用户名: 密码: 验证码:
时标上几类动力方程和动力包含解的存在性与振动性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由Hilger引入的时标理论,不仅在连续分析和离散分析间架起了一座桥梁,而且能更好地洞察两者之间的本质差异.它更精确地描述了有时在连续时间有时在离散时间出现的现象.为了进一步发展时标理论与应用,本文的工作主要致力于动力方程和动力包含解的性质,包括以下三个方面:动力方程解的存在性,动力包含解的存在性,动力方程解的振动性.
     在第一章中,我们给出了本文研究的背景,介绍了本文的结构安排,并且给出了处理动力方程和动力包含解的存在性和振动性的主要工具和时标上有关的基本运算公式.
     第二章讨论了三类时标上动力方程解的存在性.我们选择了时标上四阶四点边值问题,并进一步研究了一阶和二阶脉冲动力方程.分别运用Krasnoselskii-Zabreiko不动点定理和Schaefer不动点定理,我们得到了这三类方程解的存在性.值得指出的是,对于四阶动力方程,我们得出了Green函数的表达式,这个计算方法适合时标上其它高阶动力方程.对于一阶和二阶脉冲动力方程,所得结果弥补并拓展了已有结论.
     在第三章,利用多值映射的不动点定理和上(下)半连续的选择定理,我们考虑了时标上两类带有边值条件的动力包含解的存在性,得到了一些新的结论.我们给出了例子来说明主要结论的有效性.第三章的结果拓展了在现有文献中关于时标上二阶动力包含的结果.
     第四章研究了时标上动力方程解的振动性.本章分两个小节.第一小节给出了二阶半线性动力方程解的振动性,而第二小节主要考虑了二阶非线性动力方程.主要工具包括Riccati转换技巧和一些不等式.第三章的结果统一并扩展了文献中的已有结论.
Time scales theory, introduced by Hilger, not only establishes a bridge be-tween the continuous and the discrete analysis, but also understands deeply the essential between them. The theorem on time scales describes more accurately the phenomena which happen sometimes in continuous time and sometimes in discrete time. In order to develop time scales theorem and application further, our attention focus on the properties of solutions for dynamic equations and dy-namic inclusions,including the three aspects of the time scales theory:Existence of solutions for dynamic equations, existence of solutions for dynamic inclusions, oscillation for dynamic equations.
     In Chapter 1, we recall the background of our topics of this thesis, show the outline and give the main tools for dealing the existence and oscillations of solutions for dynamic equations and dynamic inclusions and some basic calculus on time scales related with this thesis.
     Chapter 2 is dealing with the existence of solutions for three classes of dy-namic equations on time scales. Thus, by means of fixed-point theorems due to Krasnoselskii-Zabreiko, and Schaefer, we present the existence of solutions for fourth-order four-point boundary problems, a class of first-order impulsive dy-namic equations and a class of second-order dynamic equations on time scales, respectively. It is worth pointing out for the Forth-order dynamic equation, the Green function is new and this method can be applied to study some other boundary value problems for high-order dynamic equations on time scales. For the first-order or second-order impulsive dynamic equations, the obtained result complement and extend some known results.
     In Chapter 3, combining fixed-point theorems on multi-valued mappings with continuous selection theorems for upper (or lower) semi-continuous, we in-vestigate existence of solutions for two classes of dynamic inclusions with bound-ary conditions on time scales. Some new criteria are given. We also provide examples to illustrate our main results. The obtained results fill the gap that there are only a few results about second-order dynamic inclusions on time scales in the literatures.
     Chapter 4 is devoted to the oscillation of solutions for dynamic equations. We discuss the problems in two subsections. In section 1, sufficient criteria of oscillation for a half-linear second-order dynamic equation is established. In sec-tion 2, we are concerned with the oscillation of a nonlinear second-order dynamic equation. The main tools include Riccati transformation and some inequalities. The results in Chapter 3 generalize and extend some known results in the liter-atures.
引文
[1]R. P. Agarwal, S. L. Shinen, C. C. Yeh. Oscillation criteria for second-order retarded differential equations. Math. Comput. Modelling,26(1997),1-11.
    [2]R. P. Agarwal. Difference equations and inequalities:theory, method and applications. Marcel Dekker Inc., (2000).
    [3]R. P. Agarwal, D.O'Regan. Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput.,114(2000),51-59.
    [4]R. P. Agarwal, D. O'Regan. Nonlinear boundary value problems on time scales. Nonlinear Anal.,44(2001),527-535.
    [5]R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and appli-cations, Cambridge Tracts in Mathematics 141, Cambridge Univ. Press, Cmbridge, (2001).
    [6]R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson. Dynamic equations on time scales:A survey, in:R.P. Agarwal, M.Bonher, D. O'regan(Eds.), Spe-cial Issue on Dynamic equations on Time Scales. J. Comput. Appl. Math., 141(2002),1-26.
    [7]E. Akin. Boundary value problems, oscillation theory, and the Cauchy func-tions for dynamic equations on a measure chain. Ph. D. Dissertation. Uni-versity of Nebraska, (2000).
    [8]D. R. Anderson. Interval criteria for oscillation of nonlinear second-order dynamic equations on time scales. Nonlinear Anal.,69(2008),4614-4623.
    [9]D. R. Anderson, G. Smyrlis. Solvability for a third-order three-point BVP on time scales. Math. Comput. Modelling,49(2009),1994-2001.
    [10]F. M. Atici, G. S. Guseinov. On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141(2002),75-99.
    [11]F. M. Atici, D. C. Biles, A. Lebedinsky. An application of time scales to economics. Math. Comput. Modelling,43(2006),718-726.
    [12]C. Bai, D. Yang, Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions. Boundary Value Problems, Article ID 41589(2007),13pages.
    [13]C. Bai, D. Yang, H. Zhu. Existence of solutions for fourth order differential equation with four-point boundary condition, Applied Mathematics Lett., 20(2007),1131-1136.
    [14]A. Belarbi, M. Benchohra, A. Ouahab. Existence results for impulsive dy-namic inclusions on time scales. Electro. J. Qualitative Theory Differential Equ.,12(2005),1-22.
    [15]E. T. Bell. Men of mathematics. Simon and Schuster, New York, (1937).
    [16]M. Benchohra, S. K. Ntouyas, A. Ouahab. Existence results for second order boundary value problem of impulsive dynamic equations on time scales, J. Math. Anal. Appl.,296(2004),65-73.
    [17]K. L. Boey, P. J. Y. Wong. Positive solutions of two-point right focal bound-ary value problem on time scales, Comput. Math. Appl.,52(2006),555-576.
    [18]H. F. Bohnenblust, S. Karlin. On a theorem of Ville, in:Contributions to the Theory of Games, Vol.Ⅰ, Princeton Univ. Press,155-160, (1950).
    [19]M. Bohner, A. Peterson. Dynamic Equations on Time Scales:An Introduc-tion with Applications. Birkhauser, Boston, (2001).
    [20]M. Bohner, J. E. Castillo. Mimetic methods on measure chains. Comput. Math. Appl.,42(2001),705-710.
    [21]M. Bohner, A. Peterson. Advances in Dynamic Equations on Time Scales. Birkhauser, Boston, (2003).
    [22]M. Bohner, S.H. Saker. Oscillation of second order nonlinear dynamic equa-tions on time scales. Rocky Mountain J. Math.,34(2004),1239-1254.
    [23]M. Bohner, C. C. Tisdell. Second Order Dynamic inclusions. J. Nonlinear Math. Phys.,12(2005),36-45.
    [24]M. Bohner, L. Erbe, A. Peterson. Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl.,301(2005),491-507.
    [25]G. Chai. Existence of positive solutions for second-order boundary value problem with one parameter. J. Math. Anal. Appl.,339(2007),541-549.
    [26]Y. Chang, W. Li. Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions. Math. Comput. Modelling,43(2006), 377-384.
    [27]Y. K. Chang, W. T. Li. On boundary value problems of second order per-turbed dynamic inclusions on time scales. Nonlinear Anal.,67(2007),633-640.
    [28]Y. K. Chang, W. T. Li. Existence results for dynamic inclusions on time scales with nonlocal initial conditions. Comput. Math. Appl.,53(2007),12-21.
    [29]S. Chen, L. H. Erbe. Oscillation and nonoscillation for systems of self-ajoint second order difference equation. SIAM J. Math. Anal.,20(1989),939-949.
    [30]J. Chen, C. C. Tisdell, R. Yuan. On the solvability of periodic boundary value problems with impulse. J. Math. Anal. Appl.,331(2007),902-912.
    [31]J. Chen, C. C. Tisdell, R. Yuan. On the solvability of periodic boundary value problems with impulse. J. Math. Anal. Appl.,331(2007),902-912.
    [32]H. Chen, H. Wang. Triple positive solutions of boundary value problems for p-Laplacian impulsive dynamic equations on time scales. Math. Comput. Modelling,47(2008),917-924.
    [33]J. H. Cui, Y. Zhang, H. F. Si. A brief analysis about differential equations on time scales. Silicon Valley,15(2008),134-136, (in Chinese).
    [34]K. Deimling. Multivalued Differential Equations. De Gruyter, Berlin, (1992).
    [35]W. Ding, M. Han, J. Mi. Periodic boundary value problem for the second-order impulsive functional differential equations. Comput. Math. Appl., 50(2005),491-507.
    [36]O. Dosly, S. Hilger. A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equation on time scales. J. Comp. Appl. Math., 141(2002),147-158.
    [37]Y. Dong. Sublinear impulse effects and solvability of boundary value problems for differential equations with impulses. J. Math. Anal. Appl., 264(2001),32-48.
    [38]J. Dugundij, A. Grans. Fixed Point Theory, in Mongrafile Mat. PWN, War-saw, (1982).
    [39]S. Elaydi. An introduction to difference equations. Springer, (2000).
    [40]L. H. Erbe, A. Peterson. Green's functions and comparison theorems for dif-ferential equations on measure chains. Dyn. Contin. Discrete Impuls. Syst., 7(1999),121-138.
    [41]L. Erbe, A. Peterson, S.H. Saker. Oscillation criteria for second-order non-linear dynamic equations on time scales. J. London Math. Soc.,67(2003), 701-714.
    [42]L. Erbe, A. Peterson. Boundedness and oscillation for nonlinear dynamic equations on a time scale. Proc. Amer. Math. Soc.,32(2004),735-744.
    [43]F. Geng, Y. Xu, D. Zhu. Periodic boundary value problems for first-order im-pulsive dynamic equations on time scales. Nonlinear Anal.,69(2008),4074-4087.
    [44]S. R. Grace, R. P. Agarwal, M. Bohner, D. O'Regan. Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations. Com-mun. Nonlinear Sci. Numer. Simulat.,14(2009),3463-3471.
    [45]S. R. Grace, R. P. Agarwal, B. Kaymakcalan, W. Sae-jie. On the oscilla-tion of certain second order nonlinear dynamic equations. Math. Comput. Modelling,50(2009),273-286.
    [46]Z. L. Han, B. Shi, S. R. Sun. Oscillation criteria for second-order delay dynamic equations on time scales, Adv. Difference Equ.,2007(2007), Article ID 70730,16pages.
    [47]Z. L. Han, S. R. Sun, B. Shi. Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales. J. Math. Anal. Appl., 34(2007),847-858.
    [48]Z. C. Hao. Positive solutions of some classes of dynamic equations on time scales. Ph. D. Dissertation. University of Science and Technology of China, (2006), (in Chinese).
    [49]T. S. Hassan. Oscillation criteria for half-linear dynamic equations on time scales. J. Math. Anal. Appl.,345(2008),176-185.
    [50]T. S. Hasson. Oscillation of third order nonlinear delay dynamic equations on time scales. Math. Comput. Modelling.,49(2009)1573-1586.
    [51]Z. He, X. Zhang. Monotone iterative technique for first order impulsive dif-ference equations with periodic boundary conditions. Appl. Math. Comput., 156(2004),605-620.
    [52]J. Henderson, C. C. Tisdell, W. K. C. Yin. Uniqueness implies existence for three-point boundary value problems for dynamic equations, Appl. Math. Lett.,17(2004),1391-1395.
    [53]S. Hilger. Ein MaBkettenkalkiil mit Anwendungauf Zentrumsmannig-faltigkeiten. Ph. D. Dissertation. Universitat Wurzburg, (1988), (in Ger-man).
    [54]S. Hilger. Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math.,18(1990),18-56.
    [55]J. W. Hooker, M. K. Kwong, W. T. Patula. Oscillatory second order linear difference equations and Riccati equations. SIAM J. Math. Anal.,18(1987), 18-56.
    [56]M. G. Huang, W. Z. Feng, Oscillation criteria for second order nonlinear dynamic equations with impulses. Comput. Math. Appl.,59(2010),31-41.
    [57]I. Y. Karaca. Fourth-order four-point boundary value problem on time scales, Appl. Math. Lett.,21(2008),1057-1063.
    [58]B. Kaymakcalan. Existence and comparison results for dynamic systems on time scales. J. Math. Anal. Appl.,192(1993),243-255.
    [59]B. Kaymakcalan, L. Rangargian. Variation of Lyapunov's method for dy-namic systems on time scales. J. Math. Anal. Appl.,18(1994),356-366.
    [60]B. Kaymakcalan, V. Lakshmikanthan, S. Sivasundaram. Dynamic Systems on measure chains, Kluwer Academic Puplishers, Boston, (1996).
    [61]W. G. Kelley, A. C. Peterson. Difference equations. Academic Press, USA, (1990).
    [62]M. A. Krasnoselskii, P. P. Zabreiko. Geometrical Methods of nonlinear Anal-ysis. Springer-Verlag, New York, (1984).
    [63]V. Lakshmikantham, D. D. Bainov, P. S. Simeonov. Theory of Impulsive Differential Equations. World Scientific, Singapore, (1989).
    [64]V. Lakshmikantham, S. Sivasundaram, B. Kaymakmakcalan. Dynamic sys-tems on measure chains. Kluwer Academic Publishers, Bostons, (1996).
    [65]J. L. Langdon. Asymptotic behavior of linear dynamic equations on time scales. Ph. D. Dissertation. University of Nebraska, (2005).
    [66]J. Li, J. Shen. Existence results for second-order impulsive boundary value problems on time scales. Nonlinear Anal.,70(2009),1648-1655.
    [67]J. Li, J. J. Nieto, J. Shen. Impulsive periodic boundary value problems of first-order differential equations. J. Math. Anal. Appl.,325(2007),226-236.
    [68]X. Liu (Ed.). Advances in Impulsive Differential Equations. Dyn. Contin. Discrete Impulsive System. Ser. A. Math. Anal.,9(2002),313-462.
    [69]Y. Liu. Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations. J. Math. Anal. Appl., 327(2007),435-452.
    [70]Y. Liu. Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations. J. Math. Anal. Appl., 327(2007),435-452.
    [71]N. G. Lloyd, Degree Theory. Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, (1978).
    [72]R. Ma, H. Wang. Positive solutions of nonlinear three-point boundary value problems. J. Math. Anal. Appl.,279(2003),216-223.
    [73]A. D. Medico, Q. K. Kong. Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain. J. Math. Anal. Appl.,294(2004),621-643.
    [74]F. Merdivenci-Atici, D. C. Biles. First order dynamic inclusions on time scales. J. Math. Anal. Appl.,292(2004),222-237.
    [75]J. J. Nieto. Basic theory for nonresonance impulsive periodic problems of first order. J. Math. Anal. Appl.,205(1997),423-433.
    [76]J. J. Nieto. Periodic boundary value problems for first-order impulsive ordi-nary differential equations. Nonlinear Anal.,51(2002),1223-1232.
    [77]J. J. Nieto, R. Rodriguez-Lopez. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. Math. Anal. Appl.,318(2006),593-610.
    [78]C. G. Philos. Oscillation theorem for linear differential equations of second order. Arch. Math.,53(1989),482-492.
    [79]D. Qian, X. Li. Periodic solutions for ordinary differential equations with sublinear impulsive effects. J. Math. Anal. Appl.,303(2005), no.1,288-303.
    [80]I. Rachunkova, M. Tvrdy. Non-ordered lower and upper functions in sec-ond order impulsive periodic problems. Dynamics of Continuous, Discrete Impulsive System. Series A. Math. Anal.,12(2005),397-415.
    [81]D. Repovs, P. V. Semenov, Continuous Selections of Multivalued Mapping, Kluwer Academic, Dordrecht, (1998).
    [82]R. S. Robeva, J. R. Kirkwood, R. L. Davies, L. S. Farhy, M. L. Johnson, B. P. Kovatchev, M. Straume. An invitation to biomathematics. Science Press in China, (2007).
    [83]Y. V. Rogovchenko. Impulsive evolution systems:Main results and new trends. Dynamics of Continuous, Discrete Impulsive System. Series A. Math. Anal.,3(1997),57-88.
    [84]M. Rudd, C. C. Tisdell. On the solvability of two-point, second-order bound-ary value problems. Appl. Math. Lett.,20(2007),824-828.
    [85]Y. Sahiner. Oscillation of second-order delay differential equations on time scales. Nonlinear Anal.,63(2005), e1073-e1080.
    [86]S. H. Saker. Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math.,77(2005),375-387.
    [87]S. H. Saker, R. P. Agarwal, Donal O'Regan. Oscillation of second-order damped dynamic equations on time scales. J. Math. Annal. Appl., 330(2007),1317-1337.
    [88]A. M. Samoilenko, N. A. Perestyuk. Impulsive Differential Equations, World Scientific, Singapore, (1995).
    [89]P. Stehllk. periodic boundary value problems on time scales, Adv. Difference Equ.,2005(2005),81-92.
    [90]H. Su, M. Zhang. Solutions for higher-order dynamic equations on time scales, Appl. Math. Comput.,200(2008),413-428.
    [91]Y. H. Su. P-laplacian boundary value problems and periodic solutions of Hamiltoian system. Ph. D. Dissertation. Lanzhou University, (2008), (in Chinese).
    [92]Y. H. Su. Multiple positive pseudo-symmetric solutions of P-Laplacian dy-namic equations on time scales, Math. Comput. Modelling,49(2009),1664-1681.
    [93]J. Sun. Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation, Nonlinear Anal.,64(2006),629-636.
    [94]H. Sun, W. Li. Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problem on time scales", J. Differential Equations, 240(2007),217-248.
    [95]J. Sun, W. Li. Existence of solutions to nonlinear first-order PBVPs on time scales. Nonlinear Anal.,67(2007),883-888.
    [96]J. P. Sun. Boundary value problems for dynamic equations on time scales. Ph. D. Dissertation. Lanzhou University, (2007), (in Chinese).
    [97]J. Sun. Twin positive solutions of nonlinear first-order boundary value prob-lems on time scales. Nonlinear Anal.,68(2008),1754-1758.
    [98]Y. Tian, W. Ge. Existence and uniqueness results for nonlinear first-order three-point boundary value problems on time scales, Nonlinear Anal., 69(2008),2833-2842.
    [99]H. L. Turrittin. Symposium on Ordinary Differential Equations. Lecture notes in Mathematics, Springer Berlin, (1973).
    [100]S. H. Wang. Differential equations models and chaos. Press University of Science and Technology in China, (1999), (in Chinese).
    [101]D. Wang, J. Sun. Existence of a solution and a positive solution of a bound-ary value problem for a nonlinear fourth-order dynamic equation", Nonlinear Anal.,69(2008),1817-1823.
    [102]D. Wang. Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales. Comput. Math. Appl.,56(2008),1496-1504.
    [103]Y. Xing, V. Romanvski. On the solvability of second-order impulsive dif-ferential equations with antiperiodic boundary value conditions. Boundary Value Problems, Article ID 864297,18pages.
    [104]M. Yao, A. Zhao, J. Yan. Periodic boundary value problems of second-order impulsive differential equations. Nonlinear Anal.,70(2009),262-273.
    [105]I. Yaslan. Existence results for an even-order boundary value problem on time scales, Nonlinear Anal.,70(2009),483-491.
    [106]Z. H. Yu, Q. R. Wang. Asymptotic behavior of solutions of third-order nonlinear dynamic equations on time scales. J. Comput. Appl. Math., 225(2009),531-540.
    [107]A. Zafer. On oscillation and nonoscillation of second-order dynamic equa-tions. Appl. Math. Lett.,22(2009),136-141.
    [108]S. T. Zavalishchin, A. N. Sesekin. Dynamic Impulse Systems. Theory and applications, Kluwer Academic Publishers Group, Dordrecht, (1997).
    [109]B. G. Zhang, X. Deng. Oscillation of delay differential equations on time scales. Math. Comput. Modelling,36(2002),1307-1318.
    [110]W. Zhang, M. Fan. Periodicity in a generalized ecological competition sys-tem governed by impulsive differential equations with delays. Math. Comput. Modelling,39(2004),479-493.
    [111]B. G. Zhang. Advances in differential equations on time scales. Periodical of Ocean University of China,34(2004),907-912, (in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700