyzed in the magnetic field corona discharge with spraying water. The electric field distribution was consistent with conventional corona discharges, except that the concentration of space charges was thicker and the influence of space charges was enhanced.
     6)The efficiency of electrostatic capturer was higher when magnetic field corona discharges with spraying water was used than only magnetic field or atomizing water was applied. The possible reason is the increasing concentration of interelectrode space charges benefit from magnetic field and atomizing water. In addition, water drips might be assistant action for capturing dusts. In magnetic field negative-corona discharges with spraying water, the accumulated space charges were larger than the other discharge mode and the space charges electric field is contrary to the original electric field, so the moving speed of negative ions and electrification drips in the charging region were decreased, in contrast, the concentrations of negative ions and electrification drips were increased. Therefore, the charging efficiency of magnetic field corona discharges is highest among the four pre-chargers.
     7)The diameters and charging quantity of small drips were measured. And based on the charging quantity of drips and granulometric distribution, the charging mechanisms of the magnetic field corona discharges with spraying water and the corona discharges with spraying were primarily analyzed.
引文
[1]向晓东.现代电除尘理论与技术[M].北京:冶金工业出版社,2002. 67-68.
    [2]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002. 117-132.
    [3]向晓东.现代除尘理论和技术[M].北京:冶金工业出版社,2002. 22-24.
    [4]解广润,陈慈萱.高压静电除尘[M].北京:水利电力出版社,1993.1-2.
    [5]赵承美,孙俊民,邓寅生等.燃煤飞灰中细颗粒物(PM2.5)的物理化学特性[J].环境科学研究,2004,17(2):71-75.
    [6] Xu D, Sheng L, Zhai J, et al. Positive short pulse corona discharge charging of aerosol particles [J]. Jpn. J. Appl. Phys., 2003, 42: 1766–1769.
    [7]黄钊,邓启红,蔡慧煊.线管式静电除尘器性能研究[J].建筑热能通风空调,2007,26(3):95-103
    [8]徐哲谆,方正瑚.粉尘对线板式电除尘器电场分布的影响[J].浙江大学学报,1994,28(3):290-296
    [9]王英刚,郑双忠.宽间距长芒刺静电除尘器性能实验研究[J].沈阳工业学院学报,2000,19(2):69-72
    [10]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996. 248-253
    [11] Pauthenier M.M., Moreau-Hanot. Charging of spherical particles in an ionizing field [J]. J. Phys. Radium, 1932, 7 :590–613.
    [12]涂虬,向晓东.静电增强颗粒层除尘器除尘效率的理论与实验研究[J].环境工程, 2001,12:22-27.
    [13] Liu B.Y.H., Pui D.Y.H.. On unipolar diffusion charging of aerosols in the con-tinuum regime [J]. J. Colloid Interface Sci., 1977, 58: 142–149.
    [14] Hussin A., Scheibel H.G., Becker K.H., et al. Bipolar diffusion charging of aerosol particles– I: experimental results within the diameter range 4–30 nm [J]. J. Aerosol Sci., 1983:14 671–677.
    [15] Adachi M., Kousaka Y., Okuyama K.. Unipolar and bipolar diffusion charging of ultra-fine aerosol particles [J]. J. Aerosol Sci., 1985, 16 :109–123..
    [16] Wiedensohler A., Fissan H.J.. Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen [J]. Aerosol Sci. Technol., 1991, 14: 358–364.
    [17] Liu B.Y.H., Kapadia A.. Combined field and diffusion charging of aerosol particles in the continuum regime [J]. J. Aerosol Sci., 1978, 9 : 227–242.
    [18] Reischl G.P., Makela J.M., Karch R., et al. Bipolar charging of ultrafine particles in the size range below 10 nm[J]. J. Aerosol Sci., 1996, 27: 931–949.
    [19]崔宝欣.复合电晕场中粉尘粒子的荷电机制[J].烟台师范学院学报,1998,14 (2) : 106- 109.
    [20]许世森.静电场对移动颗粒层过滤高温除尘效率促进作用的探讨[J].电机工程学报,2000,1:51-56.
    [21]荣伟东,张国权,刘功智.静电过滤除尘机组性能的现场测试[J].工业安全与环保,2004,1:43-46.
    [22] O’Hara D.B., Clements J.S., et al. Aerosol particle charging by free electrons [J]. J. Aerosol Sci., 1989, 20 (3): 313-330.
    [23] Filippov A. V.. Combined Field-Diffusion Charging of Aerosol Particles [J]. J. Aerosol Sci., 1996, 27: 197-198.
    [24] Martin C. Air pollution control theory [M]. Mcgraw-Hill,1976.
    [25]赵金先,姜雨泽.脉冲电除尘粒子荷电机制[J].金属矿山,2005, 5: 52-53.
    [26]许德玄,马祝阳,李祥生.高压窄脉冲气体放电对颗粒的荷电的研究[J].静电,1993,10(2): 47-50.
    [27]赵志斌,刘建民,吴彦等.脉冲放电粒子荷电机理的研究[J].环境科学学报,1999,19(2): 113-119.
    [28] Masuda S, Hosokawa S.. Pulse Energization System of Electrostatic Precipitator for Retrofitting Application [C]. IEEE. IEEE IAS Annual Meeting, 1984, Chicag o : IEEE, 1288-1296.
    [29]李济吾,熊正明,江小华.林大建电除尘器高压脉冲供电收尘技术研究[J].大气污染防治, 2000, 26(99): 1-4.
    [30] Fitch R A, Drummond J E.. Enhanced Charging of Fine Particle by Electrons in Pulse Energized Electrical Precipitator [J]. IEEE Proceeding (Part A), 1987, 34(1):37-44.
    [31]蔡灏兢,路淼,依成武.脉冲放电除尘中颗粒的荷电研究[J].能源环境保护, 2006, 20(2): 19-21.
    [32]赵金先,姜雨泽.脉冲电除尘粒子荷电机制[J].金属矿山,2003,323:52-53.
    [33]孙健,白敏冬,毛程奇等.粉尘的电晕荷电物理模型[J].大连海事大学学报,2006, 32(3): 108-111.
    [34]高香林,胡满银,胡志光等.电除尘器数学模型的研究与探讨[J].电力学报,1994,9(1):6-14.
    [35]杜辉,董炽,任雪松等.严水生脉冲电晕等离子技术净化公路施工中的沥青烟[J].交通节能与环保, 2006,2: 2-5.
    [36]郝文阁.水泥厂机立窑用电除尘器研究[J].环境工程, 2001, 5: 33–35.
    [37]刘戈.电除尘器在玻璃熔炉烟尘处理中的应用[J].科技论坛,2007,3: 13-13.
    [38]孙炳海.极雾化负电晕技术及其在厨房油烟净化中的应用[J].暖通空调,2005, 35(8): 73-75.
    [39]石勇,党小庆,韩小梅等.钢铁工业烧结烟尘电除尘技术的特点及应用[J].重型机械,2006,3:27-34.
    [40]王传祁.水泥工业除尘技术的发展趋势[J].新世纪水泥导报,2004,增刊:22-25.
    [41]刘晓峰,张勇.水泥工业除尘技术发展趋势[J].环保收尘,2006,78-81.
    [42]王志明,程树康.提高火力发电厂除尘效率的方法[J].发电设备,2006,3:186-189.
    [43]高明峰,王祖讷.小型锅炉水煤浆燃后电除尘的试验研究[J].中国矿业大学学报,34(2): 188-193.
    [44] Kallio G.A., Stock D.E.. Interaction of electrostatic and fluid dynamic fields in wire-plate electrostatic precipitators [J]. J. Fluid Mech., 1991, 240: 133-166.
    [45] Adamiak K.. Simulation of corona in wire-duct electrostatic precipitator by means of the boundary element method [J]. IEEE Trans. Ind. Appl., 1994, 30: 381-386.
    [46] Davidson H.J., McKinney J.P., Linnebur P.. Three-dimensional (3D) model of electric field and space charge in the barbed plate-to-plate precipitator [J]. IEEE Trans. Ind. Appl., 1996, 32: 858-866.
    [47] Lu C., Hungsung H.. A sectional model to predict performance of a plate-wire electrostatic precipitator for collecting polydisperse particles [J]. J. Aerosol Sci., 1998, 29: 295-308.
    [48] Clements S.J., Yu K.K.. Continuum-regime field charging in an electron swarm [J]. IEEE Trans. Ind.Appl., 1991, 27: 1225-1232.
    [49] Zukeran A., Looy P.C., Berezin A.A. , et al. Enhancement of electrostatic precipitator ultrafine particle collection efficiency by prechargers [J]. J. Aerosol Sci., 1997, 28: 281-282.
    [50]孙飚,张迪光.板式电除尘器板处电场分布特性[J].环境科学学报,1985,5(1):54-63.
    [51]陈旺生,党太升,邹霖等.泛比电阻电除尘器极间场强分析[J].武汉科技大学学报,2005, 28(4): 354-356.
    [52]向晓东,邹霖,黄莺等.线-板式电除尘器场强正态分布模式假设及其检验[J].武汉科技大学学报, 2006, 29(4): 356-359.
    [53] Zhang J., Adamiak K., Castle G.S.P.. Numerical modeling of negative-corona discharge in oxygen under different pressures [J]. J. Electrostatics, 2007, 65: 174–181.
    [54] Barbarics T., Igarashi H.,at al. Electrostatic field calculation using R-functions and the method of characteristics in electrostatic precipitator [J]. J. Electrostatics, 1996, 38: 269–282.
    [55]许德玄,曲志和.静电旋风除尘技术的现场试验[J].环境科学,1997,18(6):39-41.
    [56]肖惠海,董冰岩,郝小非等.脉冲与直流供电下旋风静电除尘器的性能对比研究[J].中国矿业,2006,15(5):67-69.
    [57]杨新乐,段鹏文,李惟慷.静电旋风除尘器去除焦油的措施探讨[J].机械工程与自动化,2004,4: 36-38.
    [58]张秀琨,郑刚.电袋复合除尘器研究与应用[J].能源技术与管理, 2007,3: 74-76.
    [59]常建娥,韩北川.电袋复合除尘器清灰系统的优化组合[J].技术装备,2006,62-65.
    [60]胡志光,王辉,常爱玲.电—袋式除尘器的仿真设计研究[J].电力环境保护,2008,24(4):42-45.
    [61]荣伟东,张国权,刘功智.静电增强布袋除尘器的实验研究及其应用[J].建筑热能通风空调,2003, 2: 29-31.
    [62]高军凯,黄超,齐旭东.膜电除尘器-静电除尘新技术[J].江苏环境科技,2007, 20(6): 64-67.
    [63]陈泽民.有效提高高比电阻飞灰的除尘效率[J].科技纵横,2001,40-42.
    [64]唐国山.宽间距电除尘器在水泥立窑上应用的研究[J].应用技术,1988,7:1-5.
    [65]顾世荣.宽间距电除尘器在旋窑烟尘除尘中的应用[J].煤矿环境保护, 1992,7(1): 39-40
    [66]刘炳华.宽间距电除尘器在云铜的应用实践[J].有色冶炼,2003,5: 60-61.
    [67]贺克斌,郝吉明,晃红勋.电除尘器宽间距效应的模拟与分析[J].清华大学报,1991,31(6): 80-86.
    [68]邓云峰,刘功智,张国权.宽间距长芒刺静电除尘技术的应用[J].中国安全科学学报, 2003,13(10): 41-44.
    [69]郑双忠,刘艳军,王英刚等.宽间距长芒刺电除尘器优化实验研究[J]. 2000, 10: 3-6.
    [70]冯国会,高甫生.超宽间距长芒刺电除尘器极间距、极-板间距优化设计研究[J]. 2000, 33(6):102-105.
    [71]冯国会,高甫生.超宽间距长芒刺电除尘器除尘理论及参数识别[J]. 2002,35(2): 79-82.
    [72]冯国会,李帼昌,于陶然等.超宽间距长芒刺静电除尘器电场分布规律研究[J].沈阳建筑工程学院学报,1996,12(4):400-404.
    [73]郑双忠,刘艳军,王英敏等.宽间距电除尘器电场理论研究[J].沈阳航空工业学院学报,2000,17(3): 74-76.
    [74]赵志斌,吕晶.脉冲放电粒子荷电机理的研究[J].东北电力技术,1999,3:1-6.
    [75]石鑫,亓华,刘桂成等.电除尘电源脉冲技术节能分析与应用[J].节能,2008,5:29-30.
    [76]卢泽锋,居斌,傅启文.电除尘器能耗分析与节能提效供电技术研究[J].华电技术,2008,30(1):72-74.
    [77]丁然,赵珊.电除尘器的节能控制策略[J].辽宁科技大学学报,2008,31(1): 46-48.
    [78]李谦,宁成,周文俊等.用窄脉冲电晕放电方法干脱除烟气中的SO2 [J].环境保护,1994,3:17-20.
    [79]李杰,吴彦,王宁会等.脉冲电晕放电烟气脱硫的影响因素[J].环境科学,2001,22(5):38-40.
    [80]周文俊,刘开培,李劲等.对脉冲电晕放电脱硫除尘的分析[J].工业安全与防尘,1993,7:5-6.
    [81]张连水,刘涛,党伟等.脉冲电晕放电脱除NO化学反应动力学过程[J].光谱学与光谱分析,2007,27(4):664-667.
    [82]宁成,李谦,李劲等.脉冲电晕对燃煤烟气中NO和SO2的脱除研究[J].华中理工大学学报,1994,S1: 27-31.
    [83]赵君科,王保健,任先文等.脉冲电晕等离子体烟气脱硫脱硝中试装置[J].环境工程, 2001, 19(6): 43- 45.
    [84]严国奇,潘理黎,黄小华.脉冲电晕放电烟气脱硫脱硝技术[J].环境治理,2005,4:1-4.
    [85]白亚楠.烟气NOx污染控制技术及国产化建议[J].安全与环境工程,2006,13(2):52-54.
    [86]蔡灏兢,路淼,依成武.脉冲放电除尘中颗粒的荷电研究[J].能源环境保护,2006,20(2):19-22.
    [87]姜雨泽,赵金先.窄脉冲放电粒子荷电过程分析[J].山东电力技术,2003,4:8-10.
    [88]翟景升,许德玄,田立君.窄脉冲电晕等离子体烟气脱硫产物收集研究[J].环境科学学报,2000,20(5):642-644.
    [89]宁成,李劲,李谦.窄脉冲电晕放电中流注形成和传播的数值模拟[J].高电压技术,1996,22(4):8-10.
    [90]韩冰,郭飞.影响脉冲除尘效率因素的分析[J].水利电力机械,2006,28(5):32-34.
    [91]宋洪涛.脉冲正流注放电对油滴荷电的研究[J].长春师范学院学报,2000,19(2):44-47.
    [92] Law S E.. An agricultural electrostatic spray application: A review of significant research and development during the 20th century [J]. J. of Electrostatics, 2001, (51-52): 25-42.
    [93]高良润,冼福生.静电喷雾治虫实验[J].农业机械学报,1994,25(2):30-36.
    [94]马峰等.现代静电科学技术研究[M].西安:西安出版社,1999. 199-201.
    [95]李世武,王云鹏,王羽等.静电雾化技术在汽车节能降排中的应用[J].汽车工程,2001,23(4):283-286.
    [96]程久生,周孝南,郑久仁.燃料乙醇电雾化[J].燃料科学与技术,1999,5(1):70-75.
    [97]许高斌,褚家如.静电雾化技术在纳米薄膜制备中的应用研究[J].纳米材料与结构,2006,6:284-288.
    [98]金晗辉,王军锋,王泽,罗惕乾.静电喷雾研究与应用综述[J].江苏理工大学学报,1999,20(3):16-19.
    [99]王仁胜.荷电水雾除尘及其效果[J].工业安全与防尘,1993,10:9-10.
    [100] Miller J A, Biblarz O.. Electrostatic spray modification in gas turbine combustion [J]. Journal of Propulsion and Power, 1997,3(2):187-192.
    [101] Shrimpton J S, Yule A J.. Characterization of charged hydrocarbon sprays for application in combustion systems [J]. Experiments in Fluids, 1994, 26(5):460-469.
    [102] Shrimpton J S, Yule A J.. Atomization, combustion, and control of charged hydrocarbon sprays [J].Journal of the International Institutions for Liquid Atomization and Spray Systems, 2001, 4: 365-396.
    [103]王哲,王家青,高全杰等.静电涂油机中油液荷电雾化实验研究及雾化机理探讨[J].机床与液压,2004,7:81-83.
    [104]应保胜,高全杰.静电喷涂中荷电油液的雾化研究[J].材料保护,2003,36(10):15-17.
    [105]高全杰,卢泽杰,苏再军.静电涂油机中油液电晕荷电雾化机理研究[J].冶金设备,2006, 5:5-9.
    [106]高全杰,王家青.梁板电极电场中油液荷电雾化理论分析[J].钢铁研究,2002,5:25-27.
    [107] Xu D.,Zhao J., Ding Y., at al. Removal of adhesive dusts from flue gas using corona discharges with spraying water. [J]. J. of Environmental Science, 2003, 15(4):561-568.
    [108]许德玄,孙大伟.水电极静电油烟净化器[P].中国专利,ZL01264502.
    [109]郭治明,许德玄,孙英浩等.雾化电晕放电静电除尘的实验研究[J].北京理工大学学报, 2005, SI: 145-148.
    [110]王玉佳,许德玄,王海军等.雾化电晕等离子体饮食业油烟净化技术与装置[J].环境工程, 2004, 22(4): 40-42.
    [111]马祝阳,许德玄.雾化电晕放电除尘原理及其特性研究[J].东北师大学报,2003, 35(2): 35-40.
    [112]赵建伟.采用雾化电晕放电技术净化含粘性粉尘的油烟[D]:[硕士学位论文].长春:东北师范大学城市与环境学院,2003.
    [113]孙明,赵晓明,许德玄.水放电极雾化净水技术[J].高电压技术,2000,26(4):36-37.
    [114]孙炳海.雾化负电晕净化烹调油烟新技术[J].平顶山工学院学报,2005,14(2):30-32.
    [115]孙炳海,王国贞,孙丽娜.雾化电晕净化烹调油烟技术[J].环境污染治理技术与设备,2005,6(10):77-79.
    [116] Moon Jae-Duk, Lee Geun-Taek, and Chung Suk-Hwan. SO2 and CO gas removal and discharge characteristics of a nonthermal plasma reactor in a crossed DC magnetic field [J]. IEEE Transactions on industry applications,1999,35(5) : 1198-1204.
    [117]林山杉,盛连喜,李明非等.磁增强电晕放电及其对颗粒荷电的研究[J].电工技术学报, 2004, 19(9): 42-46.
    [118] D. Xu, L. Sheng, H. Wang, Y. Sun, et al. Study of magnetically enhanced corona pre-charger [J]. J. Electrostatics, 2007, 65: 101–106.
    [119] Nunes Y., Wemans A., Gordo P.R., et al. The influence of magnetic confinement in DC abnormal-glow discharges [J]. Vacuum , 2007, 81: 1498–1502.
    [120]孙英浩,许德玄等.永久磁铁放电极电晕放电的磁增强放电特性及其对细小粉尘荷电的影响[J].河北大学学报,27(6): 634-637.
    [121]许德玄,王辛刚,孙明.磁约束低汽压饱和蒸汽荷电器的研究[C].中国物理学会第九届静电学术年会会议录. 2000,石家庄
    [123] Xu D., Li J., Wu Y., et al. Discharge characteristics and applications for electrostatic precipitation of DC corona with spraying discharge electrodes [J]. J. Electrostatics, 2003, 57: 217–224.
    [124]许德玄.磁电雾化电晕放电低温等离子体及其应用[J].中原工学院学报,2003,14(S1): 59-61.
    [125]许德玄.磁增强雾化电晕放电低温等离子体烟气除尘净化器[P].中国专利, 200420012900.x. 2006—03—1.
    [126]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996. 258-261.
    [127] Clements J S,M izuno A,Finney W C,et a1.Combined removal of SO2,NO and fly ash fromsimulated flue gas using pulsed streamer corona.IEEE Trans.On Industry Applications,1989,25(1):63–69.
    [128] Masuda S. Novel cold plasma technologies for pollution control [C]. 2nd Int Conf Applied Electrostatics , 1993 ,Beijing: 1-25.
    [129] GWPBS一2000《饮食业油烟排放标准(试行)》.
    [130]谢兵.传统烹饪过程的污染物排放[C].全国气溶胶学术会议论文集,1997,烟台
    [131]毕彤,陆向文,谢兵等.烹饪过程中油烟雾有机物组分的GC/MS测定[J].质谱学报,1996,17(3):63一67.
    [132]崔明珍,陈震阳,赵振华等.饭店厨房空气中的化学成分分析[J].中国公共卫生,1994,10(1):21一22.
    [133]李中山,杨杰.厨房内空气污染危害及治理对策的探讨[J].环境保护科学,1995,21(4):68一72.
    [134]高虹.一种新型静电油烟净化器的研制与应用[J].内蒙古环境保护,2006,18(1):45-46.
    [135]向晓东,熊伟,周鹏,等.APA油烟净化器的除烟机理[J].武汉科技大学学报(自然科学版),2005,28(2):175-178.
    [136]裴清清,龙激波.新型湿法离心式油烟净化器及技术经济分析[J].环境工程,2005,23(6):42-47.
    [137]洪伟良,邱晋卿,刘剑洪.负载型La0.8Sr0.2MnO3催化剂对油烟燃烧的催化作用[J].环境化学,2004,23(3) 247-251.
    [138] Yang Ji, Jia Jin-ping, Wang Ya-ling, et al.Treatment of cooking oil fume by low temperature cataly-sis [J].Applied Catalysis B: Environmental, 2005, 58: 123-131.
    [139]米俊锋,许德玄,杜胜男.磁增强雾化电晕放电烟气净化器的研究[J].科技导报,2007,25(21):38-42.
    [140] JAWOREK A. Classification of the modes of EHD spraying[J]. J. Aeresol Sci, 1999, 30: 873—893.
    [141] HUNEITI Z, BALACHANDRAN W, MACHOWSKI W. The study of AC coupled DC fields on conducting liquid jets[J]. J of Electrostatics, 1997, 40: 97—102.
    [142] MOON Jae-Dik,KIM Jin-Gyu,LEE Dae-Hee.Electrophysicochemical characteristics of a waterpen point corona discharge [J]. IEEE Transactions, 1998, LA-34: 1212—1217.
    [143]中野义映,高电压技术[M].科技出版社,2004,30-32.
    [144] H. J. White, Industrial Electrostatic Precipitation [M]. Massachusetts: Addison-Wesley, 1963, 319—323.
    [145] Yongan Gu, Dongqing Li. Measurements of the electric charge and surface potential on small aqueous drops in the air by applying the Millikan method [J]. Colloids and Surfaces, 1998, 137: 205-215.
    [146]许德玄,李祥生,马祝阳.用密立根油滴仪同时测量粉尘的粒径和荷电量[J].大学物理,1995,14(9): 32-34.
    [147]解广润,陈慈萱.高压静电除尘[M],水利电力出版社:北京,1990:28-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700