用户名: 密码: 验证码:
长江口盐沼潮沟鱼类多样性时空分布格局
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口与滨海盐沼的重要生态功能之一是维持河口、近海鱼类多样性及其渔业种群。盐沼高生产力、生境高度异质化的特征为鱼类提供了充足的饵料生物与逃避捕食者的避难场所。因此,盐沼生境中的鱼类密度、生长率和存活率通常显著高于河口与滨海其它生境类型。盐沼鱼类的优势种通常是河口、近海重要渔业捕捞对象,已有研究揭示盐沼面积与近海渔业产量之间存在显著的正相关关系。此外,盐沼还是净生产力的输出者,其部分初级生产力通过鱼类随潮汐的迁徙输送到河口与近海生态系统,可能是这些生态系统食物网中次级生产力的主要能量来源。然而,盐沼一般位于人口密集、经济发达的区域,全球盐沼面积已迅速减少。在人类活动不可避免的情况下,认识盐沼对于鱼类的保育价值,鉴定河口与近海鱼类必需的盐沼生境,对河口与近海鱼类多样性的保护、近海渔业的可持续发展十分关键。当前,海洋科学领域的科学家提出充分认识盐沼鱼类多样性时空分布格局是评估盐沼鱼类保育价值、是科学地保护、恢复与管理盐沼生态系统的前提条件。
     我国在长江河口、杭州湾、黄海沿岸、渤海湾等区域有大量盐沼分布。过去的60年,这些地区由于围垦已导致盐沼面积迅速减少,现存盐沼也正面临着多重威胁。开展盐沼鱼类多样性研究,充分认识盐沼对于我国近海鱼类多样性的保育价值十分迫切。然而,我国盐沼鱼类多样性时空分布格局的基础研究相当缺乏,亟待开展全面系统的研究。
     本研究选择长江口上海市崇明东滩与九段沙湿地为研究地点,以盐沼潮沟生境为切入点,认识鱼类利用河口盐沼的潮汐、昼夜、月相与季节变化特征,量化沿盐度梯度与沿潮沟级别梯度盐沼鱼类多样性的空间分布格局,并探讨潮沟地貌特征对盐沼鱼类多样性空间分布的影响,旨在系统揭示长江口盐沼潮沟鱼类多样性的时空分布格局。
     2004年7月至2008年12月,在长江口崇明东滩、九段沙湿地使用插网、拖网、拦网进行了系统的盐沼潮沟鱼类野外实地调查,主要研究结果如下:
     (一)鱼类多样性的群落组成
     2004年7月与11月、2005年2月与5月、2007年3至7月与9至12月、2008年1至3月、5至7月与12月在崇明东滩、九段沙湿地盐沼潮沟的野外调查共捕获鱼类136,425尾、157.417kg(湿重),记录到鱼类13目25科63属70种(详见附录Ⅰ)。
     物种数最多的目为鲈形目Perciformes(10科30属34种)与鲤形目Cypriniformes(2科17属17种),分别占鱼类总物种数的48.6%与24.3%。物种数最多的科为虾虎鱼科Gobiidae (8属22种)与鲤科Cyprinidae (14属14种),分别占总物种数的31.4%与20.0%。数量优势的科依次为虾虎鱼科(39.0%)、鲤科(24.4%)、鲻科Mugilidae (20.2%)、鳀科Engraulidae (12.1%)、花鲈科Lateolabracidae (2.7%)。占鱼类总捕获个体数百分比大于或等于1%的鱼类物种依次为飘鱼Pseudolaubuca sinensis (19.5%)、斑尾复虾虎鱼Synechogobius ommaturus (15.0%)、前鳞鮻Liza affinis(14.5%)、阿部鲻虾虎鱼Mugilogobius abei(9.5%)、纹缟虾虎鱼Tridentiger trigonocephalus (7.1%)、凤鲚Coilia mystus(6.3%)、刀鲚Coilia nasus(5.8%)、鮻Chelon haematocheilus (5.7%)、贝氏口Hemiculter bleekeri (4.5%)、花鲈Lateolabrax maculatus (2.7%)、大鳍弹涂鱼Periophthalmus magnuspinnatus(2.3%)、棕刺虾虎鱼Acanthogobius luridus(2.2%)、弹涂鱼Periophthalmus modestus (1.0%)。这十三种鱼类占总捕获个体数的96%。其中,斑尾复虾虎鱼、前鳞鮻、凤鲚、刀鲚、鮻与花鲈是长江口重要的渔业对象。可见,长江口盐沼对于长江口渔业可持续发展十分重要。
     依据Elliott et al. (2007)定义的生态类群划分(详见第二章),盐沼潮沟中记录到的鱼类包括8个生态类群,即海洋洄游鱼类(21种)、淡水偶见鱼类(16种)、河口鱼类(15种)、淡水洄游鱼类(8种)、海洋偶见鱼类(6种)、溯河洄游鱼类(2种)、降河洄游鱼类(1种)、半溯河洄游鱼类(1种)。这些生态类群按占鱼类总个体数百分比从大到小依次排列为:海洋洄游鱼类(33.8%)、河口鱼类(29.4%)、淡水洄游鱼类(19.9%)、半溯河洄游鱼类(6.3%)、溯河洄游鱼类(5.8%)、淡水偶见鱼类(4.8%)、降河洄游鱼类(0.04%)和海洋偶见鱼类(0.04%)。可见,长江口盐沼是多个鱼类生态类群的重要栖息生境,具有强大的维持鱼类多样性的生态系统服务功能。
     依据鱼类生活史阶段划分,幼鱼占总捕获鱼类个体数的85%。淡水洄游、淡水偶见、降河洄游、溯河洄游、半溯河洄游鱼类的幼鱼占各自类群数量的百分比均在90%以上;河口鱼类和海洋洄游鱼类幼鱼百分比分别是80.4%和75.2%;海洋偶见鱼类幼鱼比例为50.8%。由此可见,长江口盐沼可能是鱼类重要的育幼场。
     (二)鱼类多样性时间分布格局
     1)季节变化特征
     为了认识长江口盐沼鱼类多样性的季节变化特征,2004年7月(夏季)与11月(秋季)、2005年2月(冬季)与5月(春季)大潮期间使用插网在九段沙湿地盐沼潮沟开展了鱼类调查。研究期间共捕获鱼类25010尾、29.5 kg,隶属于17科31属34种。优势鱼类(相对重要性指数IRI>100)包括斑尾复虾虎鱼、前鳞鮻、鮻、尖吻蛇鳗Ophichthus apicalis、花鲈、拉氏狼牙虾虎鱼Odontamblyopus lacepedii。四个季节鱼类群落主要由幼鱼构成,优势生态类群是河口定居鱼类。春季、夏季、秋季和冬季分别记录到鱼类19、20、13、9种。春季鱼类数量最多,夏季鱼类生物量最高。双因子方差分析揭示鱼类物种数、总个体数、总生物量及优势种个体数与生物量季节间差异显著。无度量多维排序结果显示鱼类群落在四个季节明显分离。单因子相似性分析揭示季节间鱼类群落结构差异显著。导致鱼类多样性季节变化的主要原因可能是与水文特征(温度与盐度)相适应的鱼类繁殖期的选择。
     2)大小潮变化特征
     为了认识长江口盐沼鱼类多样性的大小潮变化特征,2007年3月至2008年2月(2007年8月因天气原因未采样)大潮和小潮期间使用插网在崇明东滩湿地盐沼潮沟开展了鱼类周年调查。研究期间捕获鱼类74062尾、47kg,隶属于18科45属50种。优势鱼类(IRI>100)包括斑尾复虾虎鱼、前鳞鮻、鮻、飘鱼、棕刺虾虎鱼、刀鲚、纹缟虾虎鱼、拉氏狼牙虾虎鱼和贝氏口。鱼类群落主要由幼鱼构成,占鱼类总个体数的97%。方差分析显示鱼类物种数、生物量在大小潮间差异显著,但总个体数在大小潮间没有显著差异。春、秋、冬三季鱼类物种数大潮阶段显著多于小潮阶段,夏季鱼类物种数大小潮间没有差异。刀鲚、拉氏狼牙虾虎鱼个体数大小潮间差异显著,其它优势鱼类大小潮间个体数没有显著差异。刀鲚仅出现在夏季,其个体数小潮阶段显著地多于大潮阶段。拉氏狼牙虾虎鱼主要出现在夏、秋两季,其大潮阶段的个体数明显多于小潮阶段。导致鱼类多样性大小潮变化的主要原因可能与水深有关。
     3)月相变化特征
     为了认识长江口盐沼鱼类多样性的月相变化特征,2008年5至6月在九段沙湿地使用插网进行了8个月相阶段的鱼类调查。研究期间捕获鱼类17935尾,隶属于9科21属23种。方差分析揭示不同月相阶段间鱼类物种数、总个体数和总生物量存在显著差异。满月、下弦凹月、新月与上弦凹月鱼类的物种数、总个体数和总生物量均高于另外四个月相阶段,鱼类总个体数和生物量的峰值出现在新月阶段。数量优势的鱼类显示了不同月相变化格局,阿部鲻虾虎鱼、棘头梅童鱼Collichthys lucidus的个体数峰值出现在新月或上弦凸月,而前鳞鮻、大弹涂鱼、花鲈的个体数在满月或下弦凸月成峰。双因子相似性分析揭示不同月相阶段间鱼类群落差异显著(Global test R=0.542, P=0.001)。冗余分析表明水深与水温是导致鱼类多样性月相变化的主要环境因子。可见,盐沼潮沟水文特征可能是决定鱼类多样性月相变化的主要原因。
     4)日夜变化特征
     以上三个时间动态研究均涉及鱼类多样性的日夜比较。结果表明在不同的季节、大小潮以及月相阶段鱼类物种数、总个体数和总生物量以及优势鱼类物种的个体数与生物量一般没有显著的日夜差异。仅仅在特定的季节、大小潮或月相阶段显示鱼类个体数或生物量存在日夜间的差异。
     (三)鱼类多样性空间分布格局
     1)沿潮沟级别梯度鱼类空间分布特征
     为了认识沿潮沟级别梯度盐沼鱼类空间分布特征,2008年5至7月大潮期间在九段沙湿地选择具有1至4级发育良好的潮沟系统使用拖网开展了鱼类调查。研究期间捕获鱼类1169尾、1.5 kg,隶属8科14属16种。优势种依次为大鳍弹涂鱼、前鳞鮻、阿部鲻虾虎鱼、花鲈、弹涂鱼、鮻和斑尾复虾虎鱼。1级、2级和4级潮沟各捕获鱼类11种,3级潮沟中捕获鱼类13种。各级潮沟间鱼类物种数差异不显著。鱼类总捕获个体数在潮沟级别间差异显著,从1至4级趋向于增加。数量排序图显示低级别(1至2级)潮沟鱼类群落的均匀度高于高级别潮沟(3至4级)。沿潮沟级别梯度,优势鱼类的个体数和体长分布频率显示不同的变化趋势。聚类分析揭示鱼类群落能划分为1至3级与4级两个亚群落。典范对应分析揭示距潮沟入口的距离和潮沟截面面积这两个地貌因子是导致鱼类亚群落间显著差异的原因。可见,不同级别盐沼潮沟对于各生态类型的鱼类和不同生活史阶段都有着重要作用。
     2)盐度对鱼类空间分布的影响
     为了认识盐度对盐沼鱼类空间分布的影响,2008年5月与12月大潮期间在崇明东滩湿地低盐区3条盐沼潮沟(盐度值为0.3-4.5,平均值2.0)与中盐区(5.8-13,平均值8.8)6条潮沟进行了鱼类调查。研究期间捕获鱼类7818尾、18.6kg,隶属于12科31属33种。优势种依次为阿部鲻虾虎鱼、前鳞簸、花鲈、大鳍弹涂鱼、鮻、大弹涂鱼、斑尾复虾虎鱼、拉氏狼牙虾虎鱼和纹缟虾虎鱼。这些优势种对于水体盐度值的响应不同。阿部鲻虾虎、大鳍弹涂鱼、大弹涂鱼与拉氏狼牙虾虎鱼主要分布在中盐区的潮沟;花鲈、前鳞鮻主要分布在低盐区潮沟;纹缟虾虎鱼中盐、低盐区均有分布;鮻5月主要分布于低盐区潮沟,而12月主要分布于高盐区潮沟;斑尾复虾虎鱼5月主要分布于中盐区潮沟,而12月主要分布于低盐区潮沟。中盐区主要以河口定居鱼类为主,而低盐区主要以海洋暂居鱼类为主。冗余分析揭示崇明东滩湿地盐沼潮沟群落能清楚地划分为低盐区与中盐区两个亚群落。可见,河口不同盐度区域的盐沼对于维持不同生态类群的鱼类和生活史阶段有着重要作用,盐度在长江口盐沼鱼类多样性空间分布格局中扮演重要角色。
     3)潮沟地貌特征对鱼类空间分布的影响
     为了认识潮沟地貌特征对鱼类空间分布的影响,2007年3至7月、9月、11月和2008年2月在大小潮之间使用拦网对崇明东滩湿地一条较大潮沟的主干两侧7条小潮沟进行了地貌变量测量和鱼类调查。研究期间捕获鱼类10432尾、46kg,隶属于8科23属25种。优势种包括前鳞鮻、鮻、鲫Carassius auratus auratus、斑尾复虾虎鱼、棕刺虾虎鱼和花鲈。典型相关分析揭示鱼类的物种数、密度、生物量与潮沟地貌变量显著相关。具有较小深度和倾斜度的小潮沟能够容纳更多的鱼类个体。具有较大水深、截面面积、容积以及倾斜度的潮沟中有更多的鱼类物种数。前鳞鮻和鮻的密度在高程较高的小潮沟中较多,而花鲈偏好具有较大水深、截面面积和坡度的潮沟。可见,潮沟地貌在鱼类选择盐沼微生境中扮演重要角色。
     综上所述,长江口盐沼具有强大的维持鱼类多样性的生态系统服务功能,是多个鱼类生态类群的重要栖息生境,是长江口重要渔业物种的育幼场所,对于长江口渔业可持续发展十分重要。长江口盐沼潮沟鱼类群落的主要时空分布格局特征可概括为:a)少数鱼类物种占优势;b)幼鱼是鱼类群落的主体;c)海洋洄游鱼类、河口鱼类是优势生态类群;d)鱼类群落呈现明显的季节与月相变化动态,相对较弱的大小潮与日夜变化动态;e)沿海岸线垂直方向,低级别潮沟与高级别潮沟鱼类群落结构差异显著;f)沿海岸线平行方向,低盐区与中盐区鱼类群落结构差异显著。水文特征、潮沟地貌特征与鱼类生活史特征是长江口盐沼潮沟鱼类多样性时空分布格局形成的主要成因。本研究结果对于长江口盐沼湿地的保护、恢复与管理的指导意义为:a)盐沼湿地是长江口渔业可持续发展不可或缺的生境;b)春、夏季是鱼类利用盐沼生境的关键时期;c)恢复盐沼湿地时应考虑恢复具有不同地貌特征的潮沟;d)在围垦盐沼湿地不可避免时,应考虑保留不同盐度区域潮沟系统发育良好的盐沼生境。
One salt marsh function in estuarine and coastal ecosystems is to be an important nursery habitat for fishes and thus support estuarine and coastal fisheries. Due to high productivity and habitat heterogeneity, salt marshes provide abundant food sources and shelters for fish to escape predators. Therefore, fish densities, growth rates and survival in salt marshes are generally higher than in other estuarine and coastal habitats. Most dominant fishes in salt marshes constitute important fishery populations. Findings from previous studies have revealed that estuarine or near shore fishery yields were positively correlated with the areas of salt marsh. In addition, salt marshes export net productivity and are considered to be a significant source of secondary production in food webs of estuarine and coastal ecosystems. Part of the primary productivity is delivered to estuarine and coastal ecosystems by fishes. However, salt marshes are commonly located in regions with high human population density and developed economies. Salt marsh areas have rapidly decreased in the world in recent decades. Under unavoidable human activities, it is important to understand the conservation value of salt marshes for fishes, and to identify essential fish habitats in salt marshes. Therefore, fish knowledge is greatly needed for the conservation, restoration and management of salt marsh ecosystems.
     In China, salt marshes are widely distributed in the Yangtze River estuary, Hangzhou Bay, Yellow Sea and Gulf of Bohai. In the past 60 years, the area of salt marshes has greatly diminished owing to reclamation. The extant salt marshes have also multiple additional threats such as alien species invasions. It is necessary to study fish diversity patterns in Chinese salt marshes to understanding the salt marsh's conservation value for offshore fish diversity and to improve the knowledge of salt marsh ecosystem functions. However, baseline research on salt marsh fishes is very limited in China.
     In this study, intertidal salt marsh creeks in the Chongming Island and Jiuduansha Islands of the Yangtze River estuary are selected as study sites. The aim of this study is to reveal the temporal and spatial distribution patterns of fish diversity in these intertidal salt marsh creeks. Dial, lunar and seasonal changes of salt marsh fishes are delimited. Along a creek-order gradient, the spatial distribution patterns of salt marsh fishes are also described. Effects of salinity and geomorphological features on fish spatial distributions of intertidal salt marsh creeks are explored.
     From July 2004 to December 2008, fyke nets, seine nets and channel nets were used to sample fishes in intertidal salt marsh creeks of Chongming Island and Jiuduansha Islands. The major results are listed as follows:
     I. Composition of fish communities in intertidal salt mash creeks
     A total of 136,425 individuals weighing 157.417 kg were caught from intertidal salt marsh creeks in Chongming Island and Jiuduansha Islands in July and November 2004, February to May 2005, March to July and September to December 2007, January to March, May to July and December 2008. Fishes belonged to 13 orders,25 families,63 genera and 70 species (for details see Appendix I).
     The most species-rich orders were Perciformes (10 families,30 genera and 34 species) and Cypriniformes (2 families,17 genera and 17 species), which comprised 48.6%and 24.3% of the total species. The most species-rich families were Gobiidae (8 genera and 22 species) and Cyprinidae (14 genera and 14 species), together comprising 31.4% and 20.0% of the total species. The most numerically abundant families were Gobiidae (39.0%), Cyprinidae (24.4%), Mugilidae (20.2%), Engraulidae (12.1%) and Lateolabracidae (2.7%).
     The dominant species (percentage contribution of individuals equal to or greater than 1%) were:Pseudolaubuca sinensis (19.5%), Synechogobius ommaturus (15.0%), Liza affinis (14.5%), Mugilogobius abei (9.5%), Tridentiger trigonocephalus (7.1%), Coilia mystus (6.3%), Coilia nasus (5.8%), Chelon haematocheilus (5.7%), Hemiculter bleekeri (4.5%), Lateolabrax maculates (2.7%), Periophthalmus magnuspinnatus (2.3%), Acanthogobius luridus (2.2%), Periophthalmus modestus (1.0%). These 13 fish species comprised 96% of the total catch. Among these, S. ommaturus, L. affinis, C. mystus, C. nasus, C. haematocheilus and L.maculatus were important fishery species in the Yangtze River Estuary. These findings indicate that salt marshes are important for sustaining fisheries in the Yangtze River Estuary.
     According to the division of fish ecological guilds defined by Elliott et al. (2007), eight such guilds using intertidal salt marsh creeks were recognized:marine migrants (21 species), freshwater stragglers (16 species), estuarine species (15 species), freshwater migrants (8 species), marine stragglers (6 species), anadromous (2 species), catadromous (1 species) and semi-anadromous (1 species). The fish ecological guilds ranking by the individuals percentage were:marine migrants (33.8%), estuarine species (29.4%), freshwater migrants (19.9%), semi-anadromous (6.3%), anadromous (5.8%), freshwater stragglers (4.8%), catadromous (0.04%) and marine stragglers (0.04%). These findings indicate that the salt marshes of the Yangtze River Estuary are important habitats for different fish ecological guilds with different ecological functions.
     Fish communities were dominated by juvenile fishes, which comprised 85% of the total catches. Juvenile individuals in each of freshwater migrants, freshwater stragglers, anadromous, catadromous and semi-anadromous fishes, respectively comprised more than 90%of the total catch of each ecological guild. Juveniles of estuarine species and marine migrants comprised 80.4% and 75.2%. Juveniles of marine stragglers comprised 50.8% of its total catch. Thus, the salt marshes in the Yangtze River Estuary are likely to be important nursery habitats for juvenile fishes.
     II. Temporal distribution patterns of fishes in intertidal salt marsh creeks
     1) Seasonal changes
     Seasonal changes of fish diversity in intertidal salt marsh creeks were investigated in July and November,2004, and February and May,2005 in Jiuduansha. Fishes were collected by consecutive day and night samplings using fyke nets during the ebbing spring tides. A total of 25,010 individuals were caught during the study.17 families, 31 genera and 34 species were documented. The dominant species (Index of Relative Importance, IRI> 100) were:S. ommaturus, L. affinis, C. haematocheilus, Ophichthus apicalis, L. maculatus and Odontamblyopus lacepedii. There were significantly seasonal changes in fish use of salt marshes. No significant effects of diel periodicity on the fish community were found except for fishes sampled in summer. There were 19,20,13 and 9 fish species respectively recorded in Spring, Summer, Autumn and Winter. The highest abundance of fishes was documented in Spring, and the highest biomass of fishes in Summer. Non-metric multidimensional scaling analysis showed a clear separation of fish communities for different seasons. The seasonal pattern in fish species was probably due to fish spawning seasons adapted to hydrological characteristics (temperature and salinity).
     2) Tidal patterns
     The changes in fish diversity between spring-neap tides were investigated from March 2007 to February 2008 in Dongtan, except for August 2007 owing to poor weather. Fishes were collected using fyke nets. A total of 74,062 individuals, belonging to 18 families,45 genera and 50 species, were captured. The dominant species (IRI> 100) were S. ommaturus, L. affinis, C. haematocheilus, P. sinensis, A. luridus, C. nasus, T. trigonocephalus, O. lacepedii and H. bleekeri. The fish community was dominated by juvenile individuals, comprised 97% of the total catches. ANOVA analysis revealed that fish species richness and total biomass were significantly affected by spring-neap tides, but the total abundance was not significantly different between spring and neap tides. In Spring, Autumn and Winter, there was higher richness of species during spring tides than during neap tides. In Summer, no significant difference in species richness between spring and neap tides was observed. Among dominant species, only C. nasus and O. lacepedii showed significant differences in abundance between spring and neap tides. C. nasus only appeared in Summer. More individuals of C. nasus were captured during neap tides than spring tides. O. lacepedii showed a reversed trend. The spring-neap changes of fish diversity in salt marsh creeks may be associated with water depth.
     3) Lunar patterns
     The lunar changes of fish diversity were investigated in eight lunar phases in May through June 2008 in intertidal salt marsh creeks of the Jiuduansha wetland. A total of 17,935 individuals, belonging to 9 families,21 genera and 23 species, were captured. ANOVA analysis revealed that fish species richness, abundance, and biomass were significantly affected by lunar phases. There were higher species richness, abundance and biomass in the full moon, waning crescent moon, new moon and waxing crescent moon than in other lunar phases. Fish abundance and species richness peaked in the new moon and full moon. Abundance of M. abei and C. lucidus reached maxima during the new moon and waxing gibbous moon. There was higher abundance of L. affinis, B. pectinirostris and L. maculatus in the full moon or waning gibbous moon than in other lunar phases. Two-way ANOSIM analyses revealed significant lunar changes in fish communities (Global test R=0.542, P=0.001). Redundancy analysis revealed that water depth and temperature are the main environmental variables in shaping lunar changes in fish communities. Thus, hydrological characteristics of salt marsh creeks may determine lunar changes in fish diversity.
     4) Diel patterns
     Effects of diel periodicity on fish communities were all involved in above-mentioned three studies. Generally, there were inconspicuous differences between day and night for species richness, total abundance, total biomass and abundance of dominant species. Significant differences in fish abundance and biomass between day and night were only observed in special season, month, spring-neap tides or lunar phases.
     Ⅲ. Spatial distribution patterns of fishes in intertidal salt marsh creeks
     1) Spatial distribution along a creek order gradient
     Fish spatial distribution patterns along a creek order gradient (1-4 orders) were investigated in a low salinity intertidal salt marsh creek network. Fish were sampled using seine nets during daytime high slack water of spring tides for two or three days each in May through July 2008. A total of 1169 individuals, belonging to 8 families, 14 genera and 16 species, were captured. The dominant species were P. magnuspinnatus, L. affinis, M. abei, L. maculatus, P. modestus, C. haematocheilus and S. ommaturus. Rank abundance curves indicated a higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Dominant fish species displayed different variation trends in abundance or in size-frequency distribution along the creek order gradient. The spatial separation of fish assemblages between the first-third orders and the fourth order could be attributed to geomorphological factors (distance to mouth and cross-section area). These findings indicate that both lower-and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.
     2) Effects of salinity on spatial distributions of fishes
     Effects of salinity on spatial distributions of fishes were investigated in three oligohaline creeks (salinity 0.3~4.5, mean 2.0) and six mesohaline creeks (salinity 5.8~13, mean 8.8) in the Chongming Dongtan wetland. Fishes were sampled with fyke nets during spring tides between May and December 2008. A total of 7818 individuals, belonging to 12 families,31 genera and 33 species, were captured. The dominant species were M. abei, L. affinis, L. maculatus, P. magnuspinnatus, C. haematocheilus, B. pectinirostris, S. ommaturus, O. lacepedii and T. trigonocephalus. These dominant species responded to salinity differently. M. abei, P. magnuspinnatus, B. pectinirostris and O. lacepedii were mainly distributed in the mesohaline creeks; L. maculates and L. affinis were mainly distributed in the oligohaline creeks; T. trigonocephalus was distributed in both mesohaline and oligohaline creeks. A higher abundance of L. affinis was found in oligohaline creeks during May and in mesohaline creeks in December. S. ommaturus showed the reversed trend. Estuary residents dominated the fish assemblage in mesohaline creeks, and juveniles of marine transients dominated fish assemblage in oligohaline creeks. Redundancy analysis revealed a clear spatial separation of fish assemblages between oligohaline and mesohaline marsh creeks, which could be attributed to salinity.
     3) Effects of geomorphological features on spatial distributions of fishes
     Effects of geomorphological features on spatial distributions of fishes were investigated in seven small creeks within one large creek at the Chongming Dongtan wetland. Fishes were collected using channel nets in March through July, September, November 2007 and February 2008. A total of 10432 individuals, belonging to 8 family,23 genera and 25 species, were captured. The dominant species were L. affinis, C. haematocheilus, C. auratus, S. ommaturus, A. luridus and L. maculatus. Canonical correlation analyses showed that species richness, total abundance and biomass were strongly related to the creek geomorphological variables. Intertidal creeks with shallow water depth, gentle slope and steepness supported higher fish abundance. Species richness was positively correlated with depth, cross sectional area, volume and steepness. L. affinis and C. haematocheilus favored small size creeks with high elevations, and L. maculatus preferred deep creeks with large cross section, slope, and steepness. Geomorphological features of creeks play important roles for fishes in selecting habitats.
     In sum, salt marshes in the Yangtze River estuary show strong ecosystem functions for supporting fish diversity, and provide important habitats for multiple fish ecological guilds and as nursery grounds of economically important fishery species. The temporal and spatial distribution patterns of the fish community in the intertidal salt marsh creeks can be summarized as follows:a) The fish community was dominated by a few species; b) Juveniles comprised the major part of the fish community; c) Marine migrants and estuarine species were the dominant fish ecological guilds; d) The fish communities showed strong patterns of seasonal changes or lunar changes, and related weak patterns of spring-neap tide changes or diel changes; e) Along a vertical direction to the coastline, fish community structures showed significant differences between lower-order creeks and higher-order creeks; f) Parallel to the coastline, fish community structures showed significant differences between oligohaline and mesohaline creeks; g) Hydrological characteristics, geomorphological features and fish life history are the major forces shaping temporal and spatial distribution patterns offish diversity in these habitats.
     These findings have important implications for the conservation, restoration and management of the Yangtze River Estuary salt marshes:a) Salt marshes are important for sustainable utilization of fisheries in the Yangtze River estuary; b) Spring and Summer were the critical periods for fish use of salt marshes; c) Creek geomorphological features should be taken into account for salt marsh restorations; d) Well-developed intertidal creek systems in salt marsh zones with different salinity should be protected and reserved.
引文
[1]上海市水产研究所养殖研究室苗种资源调查组.1975.上海市河口主要河口性鱼类苗种资源调查概要[J].水产科技情报,6:12-15.
    [2]中国水产科学研究院东海水产研究所,上海市水产研究所.1990.上海鱼类志[M].上海:上海科学技术出版社.
    [3]福建鱼类志编写组.1984.福建鱼类志[M].福州:福建科学技术出版社.
    [3]湖北省水生生物研究所鱼类研究室.1976.长江鱼类[M].北京:科学出版社.
    陈家宽.2003.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社.
    陈佩熏,黄鹤年.1963.长江三角洲面鱼的形态生态资料[J].水生生物学集刊,1963(3):93-98.
    陈渊泉.1995.长江口河口锋区及邻近水域渔业[J].中国水产科学,1995(2):91-103.
    范海洋,纪毓鹏,张士华,苑春亭,高天翔.2005.黄河三角洲斑尾复虾虎鱼渔业生物学研究[J].中国海洋大学学报,35:733-736.
    冯广鹏,庄平,刘健,张涛,李长松,张龙珍,赵峰,黄晓荣.2007.崇明东滩团结沙鱼类群落多样性与生长特性[J].海洋渔业,29:38-43
    黄华梅,张利权,高占国.2005.上海滩涂植被资源遥感分析研究[J].生态学报,25:2686-2693.
    解玉浩,李勃,富丽静,唐作鹏,解涵.1997.中国沿海河口地区鳗苗群体结构的研究[J].中国水产科学,1997(4):33-38.
    孔亚珍,贺松林,丁平兴,胡克林.2004.长江口盐度的时空变化特征及其指示意义[J].海洋学报,26:9-18.
    刘蝉馨,1985.纹缟虾虎鱼的生物学和生态学[J].水产科学1985(4),13-17.
    刘凯,徐东坡,张敏莹,段金荣,施伟纲.2005.崇明北滩鱼类群落生物多样性初探[J].长江流域资源与环境,14:418-421.
    刘凯,张敏莹,徐东坡,施炜纲.2004.长江口凤鲚资源变动及最大持续产量[J].上海海洋大学学报,13:298-303.
    刘引兰,吴志强,胡茂林.2008.我国刀鲚研究进展[J].水产科学,27:205-209.
    卢继武,罗秉征,薛频,黄颂芳.1992.长江口区鱼类群聚结构、丰富度与季节变化的研究[J].海洋科学集刊,33:303-340.
    倪勇,全为民,陈亚瞿.2007.上海鱼类新记录——大海鲢[J].海洋渔业,29:95-96.
    倪勇,王云龙,蒋枚,陈亚瞿.1999.长江口凤鲚的渔业生物学特性[J].中国水产科学,1999(6):69-71.
    倪勇.1999.长江口区凤鲚渔业及其资源保护[J].中国水产科学.1999(6):75-77.
    沈焕庭,茅志昌,谷国传.1980.长江口盐水入侵的初步研究——兼谈南水北调[J].人民长江,1980(2):20-26
    孙帼英,陈建国,吴引忠.1996.斑尾复虾虎鱼的成熟与产卵[J].水产科技情 报,23:99-107.
    孙帼英,陈建国.1993.斑尾复虾虎鱼的生物学研究[J].水产学报,17:146-153.
    孙帼英,朱云云,陈建国,周忠良.1994a.长江口花鲈的生长和食性[J].水产学报,18:183-189.
    孙帼英,朱云云,周忠良,陈建国.1994b.长江口及浙江沿海花鲈的繁殖生物学[J].水产学报,18:18-23.
    孙帼英.1982.长江口及其邻近海域的银鱼[J].华东师范大学学报(自然科学版),1982(1):111-119.
    孙帼英.1990.长江口及其邻近海域有明银鱼的生物学[J].海洋湖沼通报,1990(1):41-46.
    唐文乔,诸廷俊,陈家宽,韩洪发,孙瑛.2003.长江口九段沙湿地的鱼类资源及其保护价值[J].上海水产大学学报,12:193-200
    唐作鹏,李勃,解玉浩,张世东,于福.2000.鸭绿江有明银鱼的生物学研究[J].大连水产学院学报,15:113-118.
    田明诚,沈石友,孙宝龄.1992.长江口及附近海区鱼类区系研究[J].海洋科学集刊,33:265-280
    王幼槐,倪勇.1984.上海市长江口区渔业资源及其利用[J].水产学报,1984(2):148-159.
    王云龙,倪勇,李长松,朱江兴,庄平,张涛.2006.上海鱼类新记录——日本海马[J].海洋渔业,28:87-88.
    王正琦,杨金权,唐文乔.2006.一种长期被误鉴定的中国新记录鱼类——大鳍弹涂鱼[J].动物学分类,31:906-911.
    吴建新.2002.长江野生暗纹东方纯资源现状与保护[J].水利渔业,22:47-49.
    徐宏发,赵云龙.2005.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社.
    杨东莱,吴光宗,孙继仁.1990.长江口及其邻近海区的浮游性鱼卵和仔稚鱼的生态研究[J].海洋与湖沼,21:346-355.
    杨伟祥,罗秉征,卢继武.1992长江口区鱼类资源调查与研究[J].海洋科学集刊,33:282-302.
    袁传宓,林金榜,秦安舲,刘仁华.1976.关于我国鲚属鱼类分类的历史和现状——兼谈改造旧鱼类分类学的几点体会[J].南京大学学报,1976(2):1-12.
    袁传宓,秦安舲.1984.我国近海鲚鱼生态习性及其产量变动状况[J].海洋科学.1984(5):35-37.
    袁传宓.1988.长江中下游刀鲚资源和种群组成变动状况及其原因[J].动物学杂 志,23:12-15.
    张国祥,华家栋.1990.长江口凤鲚资源的变动及其最大持续产量的估算[J].水产科技情报,1990(5):130-134.
    张国祥,张雪生.1985.长江口定置张网渔业调查[J].水产学报.1985(2):185-198.
    张国祥.1987.长江口定置张网渔获物结构组成及其季节变化[J].水产科技情报,1987(2):1-4.
    张国祥.1992.前颌间银鱼资源变动原因的初步探讨[J].海洋与湖沼,23:517-526.
    张衡,何文珊,童春福,陆健健.2008.崇西湿地冬季潮滩鱼类种类组成及多样性分析[J].长江流域资源与环境,16:308-313.
    张杰,卢金友.2009.中、东线一期调水对长江口水流影响分析[J].长江科学院院报,26:9-10.
    张有为,肖真义,张世义.1981.鳗鲡在我国的溯河洄游和分布[J].动物学集刊,1981(1):117-121.
    赵盛龙,钟俊生,木下泉,郑海杰.2005.杭州湾湾口与日本有明海产花鲈稚鱼的比较研究[J].水产学报,29:672-675.
    钟俊生,吴美琴,练青平.2007.春、夏季长江口沿岸碎波带仔稚鱼的种类组成[J].中国水产科学,2007(3):436-443.
    钟俊生,郁蔚文,刘必林,龚小玲,薄欢军,胡芬,丁峰元.2005长江口沿岸碎波带仔稚鱼种类组成和季节性变化[J].上海水产大学学报,14:375-382.
    周永东,薛利建,徐开达.2004.舟山近海凤鲚Coilia mystus (Linnaeus)的生物学特性研究[J].现代渔业信息,19:19-21.
    庄平,王幼槐,李圣法,邓思明,李长松,倪勇.2006.长江口鱼类[M].上海:上海科学技术出版社.
    曾强,董方勇.1993.凤鲚繁群体的生物学特性及因数关系的研究[J].湖泊科学,1993(5):164-170.
    Able K.W.,2005. A re-examination of fish estuarine dependence:Evidence for connectivity between estuarine and ocean habitats [J]. Estuarine Coastal and Shelf Science 64:5-17.
    Able K.W., Nemerson D.M., Bush R., Light P.,2001. Spatial variation in Delaware Bay (USA) marsh creek fish assemblages [J]. Estuaries 24:441-452.
    Akin S., Buhan E., Winemiller K.O., Yimaz H.,2005. Fish assemblage structure of Koycegiz Lagoon-Estuary, Turkey:Spatial and temporal distribution patterns in relation to environmental variation [J]. Estuarine Coastal and Shelf Science 64: 671-684.
    Akin S., Winemiller K.O., Gelwick F.P.,2003. Seasonal and spatial variations in fish and macro crustacean assemblage structure in Mad Island Marsh estuary, Texas [J]. Estuarine Coastal and Shelf Science 57:269-282.
    Allen D.M., Haertel-Borer S.S., Milan B.J., Bushek D., Dames R.F.,2007. Geomorphological determinants of nekton use of intertidal salt marsh creeks [J]. Marine Ecology Progress Series 329:57-71.
    Allen E.A., Fell P.E., Peck M.A., Gieg J.A., Guthke C.R., Newkirk M.D.,1994. Gut Contents of Common Mummichogs, Fundulus heteroclitus, in a Restored Impounded Marsh and in Natural Reference Marshes [J]. Estuaries 17:462-471.
    Archambault J.A., Feller R.J.,1991. Diel variations in gut fullness of juvenile spot, Leiostomus xanthurus (Pisces) [J]. Estuaries 14:94-101.
    Baeck G.W., Takita T., Yoon Y.H.,2008. Lifestyle of Korean mudskipper Periophthalmus magnuspinnatus with reference to a congeneric species Periophthalmus modestus [J]. Ichthyological Research 55:43-52.
    Baltz D.M., Rakocinski C., Fleeger J.W.,1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary [J]. Environmental Biology of Fishes 36:109-126.
    Beck M.W., Heck K.L., Able K.W., Childers D.L., Eggleston D.B., Gillanders B.M., Halpern B., Hays C.G., Hoshino K., Minello T.J., Orth R.J., Sheridan P.F., Weinstein M.R.,2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates [J]. Bioscience 51: 633-641.
    Beck N.G., Bruland K.W.,2000. Diel biogeochemical cycling in a hyperventilating shallow estuarine environment [J]. Estuaries 23:177-187.
    Beck M.W., Heck K.L., Able K.W., Childers D.L., Eggleston D.B., Gillanders B.M., Halpern B., Hays C.G., Hoshino K., Minello T.J., Orth R.J., Sheridan P.F., Weinstein M.R.,2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates [J]. Bioscience 51: 633-641.
    Blaber S.J.M.,1997. Fish and Fisheries of Tropical Estuaries [M]. Chapman and Hall, London.
    Blaber S.J.M.,2002.'Fish in hot water':the challenges facing fish and fisheries research in tropical estuaries [J]. Journal of Fish Biology 61:1-20.
    Boesch D.F., Turner R.E.,1984. Dependence of fishery species on salt marshes:the role of food and refuge [J]. Estuaries 7:460-468.
    Bozeman E.L., Dean J.M.,1980. The abundance of estuarine larval and juvenile fish in a South Carolina intertidal creek [J]. Estuaries 3:89-97.
    Bretsch K., Allen D.M.,2006. Effects of biotic factors on depth selection by salt marsh nekton [J]. Journal of Experimental Marine Biology and Ecology 334: 130-138.
    Bretsch K., Allen D.M.,2006. Tidal migrations of nekton in salt marsh intertidal creeks [J]. Estuaries and Coasts 29:474-486.
    Cain R.L., Dean J.M.,1976. Annual occurrence, abundance and diversity offish in a South-Carolina intertidal creek [J]. Marine Biology 36:369-379.
    Cardona L.,2000. Effects of salinity on the habitat selection and growth performance of Mediterranean flathead grey mullet Mugil cephalus (Osteichthyes, Mugilidae) [J]. Estuarine Coastal and Shelf Science 50:727-737.
    Cattrijsse A., Hampel H.,2006. European intertidal marshes:a review of their habitat functioning and value for aquatic organisms [J]. Marine Ecology Progress Seris 324:293-307.
    Cattrijsse A., Hampel H.,2006. European intertidal marshes:a review of their habitat functioning and value for aquatic organisms [J]. Marine Ecology Progress Series 324:293-307.
    Cattrijsse A., Makwaia E.S., Dankwa H.R., Hamerlynck O., Hemminga M.A.,1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh [J]. Marine Ecology Progress Series 109:195-208.
    Cattrijsse A., Makwaia E.S., Dankwa H.R., Hamerlynck O., Hemminga M.A.,1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh [J]. Marine Ecology Progress Series 109:195-208.
    Chang C.W., Tzeng W.N.,2000. Species composition and seasonal occurrence of Mullets (Pisces, Mugilidae) in the Tanshui Estuary Northwest Taiwan [J]. Journal of the Fisheries Society of Taiwan 27:253-262.
    Clark K.L., Ruiz G.M., Hines A.H.,2003. Diel variation in predator abundance, predation risk and prey distribution in shallow-water estuarine habitats [J]. Journal of Experimental Marine Biology and Ecology 287:37-55.
    Clarke, K.R., Warwick, R.M.,1994. Change in Marine Communities:An Approach to Statistical Analysis and Interpretation [M]. Plymouth Marine Laboratory, Plymouth.
    Connolly R.M., Dalton A., Bass D.A.,1997. Fish use of an inundated saltmarsh flat in a temperate Australian estuary [J]. Australian Journal of Ecology 22:222-226.
    Currin B.M., Reed J.P., Miller J.M.,1984. Growth, Production, Food Consumption, and Mortality of Juvenile Spot and Croaker:A Comparison of Tidal and Nontidal Nursery Areas [J]. Estuaries 7:451-459.
    deBruyn A.M.H., Meeuwig J.J.,2001. Detecting lunar cycles in marine ecology: periodic regression versus categorical ANOVA. Marine Ecology Progress Series 214:307-310.
    Deegan L.A.,1990. Effects of estuarine environmental conditions on population dynamics of young-of-the-Year gulf menhaden [J]. Marine Ecology Progress Series 68:195-205.
    Deegan L.A., Hughes J.E., Rountree R.A.,2000. Salt marsh ecosystem support of marine transient species [A]. Concepts and Controversies in Tidal Marsh Ecology [M], p333-365.
    Desmond J.S., Zedler J.B., Williams G.D.,2000. Fish use of tidal creek habitats in two southern California salt marshes [J]. Ecological Engineering 14:233-252.
    Dou S.Z., Chen D.G.,1994. Taxonomy, biology and abundance of icefishes, or noodlefishes Salangidae in the Yellow River estuary of the Bohai Sea, China [J]. Journal of Fish Biology 45:737-748.
    Elliott M., Dewailly F.,1995. Structure and components of European estuarine fish assemblages [J]. Netherlands Journal Aquatic Ecology 29:397-417.
    Elliott M., Hemingway K.L.,2002. Fishes in Estuaries [M]. Blackwell Science, Oxford.
    Elliott M., Whitfield A.K., Potter I.C., Blaber S.J.M., Cyrus D.P., Nordlie F.G., Harrison T.D.,2007. The guild approach to categorizing estuarine fish assemblages:a global review [J]. Fish and Fisheries 8:241-268.
    Froese R., Pauly D.,2009. FishBase. World Wide Web electronic publication [DB]. http://www.fishbase.org. Version 10/2009.
    Fu C., Luo J., Wu J., Lopez J.A., Zhong Y., Lei G., Chen J.,2005. Phylogenetic relationships of salangid fishes Osmeridae, Salanginae. with comments on phylogenetic placement of the salangids based on mitochondrial DNA sequences [J]. Molecular Phylogenetics and Evolution 35:76-84.
    Fu C.Z., Wu J.H., Chen J.K., Wu Q.H., Lei G.C.,2003. Freshwater fish biodiversity in the Yangtze River basin of China:patterns, threats and conservation [J]. Biodiversity and Conservation 12:1649-1685.
    Gibson R.N.,2003. Go with the flow:tidal migration in marine animals [J]. Hydrobiologia 503:153-161.
    Gibson, R.N., Yoshiyama, R.M.,1999. Intertidal fish communities. In:Horn, M.H., Martin, K.L.M., Chotkowski, M.A. (Editors), Intertidal fishes:life in two worlds [M]. Academic Press, San Diego, pp.264-296.
    Gliwicz Z.M.,1986. A lunar cycle in zooplankton [J]. Ecology 67:883-897.
    Gordon N.D., McMahon T.A., Finlayson B.L., Gippel, C.J., Nathan R.J.,2004. Stream Hydrology-An Instroduction for Ecologist [M]. John Wiley & Sons, LTD, West Sussex, England.
    Granados-Dieseldorff P., Baltz D.M.,2008. Habitat use by nekton along a stream-order gradient in a Louisiana estuary [J]. Estuaries and Coasts 31: 572-583.
    Gray C.A., Chick R.C., McElligott D.J.,1998. Diel changes in assemblages of fishes associated with shallow seagrass and bare sand [J]. Estuarine, Coastal and Shelf Science 46:849-859.
    Greeley M.S., Jr., MacGregor R., Ⅲ,1983. Annual and semilunar reproductive cycles of the Gulf Killifish, Fundulus grandis, on the Alabama Gulf coast [J]. Copeia 1983:711-718.
    Green B.C., Smith D.J., Earley S.E., Hepburn L.J., Underwood G.J.C.,2009. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom [J]. Estuarine Coastal and Shelf Science 85:247-256.
    Gunter G.,1961. Some Relations of estuarine organisms to salinity [J]. Limnology and Oceanography 6:182-190.
    Hackney C.T., Burbanck W.D., Hackney O.P.,1976. Biological and physical dynamics of a georgia tidal creek [J]. Chesapeake Science 17:271-280.
    Halpern B.S., Gaines S.D., Warner R.R.2005. Habitat size, recruitment, and longevity as factors limiting population size in stage-structured species [J]. American Naturalist 165:82-94.
    Halpin P.M.,2000. Habitat use by an intertidal salt-marsh fish:trade-offs between predation and growth [J]. Marine Ecology Progress Series 198:203-214.
    Hampel H., Cattrijsse A.,2004. Temporal variation in feeding rhythms in a tidal marsh population of the common goby Pomatoschistus microps (Kroyer,1838) [J]. Aquatic Sciences 66:315-326.
    Hampel H., Cattrijsse A., Mees J.,2004. Changes in marsh nekton communities along the salinity gradient of the Schelde river, Belgium and The Netherlands [J]. Hydrobiologia 515:137-146.
    Hampel H., Cattrijsse A., Vincx M.,2003. Habitat value of a developing estuarine brackish marsh for fish and macrocrustaceans [J]. Ices Journal of Marine Science 60:278-289.
    Hampel H., Cattrijsse A., Vincx M.,2003. Tidal, diel and semi-lunar changes in the faunal assemblage of an intertidal salt marsh creek [J]. Estuarine Coastal and Shelf Science 56:795-805.
    Han Y.S., Tzeng W.N.,2007. Sex-dependent habitat use by the Japanese eel Anguilla japonica in Taiwan [J]. Marine Ecology Progress Series 338:193-198.
    Healy T.R.,2005. Salt marsh [A]. In:Schwartz ML (Editors) Encyclopeia of Coastal Science [M]. Springer, Dordrecht.
    Hettler W.F.,1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North-Carolina, USA [J]. Marine Ecology Progress Series 56:111-118.
    Hibino M., Kinoshita I., Ohta T., Tanaka M.,2002. Morphology of Ariake icefish Salanx ariakensis larvae in the Chikugo estuary [J]. Japanese Journal of Ichthyology 49:103-108.
    Hoeksema S.D., Potter I.C.,2006. Diel, seasonal, regional and annual variations in the characteristics of the ichthyofauna of the upper reaches of a large Australian microtidal estuary [J]. Estuarine, Coastal and Shelf Science 67:503-520.
    Hong W.S., Chen S.X., Zhang Q.Y., Qiong W.,2007. Reproductive ecology of the mudskipper Bolephthalmus pectinirostris [J]. Acta Oceanologica Sinica 26: 72-81.
    Horton R.E.,1945. Erosional development of streams and their dtrainage basins, hydrophysical approach to quantitative morphology [J]. Geological Society of America Bulletin 56:275-370.
    Horton R.E.,1945. Erosional development of streams and theri dtrainage basins, hydrophysical approach to quantitative morphology [J]. Geological Society of America Bulletin 56:275-370.
    Hou L.J., Liu M., Xu S.Y., Ou D.N., Lu J.J., Yu J., Cheng S.B., Yang Y.2005. The effects of semi-lunar spring and neap tidal change on nutrients cycling in the intertidal sediments of the Yangtze estuary [J]. Environmental Geology 48: 255-264.
    Islam M.S., Hibino M., Nakayama K., Tanaka M.,2006. Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan [J]. Journal of Sea Research 55:141-155.
    Jin B.S., Fu C.Z., Zhong J.S., Li B., Chen J.K., Wu J.H.,2007a. Effects of fyke net mesh size and sampling period on the catch of nekton in an intertidal creek [J]. Acta Hydrobiologica Sinica 31:39-44.
    Jin B.S., Fu C.Z., Zhong J.S., Li B., Chen J.K., Wu J.H.,2007b. Fish utilization of a salt marsh intertidal creek in the Yangtze River estuary, China [J]. Estuarine Coastal and Shelf Science 73:844-852.
    Kanabashira Y., Sakai H., Yasuda F.,1980. Early development and reproductive behavior of the gobiid fish, Mugilogobius abei [J]. Japanese Journal of Ichthyology 27:191-198.
    Kang B., Xian W., Liu R.,2005. Transporting nutrients from sediments:nitrogen and carbon as indicators to measure scavenging ability of a detritivorous fish, Liza haematocheila [J]. Environmental Biology of Fishes 74:283-290.
    Kennish M.J.,2001. Coastal salt marsh systems in the US:A review of anthropogenic impacts [J]. Journal of Coastal Research 17:731-748.
    Kim J.K., Doiuchi R., Nakabo T.,2006. Molecular and morphological differences between two geographic populations of Salanx ariakensis (Salangidae) from Korea and Japan [J]. Ichthyological Research 53:52-62.
    Kleypas J., Dean J.M.,1983. Migration and feeding of the predatory fish, Bairdiella chrysura Lacepede, in an intertidal creek [J]. Journal of Experimental Marine Biology and Ecology 72:199-209.
    Kneib R.T.,1986. The role of Fundulus heteroclitus in salt marsh tropic dynamics [J]. American Zoologist 26:259-269.
    Kneib R.T.,1994. Spatial pattern, spatial scale, and feeding in fishes [A]. In:D.J. Stouder, K.L. Fresh, R.J. Feller (Editors), Theory and Application in Fish Feeding Ecology [M]. University of South Carolina Press, Columbia, pp. 171-185.
    Kneib R.T.,1997. The role of tidal marshes in the ecology of estuarine nekton [J]. Oceanography and Marine Biology:An Annual Reviw 35:163-220.
    Kneib R.T.,2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States [A]. In:Weinstein MP, Kreeger DA (Editors) Concepts and Controversies in Tidal Marsh Ecology [M]. Kluwer Academic Publications, Dordrecht, Netherlands, p267-291.
    Kneib R.T., Wagner S.L.,1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation [J]. Marine Ecology Progress Series 106:227-238.
    La Peyre, M.K., Birdsong, T.,2008. Physical variation of non-vegetated marsh edge habitats, and use patterns by nekton in Barataria Bay, Louisiana, USA [J]. Marine Ecology Progress Series 356:51-61.
    Laffaille P., Feunteun E., Lefeuvre J.C.,2000. Composition of fish communities in a European macrotidal salt marsh (the Mont Saint-Michel bay, France) [J]. Estuarine, Coastal and Shelf Science 51:429-438.
    Larkin D.J., Madon S.P., West J.M., Zedler J.B.,2008. Topographic heterogeneity influences fish use of an experimentally restored tidal marsh [J]. Ecological Applications 18:483-496.
    Layman C.A., Smith D.E., Herod J.D.,2000. Seasonally varying importance of abiotic and bio tic factors in marsh-pond fish communities [J]. Marine Ecology Progress Series 207:155-169.
    Le Quesne W.J.F.,2000. Nekton utilization of intertidal estuarine marshes in the Knysna estuary [J]. Transactions of the Royal Society of South Africa 55: 205-214.
    Li M., Wang X., Lu X.1992. Chelon haematocheilus [M]. Ocean Press, Beijing, China.
    Liao I.C., Hsu Y.K., Lee W.C.2002 Technical innovations in eel culture systems [J]. Review in Fisheries Science 10:433-450.
    Marshall S., Elliott M.,1998. Environmental influences on the fish assemblage of the Humber estuary, UK [J]. Estuarine Coastal and Shelf Science 46:175-184.
    Mathieson S., Cattrijsse A., Costa M.J., Drake P., Elliott M., Gardner J., Marchand J., 2000. Fish assemblages of European tidal marshes:a comparison based on species, families and functional guilds [J]. Marine Ecology Progress Series 204: 225-242.
    Matsumura Y.,2005. Catch and distribution of young-of-the-year ocellate puffer Takifugu rubripes in Ariake Sound [J]. Nippon Suisan Gakk 71:797-804.
    Mclvor C.C., Odum W.E.,1986. The flume net:A quantitative method for sampling fishes and macrocrustaceans on tidal marsh surfaces [J]. Estuaries 9:219-224.
    Mclvor C.C., Odum W.E.,1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage [J]. Ecology 69:1341-1351.
    McIvor C.C., Rozas L.P.,1996. Direct nekton use of intertidal saltmarsh habitat and linkage with adjacent habitats:a review from the southeastern United States [A]. In:C.T. Nordstrom, C.T. Roman (Editors) Estuarine Shores:Evolution Environments and Human Alterations [M]. John Wiley & Sons Ltd., p311-334.
    Meyer D.L., Posey M.H.,2009. Effects of life history strategy on fish distribution and use of estuarine salt marsh and shallow-water flat habitats [J]. Estuaries and Coasts 32:797-812.
    Miller S.J., Skilleter G.A.,2006. Temporal variation in habitat use by nekton in a subtropical estuarine system [J]. Journal of Experimental Marine Biology and Ecology 337:82-95.
    Minello T.J.,1993. Chronographic tethering-a technique for measuring prey survial-time and testing predation pressure in aquatic habitats [J]. Marine Ecology Progress Series 101:99-104.
    Minello T.J., Able K.W., Weinstein M.P., Hays C.G.,2003. Salt marshes as nurseries for nekton:testing hypotheses on density, growth and survival through meta-analysis [J]. Marine Ecology Progress Series 246:39-59.
    Minello T.J., Rozas L.P.,2002. Nekton in Gulf Coast wetlands:Fine-scale distributions, landscape patterns, and restoration implications [J]. Ecological Applications 12:441-455.
    Morrison M.A., Francis M.P., Hartill B.W., Parkinson D.M.,2002. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat [J]. Estuarine, Coastal and Shelf Science 54:793-807.
    Morton R.M., Pollock B.R., Beumer J.P.,1987. The occurrence and diet of fishes in a tidal inlet to a salt-marsh in Southern Moreton bay, Queensland [J]. Australian Journal of Ecology 12:217-237.
    Mumby P.J., Edwards A.J., Arias-Gonzalez J.E., Lindeman K.C., Blackwell P.G., Gall A., Gorczynska M.I., Harborne A.R., Pescod C.L., Renken H., Wabnitz C.C.C., Llewellyn G.2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean [J]. Nature 427:533-536.
    Nordlie F.G.2003. Fish communities of estuarine salt marshes of eastern North America, and comparisons with temperate estuaries of other continents [J]. Review in Fish Biology and Fisheries 13:281-325.
    Odum W.E.,1984. Dual-gradient concept of detritus transport and processing in estuaries [J]. Bulletin of Marine Science 35:510-521.
    Odum W.E., Kirk P.W., Zieman J.C.,1979. Non-protein nitrogen compounds associated with particles of vascular plant detritus [J]. Oikos 32:363-367.
    Paterson A.W., Whitfield A.K.,2000. The ichthyofauna associated with an intertidal creek and adjacent eelgrass beds in the Kariega estuary, South Africa [J]. Environmental Biology of Fishes 58:145-156.
    Paterson A.W., Whitfield A.K.,2003. The fishes associated with three intertidal salt marsh creeks in a temperate southern African estuary [J]. Wetlands Ecology and Management 11:305-315.
    Peterson G.W., Turner R.E.,1994. The value of salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh [J]. Estuaries 17: 235-262.
    Pihl L., Cattrijsse A., Codling I., Mathieson S., McLusky D.S., Roberts C 2002. Habitat use by fishes in estuaries and other brackish areas [A]. In:Elliott M, Hemingway KL eds. Fishes in Estuaries [M]. Blackwell Science Ltd, Oxford, p10-53.
    Pinkas L., Oliphant M.S., Iverson I.L.K.,1971. Food habitats of albacore, blue-fintuna, and bonito in California waters [J]. Fish Bulletin 152:1-105.
    Potter I.C., Hyndes G.A.1999. Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia:a review [J]. Australian Journal of Ecology 24: 395-421.
    Quan W.M., Fu C.Z., Jin B.S., Luo Y.Q., Li B., Chen J.K., Wu J.H.,2007. Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis [J]. Marine Ecology Progress Series 352:89-99.
    Rakocinski C.F., Baltz D.M., Fleeger J.W.,1992. Correspondence between Environmental Gradients and the Community Structure of Marsh-Edge Fishes in a Louisiana Estuary [J]. Marine Ecology Progress Series 80:135-148.
    Reis R.R., Dean J.M.,1981. Temporal Variation in the Utilization of an Intertidal Creek by the Bay Anchovy (Anchoa mitchilli) [J]. Estuaries 4:16-23.
    Rountree R.A., Able K.W.,1992. Fauna of polyhaline subtidal marsh creeks in Southern New Jersey, composition, abundance and biomass [J]. Estuaries 15: 171-185.
    Rountree R.A., Able K.W.,1993. Diel variation in decapod crustacean and fish assemblages in New Jersey polyhaline marsh creeks [J]. Estuarine Coastal and Shelf Science 37,181-201.
    Rountree R.A., Able K.W.,1997. Nocturnal fish use of New Jersey marsh creek and adjacent bay shoal habitats [J]. Estuarine, Coastal and Shelf Science 44:703-711.
    Rountree R.A., Able K.W.,2007. Spatial and temporal habitat use patterns for salt marsh nekton:implications for ecological functions [J]. Aquatic Ecology 41: 25-45.
    Rozas L.P.,1995. Hydroperiod and its influence on nekton use of the saltmarsh-a pulsing ecosystem [J]. Estuaries 18:579-590.
    Rozas L.F., Caldwell P., Minello T.J.,2005. The fishery value of salt marsh restoration projects [J]. Journal of Coastal Research 40:37-50.
    Rozas L.F., Hackney C.T.,1984. Use of oligohaline marshes by fishes and macrofaunal crustaceans in North-Carolina [J]. Estuaries 7:213-224.
    Rozas L.F., Lasalle M.W.,1990. A comparison of the diets of Gulf Killifish, Fundulus grandis Baird and Girard, entering and leaving a Mississippi brackish marsh [J]. Estuaries 13:332-336.
    Rozas L.F., Mcivor C.C., Odum W.E.,1988. Intertidal rivulets and creekbanks corridors between tidal creeks and marshes [J]. Marine Ecology Progress Series 47:303-307.
    Rozas L.F., Minello T. J.,1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats:a review of sampling design with foucs on gear selection [J]. Estuaries 20:199-213.
    Rozas L.F., Odum W.E.,1987. Use of tidal fresh-water marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient [J]. Estuaries 10: 36-43.
    Rozas L.F., Zimmerman R.J.,2000. Small-scale patterns of nekton use among marsh and adjacent shallow nonvegetated areas of the Galveston Bay Estuary, Texas (USA) [J]. Marine Ecology Progress Series 193:217-239.
    Ruiz, G.M., Hines, A.H., Posey, M.H.,1993. Shallow-water as a refuge habitat for fish and crustaceans in nonvegetated estuaries-an example from Chesapeake Bay [J]. Marine Ecology Progress Series 99,1-16.
    Salgado J., Cabral H., Costa M., Deegan L.,2004. Nekton use of salt marsh creeks in the upper Tejo estuary [J]. Estuaries and Coasts 27:818-825.
    Selleslagh J., Amara R., Laffargue P., Lesourd S., Lepage M., Girardin M.,2009. Fish composition and assemblage structure in three Eastern English Channel macrotidal estuaries:A comparison with other French estuaries [J]. Estuarine, Coastal and Shelf Science 81:149-159.
    Shenker J.M., Dean J.M.,1979. The utilization of an intertidal salt marsh creek by larval and juvenile fishes:abundance, diversity and temporal variation [J]. Estuaries 2:154-163.
    Simenstad C.A., Hood W.G., Thom R.M., Levy D.A., Bottom D.L.,2000. Landscape structure and scale constraints on restoring estuarine wetlands for Pacific coast juvenile fishes [A]. In:M.P. Weinstein, D.A. Kreeger (Editors), Concepts and Controversies in Tidal Marsh Ecology [M]. Kluwer Academic Publishers, New York, p597-630.
    Smith K.J., Able K.W.,1994. Salt-marsh tide pools as winter refuges for the Mummichog, Fundulus heteroclitus, in New Jersey [J]. Estuaries 17:226-234.
    Strahler A.N.,1952. Hypsometric (area-altitude) anlysis of erosional topography [J]. Geological Society of America Bulletin 63:1117-1142.
    Subrahmanyam C.B., Coultas C.L.,1980. Studies on the animal communities in 2 North Florida salt marshes.3. Season fluctuation of fish and macroinvertebrates [J]. Bulletin of Marine Science 30:790-818.
    Szedlmayer S.T., Able K.W.,1996. Patterns of seasonal availability and habitat use by fishes and decapod crustaceans in a southern New Jersey estuary [J]. Estuaries 19:697-709.
    Taylor M.H., Leach G.J., DiMichele L., Levitan W.M., Jacob W.F.,1979. Lunar spawning cycle in the Mummichog, Fundulus heteroclitus (Pisces: Cyprinodontidae) [J]. Copeia 1979:291-297.
    Teal J.M.,1962. Energy flow in the salt marsh ecosystem of Georgia [J]. Ecology 43: 614-624.
    Thomas B.E., Connolly R.M.,2001. Fish use of subtropical saltmarshes in Queensland, Australia:relationships with vegetation, water depth and distance onto the marsh [J]. Marine Ecology Progress Series 209:275-288.
    Tsukamoto K.1992. Discovery of the spawning area for Japanese eel [J]. Nature 356:789-791.
    Veiga P., Vieira L., Bexiga C., Sa R., Erzini K.,2006. Structure and temporal variations of fish assemblages of the Castro Marim salt marsh, southern Portugal [J]. Estuarine, Coastal and Shelf Science 70,27-38.
    Vinagre C., Franca S., Cabral H.N.,2006. Diel and semi-lunar patterns in the use of an intertidal mudflat by juveniles of Senegal sole, Solea senegalensis [J]. Estuarine Coastal and Shelf Science 69:246-254.
    Visintainer T.A., Bollens S.M., Simenstad C.,2006. Community composition and diet of fishes as a function of tidal channel geomorphology [J]. Marine Ecology Progress Series 321:227-243.
    Webb S.R., Kneib R.T.,2002. Abundance and distribution of juvenile white shrimp Litopenaeus setiferus within a tidal marsh landscape [J]. Marine Ecology Progress Series 232:213-223.
    Weinstein M.P.,1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina [J]. Fishery Bulletin 77,339-357.
    Weinstein M.P., Weiss S.L., Walters M.F.,1980. Multiple determinants of community structure in shallow marsh habitats, Cape Fear River estuary, North Carolina, USA [J]. Marine Biology 58:227-243.
    Whitfield A.K.1999. Ichthyofaunal assemblages in estuaries:a South African case study [J]. Reviews in Fish Biology and Fisheries 9:151-186.
    Yang J., Arai T., Liu H., Miyazaki N., Tsukamoto K.2006a. Reconstructing habitat use of Coilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coilia ectenes of Taihu Lake, based on otolith strontium and calcium [J]. Journal of Fish Biology 69:1120-1135.
    Yang S.L., Ding P.X., Chen S.L.2001. Changes in progradation rate of the tidal flats at the mouth of the Changjiang Yangtze. River, China [J]. Geomorphology 38: 167-180.
    Yang S.L., Gao A., Hotz H.M., Zhu J., Dai S.B., Li M.,2005a. Trends in annual discharge from the Yangtze River to the sea (1865-2004) [J]. Hydrological Sciences Journal 50:825-836.
    Yang S.L., Li M., Dai S.B., Liu Z., Zhang J., Ding P.X.2006b. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management [J]. Geophysical Research Letters 33:L06408.
    Yang S.L., Zhang J., Zhu J., Smith J.P., Dai S.B., Gao A., Li P.,2005b. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response [J]. Journal of Geophysical Research 110, F03006.
    Yoklavich M.M., Cailliet G.M., Barry J.P., Ambrose D.A., Antrim B.S.,1991. Temporal and spatial Patterns in abundance and diversity of fish assemblages in Elkhorn Slough, California [J]. Estuaries 14:465-480.
    Zhou S.C., Jin B.S., Guo L., Qin H.M., Chu T.J., Wu J.H.,2009. Spatial distribution of zooplankton in the intertidal marsh creeks of the Yangtze River Estuary, China [J]. Estuarine Coastal and Shelf Science 85:399-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700