用户名: 密码: 验证码:
互花米草入侵对崇明东滩盐沼底栖动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵是全球变化的重要组成部分,对自然生态系统安全造成巨大威胁,已经成为生态学领域的研究热点之一。崇明东滩盐沼拥有独特的自然资源,底栖动物在滩涂湿地中发挥着承上启下的作用,连接初级生产和高级消费,是湿地生态系统中重要的动态中心。然而自20世纪90年代以来,外来植物互花米草在崇明东滩自然保护区内迅速扩散,对底栖动物群落结构和种类组成造成一定影响,因此系统研究外来植物互花米草入侵对崇明东滩底栖动物群落造成的影响,以及实施互花米草控制技术后对底栖动物的影响具有非常重要的现实意义和理论价值。
     本项研究于2007年-2008年间,在崇明东滩自然保护区开展了底栖动物群落的野外调查,通过分析底栖动物群落结构,构建正态化粒径谱,探讨了高程梯度和互花米草入侵历史对崇明东滩自然保护区内底栖动物群落可能造成的影响。此外,在崇明东滩生态修复示范样地,结合水位控制措施治理互花米草的物理试验,跟踪了示范样地内水位调控措施对大型底栖动物群落的影响。研究的主要结果如下:
     (1)崇明东滩底栖动物群落分析的结果表明,大型底栖动物群落的种类组成随着高程的变化而发生变化,大型底栖动物的分布则与高程和植被特征具有密切关系。随着高程的降低,底栖动物群落的多样性降低,生物量在中潮滩达到最高。底栖动物正态化生物量粒径谱(NBSS)斜率值随着高程的降低而降低。在相同高程下,互花米草群落中底栖动物粒径谱的斜率均小于土著植物群落和光滩生境,显示出互花米草群落中个体较小的底栖动物比例较高。
     (2)高程梯度和互花米草入侵历史对底栖动物群落造成影响的研究结果显示,大型底栖动物群落结构的特征随着高程梯度和互花米草入侵历史时间长短的变化而显著不同。大型底栖动物的生物量随高程的降低而降低,而小型底栖动物的生物量具有相反的趋势,随高程的降低而增加。NBSS的斜率随着高程梯度的降低而减小。与入侵历史较年轻的互花米草群落相比,入侵历史较久的互花米草群落中大型底栖动物的生物量显著的增高,小型底栖动物的生物量却明显降低。随着入侵历史的增长,互花米草群落中大型底栖动物的群落结构与本地物种芦苇之间的差异减小。入侵历史较年轻的互花米草群落与入侵时间较久的互花米草群落相比,底栖动物的NBSS斜率值更低。随着入侵历史的增加,互花米草群落中底栖动物的NBSS斜率值和本地物种芦苇群落之间的差异减小。NBSS方法能够有效的检测互花米草入侵对底栖动物群落可能造成的影响,为入侵物种的系统生态学研究提供更加广阔的视角,对于崇明东滩保护区和其他类似的被入侵的滨海湿地的物种保护和资源管理方面具有重要价值。
     (3)水位调控措施对大型底栖动物群落影响的结果显示,潮间带大型底栖动物的密度和生物量具有显著的季节性波动,实施持续水位调控措施样地中大型底栖动物的密度、生物量和丰富度指数均显著低于同时期对照样地。破堤排水后的恢复样地中,随着恢复时间延长,大型底栖动物密度、生物量和丰富度指数均有不同程度的恢复。研究结果表明,水位调控措施会对盐沼植被中大型底栖动物的密度、生物量和多样性产生负面影响,但这种影响在治理互花米草水位调控措施结束后可逐渐自然恢复。
Biological invasion, as one of important component of global change, is threatening natural ecosystems and becoming one of the hot spots in ecological fields. Salt marshes in Chongming Dongtan, Shanghai possess the unique natural resources and face with a big challenge from the exotic plant invasion. Benthic community in the wetlands connects with primary production and consumption and plays a major role on nutrient cycling in salt marsh ecosystems. During the 1990s, an exotic Spartian alterniflora has spread rapidly. It is important to evaluate the impacts of S. alterniflora invasion on benthic communities of salt marshes and valuable to trace the effects of the physical measures to control the spreading of S. alterniflora on macrobenthic communities in Chongming Dongtan, Shanghai.
     This study investigated the distribution and community constructure of benthos in the salt marshes in Chongming Dongtan during the 2007 and 2008. The Normalized biomass size spectra (NBSS) were constructed to explore the S. alterniflora invasion on benthic communities. Moreover, trace the effects of managed waterlogging on macrobenthic communities. The main results of this study were summarized as follows:
     (1) Investigated the distribution of benthos and constructed the NBSS to explore the influence of plant type and evelation on the benthic communities. The results showed that the distribution and species composition of macrobenthos varied with the elevation and plant community charecteristics. The benthic diversity showed a decreasing trend along the elevation gradient. The slope of NBSS for the sampling sites decreased with the decreasing elevation. Compared with the native saltmarshes and bare mud habitat, Spartina alterniflora saltmarshes exhibitated the steeper slopes indicating the more samller individuals in the saltmarshes.
     (2) Explored the NBSS approach to evaluate the possible impacts of Spartina alterniflora invasion on the benthic communities along gradients of intertidal zones and invasion history of Spartina alterniflora at the nature reserve. The results showed that the characters of macrobenthic communities and the variation in macrobenthic communities described by the first two CCA axes revealed clearly the gradients of elevation and invasion history of Spartina alterniflora. The differences in the macrobenthic assemblages between the Spartina alterniflara marshes and the native Phragmites australis marshes decreased with increasing of invasion history of Spartina alterniflara. The macrobenthic biomass showed a decreasing trend while the meiobenthic biomass showed a reverse trend along the elevation gradient. The macrobenthic biomass at Spartina alterniflora marshes with longer invasion history was higher than that at recently invaded Spartina alterniflora marshes, while the meiobenthic biomass were lower. The slopes of NBSS for the sampling sites showed a trend of steeper slopes with decreasing of elevation and at the recently invaded Spartina alterniflora marshes than that at marshes with longer invasion history, while the differences between the native Phragmites australis marshes and the Spartina alterniflora marshes with long invasion history tended to be diminished. The NBSS approach could be effectively used to detect possible impacts of Spartina alterniflara invasion on the benthic assemblages. This study indicated also a potential for this approach to provide valuable insights into ecosystem ecology of invasive species, which could be very important for wetland biodiversity conservation and resource management in the Yangtze River Estuary and other such impacted areas.
     (3) Physical measures to control the spreading of an invasive plant Spartina alterniflora are important and necessary for biodiversity conservation at the Chongming Dongtan Nature Reserve. A field survey was carried out to trace the impact of managed waterlogging on the macrobenthic communities at a demonstration site. The results showed that managed waterlogging treatments had caused significant decreases in the density, biomass and diversity of macrobenthic community. Moreover, the community structure of macrobenthos was different drastically with the control site. After 12 month waterlogging and breaking the dike, the density, biomass and diversity of macrobenthos could recover gradually as compared with the control site. The result of multivariate analysis DCA ordination revealed that differences in community structure between the recovery site and the control site reduced gradually. The results from this study indicated that the control measure of managed waterlogging could have a negative impact on the macrobenthic community under saltmarsh vegetation, while such negative effects could be recovered by natural processes after ending the waterlogging treatment.
引文
1. Alpert, P., Bone, E., Holzapfel, C.,2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3,52-66.
    2. Ayres, D. R., Smith, D. L., Zaremba, K., Klohr, S., Strong, D.R.,2004. Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol. Invasions.6(2),221-231.
    3. Bertness, M.D.,1992. The ecology of a New England salt marsh. Am Sci.,80,260-268.
    4. Boudreau, P. R., Dickie, L. M., Kerr, S. R.,1991. Body-size spectra of production and biomass as system-level indicators of ecological dynamics. J. theor.Biol.152,329-339.
    5. Boudreau, P.R., Dickie, L.M.,1992. Biomass spectra of aquatic ecosystems in relation to fisheries yield. Can. J. Fish. Aquat. Sci.49,1528-1537.
    6. Brusati, E.D., Grosholz, E.D.,2006. Native and introduced ecosystem engineers produce contrasting effects on estuarine infaunal communities, Bio. Invasions.8,683-695
    7. Cadotte, M.W., McMahon, S. M., Fukami, T.,2006. Conceptual Ecology and Invasions Biology:Reciprocal Approaches to Nature. London:Kluwer Publishers.
    8. Cammen, L. M.,1979. The macro-infauna of a North Carolina salt marsh. Am Midl. Nat. 102,244-253.
    9. Capehart, A. A., Hackney, C. T.,1989. The potential role of roots and rhizomes in structuring salt-marsh benthic communities. Estuaries 12,119-122.
    10. Chapelle, G., Peck, L.,1999. Polar gigantism dictated by oxygen availability. Nature 399, 114-115.
    11. Chapin, F.S., Walker, B.H., Hobbs, R.J., Hooper, D.U., Lawton, J.H., Sala, O.E., Tilman, D.,1997. Biotic control over the functioning of ecosystems. Science 277,500-504
    12. Chen, H.L., Li, B., Hu J.B., Chen, J.K., Wu, J.H.,2007. Effects of Spartina alterniflara invasion on benthic nematode communities in the Yangtze Estuary. Mar. Ecol. Prog. Ser. 336,99-110.
    13. Chen, Z., Guo, L., Jin, B., Wu, J., Zheng, G.,2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuar. Coast. Shelf. S.82,265-272.
    14. Chen, Z.Y., Li, B., Chen, Z.Y., Chen, J.K.,2004. Local competitive effects of introduced Spartina altemiflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528,99-106.
    15. Cheng, X., Luo, Y., Chen, J., Lin, G., Chen, J., Li, B.,2006. Short-term C4 plant Spartina altemiflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil. Biol. Biochem.38,3380-3386.
    16. Craft, C., Sacco, J.,2003. Long-term succession of benthic infauna communities on constructed Spartina alterniflora marshes. Mar. Ecol. Prog. Ser.257,45-58.
    17. Crooks, J. A.,2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97,153-166.
    18. Currin, C. A., Newell, S. Y., Pearl, H. W.,1995. The role of standing dead Spatina alterniflara and benthic microalgae in salt marsh food webs:considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser.121,99-116.
    19. Daehler, C.C., Strong, D.R.,1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries USA. Biol. Conserv.78,51-58.
    20. Dittmann, S.,2000. Zonation of benthic communities in a tropical tidal flat of north-east Australis. J. Sea. Res.43,33-51.
    21. Duplisea, D. E.,2000. Benthic organism biomass size-spectra in the Baltic Sea in relation to the sediment environment. Limnol. Oceanogr.45(3),558-568.
    22. Duplisea, D., Drgas, A.,1999. Sensivity of a benthic, metazoan, biomass size spectrum to differences in sediment granulometry. Mar. Ecol. Prog. Ser.,177,73-81.
    23. Elton, C.S.1958. The Ecology of Invasion by Animals and Plants, London:Chapman & Hall.
    24. Fenchel, T.,1974. Intrinsic rate of natural increase:The relationship with body size. Oecologia 14,317-326.
    25. Forbes, T. L., Lopez, G.,1990. The effect of food concentration, body size, and environmental oxygen tension on the growth of the deposit-feeding polychaete, Capitella species 1. Limnol. Oceanogr.35,1535-1544.
    26. Frid, C. L. J., Chandrasekara, W. U., Davey, P.,1999. The restoration of mud flats invaded by common cordgrass(Spartina anglica CE Hubbard) using mechanical disturbance and its effects on the macrobenthic fauna. Aquatic Conservation:Marine Freshwater Ecosystem 9,47-61.
    27. Gao, Z. G., Zhang, L.Q.,2006. Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai, China. Estuar. Coast. Shelf Sci.69,217-224.
    28. Gerlach, S. A.,1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33(1),55-69.
    29. Grevstad, F. S., Strong, D.R., Garcia-Rossi, D, et al.,2003. Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata, agent specificity and early results. Biological Control 27,32-42.
    30. Hedge, P., Kriwoke, L. K., Patten K.,2000. Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Austral Ecol.25, 150-159.
    31. Heip, C., Vincx, M., Vranken, G.,1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev.23,399-489.
    32. Higgins, R. P., Thiel, H.,1988. Introduction to the study of meiofauna. Washington D. C.:Smith sonian Institution Press.
    33. Hoey, G. V., Degraer, S., Vincx, M.,2004. Macrobenthic community structure of soft-bottom sediments at the Belgian Continental Shelf. Estuar. Coast. Shelf Sci.59(4), 599-613.
    34. Holme, N. A., McIntyre. A. D.,1984. Methods for the study of marine benthos. London: Oxford, Blackwell Scientific Publications,217-244.
    35. Hovel, K. A., Lipcius. R. N.,2001. Habitat fragmentation in a seagrass landscape:patch size and complexity control blue crab survival. Ecology 82,1814-1829.
    36. Huang, H., Zhang, L.,2007. A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China. Ecol. Eng.29,164-172.
    37. Kerr, S. R., Dickie, L. M.,2001. The biomass spectrum:a predator-prey theory of aquatic production. New York:Columbia University Press.
    38. Kilbride, K. M., Paveglio, F. L., Grue, C. E.,1995. Control of smooth cordgrass with Rodeo(?) in southwestern Washington estuary. Wildlife. Soc. B.23,520-524.
    39. Lana, P. C., Guiss, C.,1991. Influence of Spartina alterniflara on structure and temporal variebility of macrobenthic associations in a tidal flat of Paranagud Bay (southeastern Brazil). Mar. Ecol. Prog. Ser.73,231-244.
    40. Leonard, L. A., Luther, M.E.,1995. Flow hydrodynamics in tidal marsh canopies. Limnol Oceanogr40,1474-1484.
    41. Levin, L.A., Neira, C., Grosholz, E.D.,2006. Invasive cordgrass modifies wetland trophic function. Ecology 87,419-432.
    42. Levin, L.A., Talley, T.S. and Hewitt, J.,1998. Macrobenthos of Spartina foliosa (Pacific Cordgrass) salt marshes in southern California:Community structure and comparison to a Pacific mudflat and a Spartina alterniflora (Atlantic Smooth Cordgrass) marsh. Estuaries 21,129-144.
    43. Levine, J.M., Brewer, J.S., Bertness, M.D.,1998. Nutrients, competition and plant zonation in a New England salt marsh. J. Ecol.86,125-136.
    44. Lewis, F. G.,1984. Distribution of macrobenthic crustaceans associated with Thalassia, Halodule and bare sand substrata. Mar. Ecol. Prog. Ser.19,101-113
    45. Lisa, A., Levin, C. N., Grosholz, E. D.,2006. Invasive cordgrass modifies wetland trophic function. Ecology 87(2),419-432.
    46. Lowei, G. L.,1997. Global change through invasion. Nature 388(14),627-628.
    47. Lu, L., Wu, R. S. S.,2000. An experimental study on recolonization and succession of marine macrobenthos in defaunated sediment. Marine biology 136,291-302.
    48. Macpherson, E., Gordoa, A., Garcia-Rubies, A.,2002. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuar. Coast. Shelf Sci.55,777-788.
    49. Macpherson, E., Gordoa. A.,1996. Biomass spectra in benthic fish assemblages in the benguela system. Mar. Ecol. Prog. Ser.138,27-32.
    50. McCune B, Mefford M J. PC-ORD. Multivariate analysis of ecological data. Version 4.0 Gleneden Beach, Oregon, USA:MjM Software Design,1999.
    51. Mitsch, W.J., Lefeuvre, J.C., Bouchard, V.,2002. Ecological engineering applied to river and wetland restoration. Ecol. Eng.18,529-541.
    52. Mooney, H. A., Hobbs, R.J. (eds).2000. Invasive Species in a Changing World. Washington DC:Island Press.
    53. Moore, J.C., Berlow, E., Coleman, D., de Ruiter, C., et al.,2004. Detritus, trophic dynamics and biodiversity. Ecol. Lett.7,584-600.
    54. Neira, C., Grosholz, E.D., Levin, L.A., Blake, R.,2006. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid. Ecol. Appl.16 2006,1391-1404.
    55. Neira, C., Levin, L. A., Grosholz, E. D.,2005. Benthic macrobenthos communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Mar. Ecol. Prog. Ser.292,111-126.
    56. Neira, C., Levin, L.A., Grosholz, E.D., Mendoza, G.,2007. Influence of invasive Spartina growth stages on associated macrofaunal communities. Biol. Invasions 9,975-993.
    57. Netto, S.A., Lana, P.C.,1997. Intertidal zonation of benthic macrofauna in a subtropical salt marsh and nearby unvegetated flat (SE, Brazil). Hydrobiologia 353,171-180.
    58. Netto, S.A., Lana, P.C.,1999. The role of above-and below-ground components of Spartina alterniflora (Loisel) and detritus biomass in structuring macrobenthic associations of Paranagua Bay (SE, Brazil). Hydrobiologia 400,167-177.
    59. Parker, J.D., Duffy, J.E., Orth, R.J.,2001. Plant species diversity and composition: experimental effects on marine epifaunal assemblages. Mar. Ecol. Prog. Ser.224,55-67.
    60. Patten, K.,2002. Smooth cordgrass(Spartina alterniflora) control with imazapyr. Weed Technology 16(4),826-832.
    61. Pearson, T. H., Rosenberg, R.,1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and marine biology an annual review 16,229-311.
    62. Peters, R. H.,1983. The ecological implications of body size. Cambridge University, Cambridge.
    63. Pielou, E. C.,1975. Ecological Diversity. John Wiley, New York.
    64. Pimentel, D.,2002. Biological Invasions:Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species. Boca Roton:CRC Press.
    65. Platt, T., Denman, K.,1977. Organization in the pelagic ecosystem. Helgolaender Wissenschaftliche Meeresuntersuchungen 30,575-581.
    66. Portnoy, J. W.,1999. Salt marsh diking and restoration:biogeochemical implications of altered wetland hydrology. Environ. Manage.24(1),111-120.
    67. Posey, M. H., Alphin, T. D., Meyer, D. L.,2003. Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay. Mar. Ecol. Prog. Ser.261,51-61.
    68. Queriros, A. M, Hiddink, J. G., Kaiser, M.J., Hinz, H.,2006. Effects of chronic bottom trawling disturbance on the benthic biomass, production and size spectra in different habitats. J. Exp. Mar. Biol. Ecol.335,91-103.
    69. Quiroga, E., Quinones, R., Palma, M., Sellanes, J., Gallardo, V. A., Gerdes, D., Rowe, G., 2005. Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuar. Coast. Shelf Sci.62,217-231.
    70. Rader, D. N.1984. Salt-marsh benthic invertebrate:small-scale patterns of distribution and abundance. Estuaries 7,413-420.
    71. Reise, K.1985. Tidal flat ecology. New York:Springer.
    72. Robertson, T.L., Weis. J.S.,2005. A comparison of epifaunal communities associated with the stems of salt marsh grasses Phragmites australis and Spartina alterniflora. Wetlands 25,1-7.
    73. Rodriguez, M. A., Mangan, P.,1993. Community structure of lacustrine macrobenthos: do taxon-based and size-based approaches yield similar insights? Can. J. Fish. Aquat. Sci. 50,800-815.
    74. Saiz-Salinas, J., Ramos. A.,1999. Biomass size-spectra of macrobenthic assemblages along water depth in Antarctica. Mar. Ecol. Prog. Ser.178,221-227.
    75. Sax, D. F., Stachowicz J. J., Brown J. H.,et al.2007. Ecological and evolutionary insights from species invasions. Trends. Ecol. Evol.22(9),465-471
    76. Schwinghamer, P.,1981. Characteristic size distributions of integral benthic communities. Can. J. Fish. Aquat. Sci.38,1255-1269.
    77. Schwinghamer, P.,1983. Generating ecological hypothesis from biomass spectra using causal analysis:a benthic example. Mar. Ecol. Prog. Ser.13,151-166.
    78. Schwinghamer, P., Hargrave, B., Peer, D., Hawkins, C.M.,1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Mar. Ecol. Prog. Ser.31,131-142.
    79. Sheldon, R, W,, Paraksh, A., Sutcliffe, W. H.,1972. The size distribution of particles in the ocean. Limnol. Oceanogr.17(3),327-340.
    80. Shuman, F. R., Lorenzen, C.F.,1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr.20,580-586.
    81. Simberloff, D.,1996. Impacts of introduced species in the United States. Consequences 2, 13-22.
    82. Simenstad, C. A., Thom, R.M.,1995. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest estuaries. Hortus Northwest 6,9-40.
    83. Sprules, W., Munawar, M.,1986. Plankton size spectra in relation to ecosystem prodctivity, size, and perturbation. Can J Fish Aquat Sci,43,1789-1794.
    84. Strayer, D.,1986. The size structure of a lacustrine zoobenthic community. Oecologia 69(4),513-516.
    85. Talley, T. S., Levin, L. A.,2001. Modification of sediments and macrofauna by an invasive marsh plant. Biol. Invasion 3,51-68.
    86. ter Braak, C.J.F., Smilauer, P.,1998. CANOCO reference manual and user's guide to Canoco for Windows—Software for canonical community ordination (version 4). Microcomputer Power, New York:Ithaca.
    87. Thiel, H.,1975. The size structure of the deep-sea benthos. Int Rev Gesamt Hydrobiol, 60(5),575-606.
    88. Thistle, D.,1981. Natural physical disturbance and communities of marine soft bottoms. Mar. Ecol. Prog. Ser.,6,223-228.
    89. Vitousek, P.M., D'Antonio, C.M., Loope, L.L., Westbrooks, R.,1996. Biological invasions as global environmental change. Am. Sci.,84,468-478.
    90. Vitousek, P.M., D'Antonio, C.M., Loope, L.L., et al.1997 Introduced species:a significant component of human-caused global change. New. Zeal. J. Ecol.,21,1-16.
    91. Wang, J., Zhang, X., Nie, M., et al.,2008. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary. Ecol. Eng.,34(1),57-64.
    92. Wardle, D. A., Barker, G. M., Yeates, G. W., Bonner, K. I., Ghani. A.,2001. Introduced browsing mammals in New Zealand natural forests:aboveground and belowground consequences. Ecol. Monogr.71(4),587-614.
    93. Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., van der Putten, W.H., Wall, D.H.,2004. Ecological linkages between aboveground and belowground biota. Science 304,629-663.
    94. Warwick, R.M.,1984. Species size distributions in marine benthic communities. Oecologia 61,32-41.
    95. Webster, P. J., Rowden, A. A., Attrill, M. J.,1998. Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuar. Coast. Shelf Sci.,47,351-357.
    96. Wieser, W.,1960. Benthic studies in Buzzards Bay Ⅱ. The meiofauna. Limnol. Oceanogr. 5,121-137.
    97. Williamson, M., Fitter, A.,1996. The varying success of invaders, Ecology 77, 1666-1670.
    98. Wittenberg, R. Cock, M.J.W.,2001. Invasive Alien Species:A Toolkit of best Prevention and Management Practices. CAB International, Wallingford, Oxon, UK.
    99. Wu, M. X., Hacker, S., Ayres, D., et al.1999. Potential of Prokelisia spp. as biological control agents of English cordgrass, Spartina anglica. Biocontrol.16(3),267-273.
    100. Yang, S. L., Li, H., Ysebaert, T., et al.,2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta:on the role of physical and biotic controls. Estuar. Coast. Shelf Sci.77,657-671
    101.Yuhas, C. E., Hartman, J.M., Weis, J.S.,2005. Benthic communities in Spartina alterniflora and Phragmites australis dominated Salt Marshes in the Hackensack Meadowlands, New Jersey. Urban Habitats 3,158-191.
    102. Zar, J.,1999. Biostatistical Analysis. New Jersey:Prentice-Hall press.
    103. Zhou, H., Liu, J., Qin, P.,2009. Impacts of an alien species(Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng.,35(4), 521-528.
    104. Zipperer, V.R.,1996. Ecological effects of the introduced cordgrass, Spartina alterniflora on the benthic community structure of Willapa Bay, Washington. MS thesis, University of Washington, Seattle, WA.
    105.安传光,赵云龙,林凌等,2008.崇明岛潮间带夏季大型底栖动物多样性.生态学报,28(2),577-586.
    106.陈兵,康乐.2003.生物入侵及其与全球变化的关系.生态学杂志.22(1),31-34.
    107.陈吉余,2007.中国河口海岸研究与实践.北京:高等教育出版社.
    108.陈琳,邓自发,安树青等.2007.淡咸水轮换浇灌抑制互花米草的克隆生长和繁殖.植物生态学报,31(4),645-651.
    109.陈中义,2004.互花米草入侵国际重要湿地崇明东滩的生态后果.上海:复旦大学博士论文.
    110.陈中义,李博,陈家宽.2004.米草属植物入侵的生态后果及管理对策.生物多样性,12(2),280-289.
    111.邓可,张志南,黄勇等.2005.南黄海典型站位底栖动物粒径谱及其应用.中国海洋大学学报35(6),1005-1010.
    112.方涛,李道季,李茂田等,2006.长江口崇明东滩底栖动物在不同类型沉积物的分布及季节性变化.海洋环境科学25(1),51-62.
    113.高慧,彭筱葳,李博等,2006.互花米草入侵九段沙河口湿地对当地昆虫多样性的影响.生物多样性,14,400-409.
    114.高占国,张利权.2006.应用间接排序识别湿地植被的光谱特征:以崇明东滩为例.植物生态学,30(2),252-260.
    115.黄华梅,2009上海滩涂盐沼植被的分布格局和时空动态研究.上海:华东师范大学博士论文.
    116.黄华梅,张利权,袁琳.2007.崇明东滩自然保护区盐沼植被的时空动态.生态学报,27(10),4166-4172.
    117.李贺鹏,张利权.2007.外来植物互花米草的物理控制实验研究.华东师范大学学报(自然科学版),6,44-45.
    118.廖成章.2007.互花米草入侵对长江口盐沼生态系统碳氮循环的影响.上海:复旦大学博士学位论文.
    119.林岿璇,张志南,王睿照.2004.东、黄海典型站位底栖动物粒径谱研究.生态学报,24(2),241-245.
    120.刘保元,邱东茹,1997.富营养浅湖水生植被重建对底栖动物的影响.应用与环境生物学报,3(4),323-327.
    121.陆健健,何文珊,童春富等,2006.湿地生态学.北京:高等教育出版社.
    122.马克平,1994.生物多样性的测度方法.见:钱迎倩,马克平主编.生物多样性的原理与方法.北京:中国科学技术出版社,
    123.全为民,赵云龙,朱江兴等.2008.上海市潮滩湿地大型底栖动物的空间分布格局.生态学报,28(10),5179-5187.
    124.万方浩,郭建英,王德辉.2002.中国外来入侵生物的危害与管理对策.生物多样性,10(1),119-125
    125.王爱军,高抒,贾建军.2006.互花米草对江苏潮滩沉积和地貌演化的影响.海洋学报,28(1),92-99.
    126.王蒙.2006.长江口九段沙湿地盐沼植物根围细菌群落结构和多样性的研究.上海:复旦大学博士学位论文.
    127.王卿,安树青,马志军,等,2006.入侵植物互花米草:生物学、生态学及管理.植物分类学报,44(5),559-588.
    128.王睿照,张志南,2003.海洋底栖生物粒径谱的研究.海洋湖沼通报,(4),61-68.
    129.王智晨,张亦默,潘晓云,马志军,陈家宽,李博,2006.冬季火烧与收割对互花米草地上部分生长与繁殖的影响.生物多样性14(4),275-283.
    130.吴纪华,2001.崇明岛湿地围垦对线虫群落结构的影响.上海:复旦大学博士后出站报告.
    131.肖强,郑海雷,叶文景,等,2005.水淹对互花米草生长及生理的影响.生态学杂志.24(9),1025-1028.
    132.谢志发,何文珊,刘文亮,等.2008.不同发育时间的互花米草盐沼对大型底栖动物群落的影响.生态学杂志,27(1):63-67.
    133.杨泽华,童春富,陆健健,2006.长江口湿地三个演替阶段大型底栖动物群落特征.动物学研究27,411-418.
    134.杨泽华,童春富,陆健健,2007.盐沼植物对大型底栖动物群落的影响.生态学报,27(11),4387-4393.
    135.袁琳,张利权,肖德荣,等.2008.刈割与水位调节集成技术控制互花米草的示范研究.生态学报,28(11),5723-5730.
    136.袁兴中,2001.河口潮滩湿地底栖动物群落的生态学研究.上海:华东师范大学博士论文.
    137.袁兴中,陆健健,2002.长江口潮滩湿地大型底栖动物群落的生态学特征.长江流域资源与环境,11,414-420.
    138.袁兴中,陆健健,刘红,2002.长江口底栖动物功能群分布格局及其变化.生态学报,22(12),2054-2062.
    139.张金屯.2004.数量生态学.北京:科学出版社.
    140.张利权,雍学葵,1992.海三棱藨草种群的物候与分布格局研究.植物生态学与地植物学学报.16(1),43-51.
    141.张永泽,王煊.2001.‘自然湿地生态恢复研究综述.生态学报,21(2),309-314.
    142.张志南,周红,郭玉清等,2001.黄河口水下三角洲及其邻近水域线虫群落结构的比较研究.海洋与湖沼.32(4),436-444.
    143.章飞军,童春富,张衡,等.2007.长江口潮下带春季大型底栖动物的群落结构.动物学研究.28(1),47-52.
    144.赵平,夏冬平,王天厚.2005.上海市崇明东滩湿地生态恢复与重建工程中社会经济价值分析.生态学杂志24(1),75-78.
    145.赵永强,陈全镇,曾江宁等,2009.椒江口潮间带多毛类动物时空分布与环境因子的关系.中国水产科学16(4),580-587.
    146.朱晓君,陆健健,2003.长江口九段沙潮间带底栖动物的功能群.动物学研究,24(5),355-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700