用户名: 密码: 验证码:
洋葱伯克霍尔德菌的筛选、鉴定及其脂肪酶基因的高效表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油是解决目前石化能源危机的重要途径之一,其中脂肪酶催化法制备生物柴油技术具有反应条件温和、转化效率高、绿色环保无污染等优点,符合国家的新能源发展战略,前景广阔。但昂贵的脂肪酶价格限制了酶法生物柴油制备技术的推广和工业化。
     本研究筛选到一株产耐热、耐短链醇脂肪酶的洋葱伯克霍尔德菌(Burholderia cepacia) G63,分子生物学鉴定其属于B. cenocepacia。B. cenocepacia G63脂肪酶水解橄榄油的最适pH为9.0,最适温度为60℃,在pH 6.0-10.0以及65℃以下都十分稳定,60℃温育4 h后仍保留80%以上的酶活力。该酶对乙醇、丙醇和异丙醇等多种短链醇的耐受性极佳。这些特性表明B. cenocepacia G63脂肪酶是催化制备生物柴油的理想用酶。摇瓶发酵的G63平均产酶量为12.4 U/mL。论文就提高G63脂肪酶的表达量进行了一系列分子生物学研究,B. cenocepacia G63脂肪酶在重组大肠杆菌中的表达量达到50 mg/g cell-wet weight,在B. cenocepacia同源重组工程菌BC-T7Aliplif中水解橄榄油的酶活最高达32.7 U/mL,在毕赤酵母基因工程菌中水解pNPP酯的酶活最高达184.3 U/mL。上述结果表明本研究所建立的脂肪酶基因改造和表达技术路线是正确的。
     本论文的主要工作及创新点如下:
     1.建立了TB-TA平板定向筛选方法。该法筛选洋葱伯克霍尔德菌(Burholderia cepacia)阳性率高达100%,非常适合该菌的规模化筛选。并使用Haelll-recA RFLP (restriction fragment length polymorphism)和亚种特异性PCR的方法将G63鉴定为B. cenocepacia,是首次鉴定到亚种水平的BCC脂肪酶生产菌。
     2.扩增了G63脂肪酶及其折叠酶的基因并在大肠杆菌中实现了大量表达。根据生物信息学方法对信号肽预测的结果,将脂肪酶基因去除信号肽部分后在pet系统中表达,在胞内表达成包涵体,随后采用超声波破碎、脱氧胆酸钠溶解细胞碎片的简单方法制备出高纯度脂肪酶包涵体。蛋白质含量测定表明脂肪酶的表达量达到50mg/g cell-wet weight。根据蛋白质跨膜区域预测的结果,删除折叠酶N端跨膜的70个氨基酸,成功以pet系统在E. coli中实现折叠酶的可溶性表达,随后利用Ni-NTA金属亲和层析法一步纯化出N端携带6×His标签的折叠酶。
     3.进行脂肪酶的体外复性研究。证实折叠酶辅助法的复性效率明显优于大量稀释法。在对折叠酶-脂肪酶摩尔比、复性pH和复性时间等因素进行研究后得出,B.cenocepacia脂肪酶体外最佳复性条件为pH7.2,折叠酶-脂肪酶摩尔比1:1,复性时间12 h,复性后脂肪酶比活力最高为473.8 U/mg,复性效果良好。
     4.将T7蛋白质表达系统导入B. cenocepacia菌并实现了脂肪酶的高效同源表达。该系统以B. cenocepacia G63为宿主菌,通过同源重组的方法把T7RNA聚合酶基因定向插入到B. cenocepacia基因组中脂肪酶启动子的后面,使T7RNA聚合酶的表达受到脂肪酶启动子的调控,然后将受T7启动子调控的脂肪酶基因以质粒形式进行表达,最终实现了脂肪酶的高效表达。整个表达系统可分成T7 RNA聚合酶整合型重组菌和脂肪酶表达载体两部分。
     T7重组菌的构建通过自杀质粒pJQ200SK介导。先把脂肪酶操纵子前后两段500bp序列分别融合到T7 RNA聚合酶基因两端,再将此杂合基因克隆到pJQ200SK中,然后通过三亲本杂交将构建的自杀质粒导入野生菌。自杀质粒与野生菌基因组在500bp同源区域发生同源重组,从而将T7 RNA聚合酶基因整合于B. cenocepacia基因组中,获得T7重组菌。T7启动子型表达载体共有4种,其中pBBR221ip和pBBR221iplif采用脂肪酶自身信号肽,pBBR22△lip和pBBR22△liplif采用pelB信号肽。实验结果表明pelB分泌信号比脂肪酶原始分泌信号更适合于脂肪酶的表达与分泌。通过电转化将表达质粒转入T7重组菌获得4种脂肪酶工程菌。B. cenocepacia脂肪酶工程菌的这种构建方法系本文首创。
     5.在毕赤酵母中初步实现了B. cenocepacia脂肪酶的活性分泌表达。在生物信息学分析的基础上,采用重叠PCR技术改造了B. cenocepacia脂肪酶基因结构,获得适于在毕赤酵母中表达的优化基因。使用pGAPZa和pPIC9K分别构建了组成型和诱导型毕赤酵母基因工程菌。发酵结果表明,GAP启动子更适合该脂肪酶的高效表达,脂肪酶水解pNPP酯的最高酶活力达到184.3 U/mL。初步酶学性质研究表明,毕赤酵母表达的脂肪酶与野生型脂肪酶性质基本相同,可以用于规模生产。
Biodiesel is one of the most potential ways to solve the current fossil energy crisis. Using lipase as catalyst for biodiesel production has a broad application prospect because it is in line with the country's new strategy for new energy development due to its mild reaction condition, high efficiency and environmental protection. However, expensive price of lipase reduces competition of biodiesel.
     In this research, Burkholdria cepacia strain G63, whose lipase is highly thermostable and short-chain alcohol tolerant, was directly screened, and was indentified as B. cenocepacia through molecular biological analysis, the produced lipase was stable in pH ranging from 6.0-10.0 and the optimal pH for lipolytic activity was 9.0. The optimal temperature for the lipase was 60℃, and kept fairly stable below 65℃and retained 80% activity after incubation at 60℃for 4 h. The lipase exhibited highly tolerance to a variety of short-chain alcohols for example alcohol, propanol and isopropanol. The above characteristics made it an ideal enzyme for biodiesel production. The highest lipase activity of the wild strain G63 was 12.4 U/mL in shaking flask. To improve lipase expression level, a series of lipase engineering strains were constructed. The expression level of lipase in E. coli BL21 (DE3) was 50 mg/g cell-wet weight, the highest hydrlysis activity toward olive oil in homologous combinant B. cenocepacia was 32.7 U/mL, and the highest hydrolysis activity of pNPP in heterogeneous combinant Pichia pastoris GS115 was 184.3 U/mL. These results demonstrated that strategies of gene modification and overexpression for lipase of G63 were appropriate.
     The main work and innovations for the research are listed below.
     1. Directly screening B. cepacia strain by TB-TA plate. Positive screening rate of this method reached nearly 100%, which was appropriate for large scale screening. G63 was indentified as B. cenocepacia by Haelll-recA RFLP (restriction fragment length polymorphism) and genomovar specific PCR. This was the first lipase-producing B. cepacia strain indentified to genomovar level.
     2. Genes of lipase and foldase were coloned and overexpressed in E. coli, respectively. Based on the result of signal sequence prediction by informatics, we removed the signal sequence from the lipase gene. Then, the obtained gene without signal sequence was expressed in E. coli pet system. However, lipase was expressed in inclusion body. Lipase inclusion bodies of high purity were prepared by sonication and sodium deoxycholate treatment. The measured lipase expression level in E. coli was 50 mg/g cell-wet weight. Interestingly, foldase, whose N-terminal 70 amino acid residues were cut off according to the prediction result of the protein transmembrane region, was expressed in soluble form in the E. coli pet system. The foldase was purified by Ni-NTA chromatography and used for later lipase refolding.
     3. Lipase refolding in vitro was detailedly examined. The refolding results confirmed that the efficiency of foldase-assisted refolding was much better than that of the dilution refolding. After detailed studies on folase-lipase molar ratio, refolding pH and refolding time, the optimal refolding conditions were pH7.2, foldase-lipase molar ratio 1:1 and refolding time 12 h, under which conditions, the highest specific activity of the refolded lipase was up to 473.8 U/mg.
     4. T7 protein expression system was for the first time introduced into B. cenocepacia, by which the lipase was homologously overexpressed. Using B. cenocepacia G63 as a host, T7 RNA polymerase was fistly integrated into its genome and was controlled by lipase promoter. Then, lipase gene controlled by T7 promoter was electroporated into T7 RNA polymerase containing strain. Consequently, the lipase was over-expressed. The whole lipase expression system was composed of T7 recombination strain and expression vetors. T7 recombination strain was constructed by suicide vetor pJQ200SK. Regions of 500 bp before and after lipase operon were coloned and then flanked T7 RNA polymerase gene. T7 RNA polymerase with 500 bp flanking region was inserted into pJQ200SK. Through three parental mating, the modified suicide vector was introduced into G63. After homologous recombination between genome and suicide vector, T7 RNA polymerase gene was integrated into B. cenocepacia genome and resulted in T7 recombination strain. On the other hand, lipase expression vectors with T7 promoter were constructed into four types:Vectors pBBR221ip, pBBR221iplif with lipase native signal sequence, and pBBR22△lip, pBBR22△liplif with pelB signal sequence. The above vectors were respectively electroporated into T7 recombination strains and obtained four lipase expression strains. This is the first report by employing T7 protein expression system to construct a homologous combinant B. cenocepacia lipase strain.
     5. Active expression of B. cenocepacia lipase in Pichia was preliminarily achieved. Based on bioinformatics analysis, we modified and optimized B. cenocepacia lipase gene by overlap PCR to be appropriately expressed in P. pastoris GS115. Using vectors pGAPZa and pPIC9K, constitutive expression and inducible expression GS115 strains were constructed. After fermentation, the highest hydrolysis activity of pNPP was 184.3 U/mL,129.5 U/mL, respectively, which indicatd that GAP promoter was more appropriate for B. cenocepacia lipase expression in Pichia than AOX1 promoter. Enzymatic properties studies showed recombinant lipase expressed in GS115 was identical to the wild type and can also satisfy the needs of industrial application.
引文
[1]Meher LC, Vidya SD, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews,2006, 10:248-268.
    [2]Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology,1998,16(9):396-403.
    [3]Sarda L, Desnuelle P. Actions of pancreatic lipase on esters in emulsions. Biochimica Et Biophysica Acta,1958,30(3):513-521.
    [4]Brady L, Brzozowski AM, Derewenda ZS, et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature,1990,343(6260):767-770.
    [5]Winkler FK, D'Arcy A, Hunziker W. Structure of human pancreatic lipase. Nature, 1990,343(6260):771-774.
    [6]Rogalska E, Douchet I, Verger R. Microbial lipases:structures, function and industrial applications. Biochemical Society Transactions,1997,25(1):161-164.
    [7]Jaeger KE, Eggert T. Lipases for biotechnology. Current Opinion in Biotechnology, 2002,13(4):390-397.
    [8]Schmid RD, Verger R. Lipases:Interfacial enzymes with attractive applications. Angewandte Chemie-International Edition,1998,37(12):1609-1633.
    [9]Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes:classification and properties. The Biochemical Journal,1999,343 (1):177-183.
    [10]Ollis DL, Cheah E, Cygler M, et al. The alpha/beta hydrolase fold. Protein Engineering,1992,5(3):197-211.
    [11]Schrag JD, Cygler M. Lipases and alpha/beta hydrolase fold. Methods in Enzymology,1997,284:85-107.
    [12]van Pouderoyen G, Eggert T, Jaeger KE, et al. The crystal structure of Bacillus subtilis lipase:a minimal alpha/beta hydrolase fold enzyme. Journal of Molecular Biology,2001,309(1):215-226.
    [13]Kim KK, Song HK, Shin DH, et al. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure,1997,5(2):173-185.
    [14]Nardini M, Lang DA, Liebeton K, et al. Crystal structure of pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.I of bacterial lipases. The Journal of Biological Chemistry,2000,275(40): 31219-31225.
    [15]Jaeger KE, Ransac S, Dijkstra BW, et al. Bacterial lipases. FEMS Microbiology Reviews,1994,15(1):29-63.
    [16]Xu L, Jiang X, Yang J, et al. Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Biotechnology Letters,2009,32(2):269-276.
    [17]Oh B, Kim H, Lee J, et al. Staphylococcus haemolyticus lipase:biochemical properties, substrate specificity and gene cloning. FEMS Microbiology Letters, 1999,179(2):385-392.
    [18]Gilbert EJ, Cornish A, Jones CW. Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. Journal of General Microbiology,1991, 137(9):2223-2229.
    [19]Aoyama S, Yoshida N, Inouye S. Cloning, sequencing and expression of the lipase gene from Pseudomonas fragi IFO-12049 in E. coll FEBS Letters,1988,242(1): 36-40.
    [20]Markossian S, Becker P, Markl H, et al. Isolation and Characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an icelandic hot spring. Extremophiles,2000,4(6):365-371.
    [21]Dutta S, Ray L. Production and characterization of an alkaline thermostable crude lipase from an isolated strain of Bacillus cereus C(7). Applied Biochemistry and Biotechnology,2009,159(1):142-154.
    [22]Lanser AC, Manthey LK, Hou CT. Regioselectivity of new bacterial lipases determined by hydrolysis of triolein. Current Microbiology,2002,44(5):336-340.
    [23]Gupta R, Gupta N, Rathi P. Bacterial lipases:an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 2004,64(6):763-781.
    [24]宋庆训,林金萍,戎一平,等.脂肪酶产生菌Candida rugosa产酶条件研究. 生物工程学报,2001,17(1):101-104.
    [25]Elwan SH, el-Hoseiny MM, Ammar MS, et al. Lipases production by Bacillus circulans under mesophilic and osmophilic conditions. Factors affecting lipases production. Giornale di Batteriologia, Virologia ed Immunologia,1983,76(7-12): 187-199.
    [26]Kambourova M, Emanuilova E, Dimitrov P. Influence of culture conditions on thermostable lipase production by a thermophilic alkalitolerant strain of Bacillus sp. Folia Microbiol (Praha),1996,41(2):146-148.
    [27]Dharmsthiti S, Luchai S. Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiology Letters,1999, 179(2):241-246.
    [28]Heravi KM, Eftekhar F, Yakhchali B, et al. Isolation and identification of a lipase producing Bacillus sp. from soil. Pakistan Journal of Biological Sciences:PJBS, 2008,11(5):740-745.
    [29]贾彬,杨江科,闫云君.基于T7表达系统的洋葱伯克霍尔德菌G63脂肪酶同源高效表达.生物工程学报,2009,25(2):215-222.
    [30]Yu H, Han J, Li N, et al. Fermentation performance and characterization of cold-adapted lipase produced with pseudomonas lip35. Agricultural Sciences in China,2009,8(8):956-962.
    [31]张巧艳,钱俊青.响应面法优化黄杆菌突变株产脂肪酶摇瓶发酵条件.浙江工业大学学报,2009,37(2):150-160.
    [32]Handelsman T, Shoham Y. Production and characterization of an extracellular thermostable lipase from a thermophilic Bacillus sp. The Journal of General and Applied Microbiology,1994,40(5):435-443.
    [33]el-Shafei HA, Rezkallah LA. Production, purification and characterization of Bacillus lipase. Microbiological Research,1997,152(2):199-208.
    [34]Sharon C, Nakazato M, Ogawa H, et al. Bioreactor operated production of lipase:castor oil hydrolysis using partially-purified lipase Indian Journal of Experimental Biology,1999,5:481-486.
    [35]Chahinian H, Vanot G, Ibrik A, et al. Production of extracellular lipases by Penicillium cyclopium purification and characterization of a partial acylglycerol lipase. Bioscience, Biotechnology, and Biochemistry,2000,64(2):215-222.
    [36]Amoozegar MA, Salehghamari E, Khajeh K, et al. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. Journal of Basic Microbiology,2008,48(3):160-167.
    [37]Pratuangdejkul J, Dharmsthiti S. Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009. Microbiological Research, 2000,155(2):95-100.
    [38]Kamini NR, Fujii T, Kurosu T, et al. Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp S-2. Process Biochemistry,2000,36(4):317-324.
    [39]Rathi P, Saxena RK, Gupta R. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochemistry,2001,37(2):187-192.
    [40]Chander H RB, Singh J. Purification and some properties of lipase from streptococcus faecalis. Journal of Food Science,1979,44:1747-1751.
    [41]Ushio K, Hirata T, Yoshida K, et al. Superinducers for induction of thermostable lipase production by Pseudomonas species NT-163 and other Pseudomonas-like bacteria Biotechnology Techniques,1996,10(4):267-272.
    [42]Kok RG, Nudel CB, Gonzalez RH, et al. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413:fatty acid repression of lipA expression and degradation of LipA. Journal of Bacteriology, 1996,178(20):6025-6035.
    [43]Emanuilova E KM, Dekovska M, Manolov R. Thermoalkalophilic lipase-producing bacillus selected by continuous cultivation. FEMS Microbiology Letters,1993,108(2):247-250.
    [44]Espinosa E, Sanchez S, Farres A. Nutritional factors affecting lipase production by Rhizopus delemar CDBB H313. Biotechnology Letters,1990,12(3):209-214.
    [45]Gowland P, Kernick M, Sundaram TK. Thermophilic bacterial isolates producing lipase. FEMS Microbiology Letters,1987,48(3):339-343.
    [46]Winkler UK, Stuckmann M. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology,1979,138(3):663-670.
    [47]Tanaka J, Sudo T, Ihara F, et al. Increase production of lactonizing lipase (LipL) from Pseudomonas sp. strain 109 by lipids and detergents. Bioscience, Biotechnology, and Biochemistry,1999,63(5):900-904.
    [48]Rashid N, Shimada Y, Ezaki S, et al. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Applied and Environmental Microbiology,2001, 67(9):4064-4069.
    [49]Ohkuro I KT, Kawashima M, Kuriyama S. Influence of NaCl on colonies and lipase of Natto bacilli. Medical Biology,1978,97:171-174.
    [50]Granon S, Semeriva M. Effect of taurodeoxycholate, colipase and temperature on the interfacial inactivation of porcine pancreatic lipase. European Journal of Biochemistry,1980,111(1):117-124.
    [51]Salmond GP, Bycroft BW, Stewart GS, et al. The bacterial'enigma':cracking the code of cell-cell communication. Molecular Microbiology,1995,16(4):615-624.
    [52]Fuqua C, Winans SC, Greenberg EP. Census and consensus in bacterial ecosystems:the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annual Review of Microbiology,1996,50:727-751.
    [53]Swift S, Throup JP, Williams P, et al. Quorum sensing:a population-density component in the determination of bacterial phenotype. Trends in Biochemical Sciences,1996,21(6):214-219.
    [54]Engebrecht J, Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences of the United States of America,1984,81(13):4154-4158.
    [55]Lewenza S, Sokol PA. Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. Journal of Bacteriology,2001,183(7):2212-2218.
    [56]Whitehead NA, Barnard AM, Slater H, et al. Quorum-sensing in Gram-negative bacteria FEMS Microbiology Reviews,2001,25(4):365-404.
    [57]Aguilar C, Friscina A, Devescovi G, et al. Identification of quorum-sensing-regulated genes of Burkholderia cepacia. Journal of Bacteriology, 2003,185(21):6456-6462.
    [58]Chambers CE, Lutter El, Visser MB, et al. Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome. BMC Microbiology,2006(6):104.
    [59]Huber B, Riedel K, Hentzer M, et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology,2001,147(Pt 9):2517-2528.
    [60]Tomlin KL, Malott RJ, Ramage G, et al. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Applied and Environmental Microbiology,2005,71(9):5208-5218.
    [61]Lerat E, Moran NA. The evolutionary history of quorum-sensing systems in bacteria Molecular Biology and Evolution,2004,21(5):903-913.
    [62]Rosenau F, Jaeger K. Bacterial lipases from Pseudomonas:regulation of gene expression and mechanisms of secretion. Biochimie,2000,82(11):1023-1032.
    [63]de Souza JT, Mazzola M, Raaijmakers JM. Conservation of the response regulator gene gacA in Pseudomonas species. Environmental Microbiology,2003,5(12): 1328-1340.
    [64]Amada K, Kwon H-J, Haruki M, et al. Ca2+-induced folding of a family 1.3 lipase with repetitive Ca2+binding motifs at the C-terminus. FEBS Letters,2001,509(1): 17-21.
    [65]Tommassen J, Filloux A, Bally M, et al. Protein secretion in Pseudomonas aeruginosa. FEMS Microbiology Reviews,1992,9(1):73-90.
    [66]Jorgensen S, Skov KW, Diderichsen B. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia:lipase production in heterologous hosts requires two Pseudomonas genes. Journal of Bacteriology,1991,173(2):559-567.
    [67]Pauwels K, Lustig A, Wyns L, et al. Structure of a membrane-based steric chaperone in complex with its lipase substrate. Nature Structural& Molecular Biology,2006,13(4):374-375.
    [68]Kim EK, Jang WH, Ko JH, et al. Lipase and its modulator from Pseudomonas sp. strain KFCC 10818:proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator. Journal of Bacteriology,2001,183(20):5937-5941.
    [69]Quyen DT, Giang Le TT, Nguyen TT, et al. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expression and Purification,2005,39(1):97-106.
    [70]Park IH, Kim SH, Lee YS, et al. Gene cloning, purification, and characterization of a cold-adapted lipase produced by Acinetobacter baumannii BD5. Journal of Microbiology and Biotechnology,2009,19(2):128-135.
    [71]Kim SH, Park IH, Lee SC, et al. Discovery of three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Applied Microbiology and Biotechnology,2008,77(5):1041-1051.
    [72]Rosenau F, Tommassen J, Jaeger KE. Lipase-specific foldases. Chembiochem, 2004,5(2):152-161.
    [73]El Khattabi M, Ockhuijsen C, Bitter W, et al. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Molecular& General Genetics:MGG,1999,261(4-5):770-776.
    [74]Ihara F, Okamoto I, Akao K, et al. Lipase modulator protein (LimL) of Pseudomonas sp. strain 109. Journal of Bacteriology,1995,177(5):1254-1258.
    [75]Sandkvist M. Biology of type Ⅱ secretion. Molecular Microbiology,2001,40(2): 271-283.
    [76]Tanaka J, Ihara F, Nihira T, et al. A low-Mr lipase activation factor cooperating with lipase modulator protein LimL in Pseudomonas sp. strain 109. Microbiology, 1999,145 (10):2875-2880.
    [77]Frenken LG, de Groot A, Tommassen J, et al. Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Molecular Microbiology, 1993,9(3):591-599.
    [78]Aamand JL, Hobson AH, Buckley CM, et al. Chaperone-mediated activation in vivo of a Pseudomonas cepacia lipase. Molecular& General Genetics:MGG, 1994,245(5):556-564.
    [79]Madan B, Mishra P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coll Applied Microbiology and Biotechnology,2009,85(3):597-604
    [80]Frenken LG, Bos JW, Visser C, et al. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Molecular Microbiology,1993, 9(3):579-589.
    [81]Ma B, Tsai CJ, Nussinov R. Binding and folding:in search of intramolecular chaperone-like building block fragments. Protein Engineering,2000,13(9): 617-627.
    [82]Beer HD, McCarthy JE, Bornscheuer UT, et al. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochimica Et Biophysica Acta,1998,1399(2-3):173-180.
    [83]Takahashi S, Ueda M, Tanaka A. Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,2001,55(4):454-462.
    [84]Weissman JS, Kim PS. The pro region of BPTI facilitates folding. Cell,1992, 71(5):841-851.
    [85]Creighton TE, Bagley CJ, Cooper L, et al. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. Journal of Molecular Biology,1993,232(4):1176-1196.
    [86]Cunningham EL, Jaswal SS, Sohl JL, et al. Kinetic stability as a mechanism for protease longevity. Proceedings of the National Academy of Sciences of the United States of America,1999,96(20):11008-11014.
    [87]Yabuta Y, Takagi H, Inouye M, et al. Folding pathway mediated by an intramolecular chaperone-Propeptide release modulates activation precision of pro-subtilisin. Journal of Biological Chemistry,2001,276(48):44427-44434.
    [88]Ayora S, Lindgren PE, Gotz F. Biochemical properties of a novel metalloprotease from Staphylococcus hyicus subsp. hyicus involved in extracellular lipase processing. Journal of Bacteriology,1994,176(11):3218-3223.
    [89]Baumann U, Wu S, Flaherty KM, et al. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa:a two-domain protein with a calcium binding parallel beta roll motif, the EMBO Journal,1993,12(9):3357-3364.
    [90]Kojima Y, Kobayashi M, Shimizu S. A novel lipase from Pseudomonas fluorescens HU380:gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. Journal of Bioscience and Bioengineering,2003, 96(3):242-249.
    [91]Amada K, Kwon HJ, Haruki M, et al. Ca(2+)-induced folding of a family 1.3 lipase with repetitive Ca(2+) binding motifs at the C-terminus. FEBS Letters,2001, 509(1):17-21.
    [92]Meier R, Drepper T, Svensson V, et al. A calcium-gated lid and a large beta-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens. Journal of Biological Chemistry,2007,282(43):31477-31483.
    [93]Choi WC, Kim MH, Ro HS, et al. Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability. FEBS Letters,2005,579(16):3461-3466.
    [94]Hobson AH, Buckley CM, Jorgensen ST, et al. Interaction of the Pseudomonas cepacia DSM3959 lipase with its chaperone, LimA. Journal of Biochemistry,1995, 118(3):575-581.
    [95]Yang J, Kobayashi K, Iwasaki Y, et al. In vitro analysis of roles of a disulfide bridge and a calcium binding site in activation of Pseudomonas sp. strain KWI-56 lipase. Journal of Bacteriology,2000,182(2):295-302.
    [96]Liebeton K, Zacharias A, Jaeger KE. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase. Journal of Bacteriology,2001,183(2):597-603.
    [97]El Khattabi M, Van Gelder P, Bitter W, et al. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. Journal of Molecular Catalysis B-Enzymatic,2003,22(5-6):329-338.
    [98]Desveaux D, Subramaniam R, Despres C, et al. A "whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Developmental Cell,2004,6(2):229-240.
    [99]Baron C, Callaghan DO, Lanka E. Bacterial secrets of secretion:EuroConference on the biology of type IV secretion processes. Molecular Microbiology,2002, 43(5):1359-1365.
    [100]Ma QH, Zhai YF, Schneider JC, et al. Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens. Biochimica Et Biophysica Acta,2003,1611(2): 223-233.
    [101]Duong F, Soscia C, Lazdunski A, et al. The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Molecular Microbiology,1994,11(6):1117-1126.
    [102]Akatsuka H, Kawai E, Omori K, et al. The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. Journal of Bacteriology,1995,177(22): 6381-6389.
    [103]Ahn JH, Pan JG, Rhee JS. Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. Journal of Bacteriology,1999,181(6): 1847-1852.
    [104]Ahn JH, Pan JG, Rhee JS. Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp. Applied and Environmental Microbiology,2001,67(12):5506-5511.
    [105]Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews,1993,57(1):50-108.
    [106]Driessen AJ, Fekkes P, van der Wolk JP. The Sec system. Current Opinion in Microbiology,1998,1(2):216-22.
    [107]Berks BC, Sargent F, Palmer T. The Tat protein export pathway. Molecular Microbiology,2000,35(2):260-274.
    [108]Wu LF, Ize B, Chanal A, et al. Bacterial twin-arginine signal peptide-dependent protein translocation pathway:evolution and mechanism. Journal of Molecular Microbiology and Biotechnology,2000,2(2):179-189.
    [109]Ochsner UA, Snyder A, Vasil Al, et al. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America,2002,99(12): 8312-8317.
    [110]Rodrigue A, Chanal A, Beck K, et al. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. Journal of Biological Chemistry,1999,274(19):13223-13228.
    [111]Hasan N, Szybalski W. Construction of laclts and laclqts expression plasmids and evaluation of the thermosensitive lac repressor. Gene,1995,163(1):35-40.
    [112]Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology,2005,67(3):289-98.
    [113]Caulcott CA, Rhodes M. Temperature-induced synthesis of recombinant proteins. Trends in Biotechnology,1986,4(6):142-146.
    [114]Giladi H, Goldenberg D, Koby S, et al. Enhanced activity of the bacteriophage lambda PL promoter at low temperature. FEMS Microbiology Reviews,1995, 17(1-2):135-40.
    [115]Dubendorff JW, Studier FW. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. Journal of Molecular Biology,1991,219(1):45-59.
    [116]Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal of Bacteriology,1978,134(3):1141-1156.
    [117]Bessette PH, Aslund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences of the United States of America,1999,96(24): 13703-13708.
    [118]Novy R, Drott D, Yaeger K, et al. Overcoming the codon bias of E. coli for enhanced protein expression. Innovations,2001,12:1-3.
    [119]Leahy DJ, Hendrickson WA, Aukhil I, et al. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science,1992,258(5084):987-991.
    [120]Pfeffer J, Rusnak M, Hansen CE, et al. Functional expression of lipase A from Candida antarctica in Escherichia coli-A prerequisite for high-throughput screening and directed evolution. Journal of Molecular Catalysis B-Enzymatic, 2007,45(1-2):62-67.
    [121]Liu D, Schmid RD, Rusnak M. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm-a screening system for a frequently used biocatalyst. Applied Microbiology and Biotechnology,2006,72(5):1024-1032.
    [122]Iizumi T, Nakamura K, Shimada Y, et al. Cloning, nucleotide sequencing, and expression in Escherichia coli of a lipase and its activator genes from Pseudomonas sp. KWI-56. Agricultural and Biological Chemistry,1991,55(9): 2349-57.
    [123]Ogino H, Katou Y, Akagi R, et al. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles,2007,11(6):809-817.
    [124]Eom GT, Song JK, Ahn JH, et al. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system. Applied and Environmental Microbiology,2005,71(7): 3468-3474.
    [125]Rahman RNZRA, Leow TC, Basri M, et al. Secretory expression of thermostable Tl lipase through bacteriocin release protein. Protein Expression and Purification, 2005,40(2):411-416.
    [126]Jung SY, Park SS. Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnology Letters,2008,30(4):717-722.
    [127]Tang SJ, Sun KH, Sun GH, et al. Recombinant expression of the Candida rugosa Iip4 lipase in Escherichia coli. Protein Expression and Purification,2000,20(2): 308-313.
    [128]Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichiapastoris. FEMS Microbiology Reviews,2000,24(1):45-66.
    [129]Zhao HL, Xue C, Wang Y, et al. Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization. Applied Microbiology and Biotechnology,2008,81(2): 235-241.
    [130]Salah RB, Gargouri A, Verger R, et al. Expression in Pichia pastoris X33 of His-tagged lipase from a novel strain of Rhizopus oryzae and its mutant Asn 134 His:purification and characterization. World Journal of Microbiology& Biotechnology,2009,25(8):1375-1384.
    [131]Yu XW, Wang LLXu Y. Rhizopus chinensis lipase:Gene cloning, expression in Pichia pastoris and properties. Journal of Molecular Catalysis B-Enzymatic,2009, 57(1-4):304-311.
    [132]Yao HY, Yu SW, Zhang L, et al. Isolation of a novel lipase gene from Serratia liquefaciens S33 DB-1, functional expression in Pichia pastoris and its properties. Molecular Biotechnology,2008,38(2):99-107.
    [133]Yu MR, Lange S, Richter S, et al. High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expression and Purification,2007,53(2):255-263.
    [134]Zhao W, Wang J, Deng R, et al. Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. Journal of Industrial Microbiology& Biotechnology,2008,35(3):189-95.
    [135]Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene,1997,190(1):55-62.
    [136]Pignede G, Wang HJ, Fudalej F, et al. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Applied and Environmental Microbiology,2000,66(8): 3283-3289.
    [137]Nicaud JM, Madzak C, van den Broek P, et al. Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Research,2002,2(3):371-9.
    [138]Motejadded H, Altenbuchner J. Integration of a lipase gene into the Bacillus subtilis chromosome:Recombinant strains without antibiotic resistance marker. Iranian Journal of Biotechnology,2007,5(2):105-109.
    [139]Yang J, Guo D, Yan Y. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. Journal of Molecular Catalysis B:Enzymatic,2007,45(3-4):91-96.
    [140]Gerritse G, Hommes RWJ, Quax WJ. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Applied and Environmental Microbiology,1998,64(7):2644-2651.
    [141]Burkholder WH. Sour skin, a bacterial rot of onion bulbs. Phytopathology,1950, 40:115-117.
    [142]Lennette, Edwin H. Manual of Clinical Microbiology.4th ed. Washington: American Society for Microbiology,1985.360-362
    [143]布坎南RE,吉本斯NE.伯杰细菌鉴定手册.第八版ed.中科院微生物研究 所《伯杰细菌鉴定手册》翻译组.北京:科学出版社,1984.289-291
    [144]Yabuuchi E, Kosako Y, Oyaizu H, et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group Ⅱ to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology,1992,36(12):1251-1275.
    [145]LiPuma J. Update on burkholderia nomenclature and resistance. Clinical Microbiology Newsletter,2007,29:65-69.
    [146]Mahenthiralingam E, Baldwin A, Dowson CG. Burkholderia cepacia complex bacteria:opportunistic pathogens with important natural biology. Journal of Applied Microbiology,2008,104(6):1539-1551.
    [147]Vandamme P, Holmes B, Vancanneyt M, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. International Journal of Systematic Bacteriology,1997,47(4): 188-1200.
    [148]Coenye T, LiPuma JJ, Henry D, et al. Burkholderia cepacia genomovar Ⅵ, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. International Journal of Systematic and Evolutionary Microbiology,2001,51: 271-279.
    [149]Coenye T, Mahenthiralingam E, Henry D, et al. Burkholderia ambifaria sp nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. International Journal of Systematic and Evolutionary Microbiology,2001,51:1481-1490.
    [150]Vandamme P, Henry D, Coenye T, et al. Burkholderia anthina sp nov and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunology and Medical Microbiology,2002,33(2):143-149.
    [151]Vermis K, Vandekerckhove C, Nelis HJ, et al. Evaluation of restriction fragment length polymorphism analysis of 16S rDNA as a tool for genomovar characterisation within the Burkholderia cepacia complex. FEMS Microbiology Letters,2002,214(1):1-5.
    [152]Baldwin A, Mahenthiralingam E, Thickett KM, et al. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. Journal of Clinical Microbiology,2005,43(9):4665-4673.
    [153]Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nature Reviews. Microbiology,2005,3(2): 144-156.
    [154]Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads:a taxonomic study. Journal of General Microbiology,1966,43(2):159-271.
    [155]Mahenthiralingam E, Bischof J, Byrne SK, et al. DNA-Based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. Journal of Clinical Microbiology,2000,38(9): 3165-3173.
    [156]Drevinek P, Hrbackova H, Cinek O, et al. Direct PCR detection of Burkholderia cepacia complex and identification of its genomovars by using sputum as source of DNA. Journal of Clinical Microbiology,2002,40(9):3485-3488.
    [157]Pirone L, Chiarini L, Dalmastri C, et al. Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere. Environmental Microbiology,2005,7(11):1734-1742.
    [158]Cheng HP, Lessie TG. Multiple replicons constituting the genome of Pseudomonas cepacia 17616. Journal of Bacteriology,1994,176(13):4034-4042.
    [159]Lessie TG, Hendrickson W, Manning BD, et al. Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiology Letters,1996,144(2-3):117-128.
    [160]Gaffney TD, Lessie TG. Insertion-sequence-dependent rearrangements of Pseudomonas cepacia plasmid pTGL1. Journal of Bacteriology,1987,169(1): 224-30.
    [161]Kenna DT, Yesilkaya H, Forbes KJ, et al. Distribution and genomic location of active insertion sequences in the Burkholderia cepacia complex. Journal of Medical Microbiology,2006,55(1):1-10.
    [162]Baldwin A, Sokol PA, Parkhill J, et al. The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infection and Immunity,2004,72(3):1537-1547.
    [163]Beckman W, Lessie TG. Response of Pseudomonas cepacia to beta-Lactam antibiotics:utilization of penicillin G as the carbon source. Journal of Bacteriology, 1979,140(3):1126-1128.
    [164]Nair BM, Cheung KJ, Jr., Griffith A, et al. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). The Journal of Clinical Investigation,2004,113(3):464-473.
    [165]Chan YY, Tan TM, Ong YM, et al. BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother,2004,48(4): 1128-1135.
    [166]Cox AD, Wilkinson SG. Ionizing groups in lipopolysaccharides of Pseudomonas cepacia in relation to antibiotic resistance. Molecular Microbiology,1991,5(3): 641-646.
    [167]Aronoff SC. Outer membrane permeability in Pseudomonas cepacia:diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates. Antimicrob Agents Chemother,1988,32(11):1636-1639.
    [168]Parke JL, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology,2001,39:225-258.
    [169]Joy A, Parke J. Biocontrol of Alternaria leaf blight on American ginseng by Burkholderia cepacia AMMD. in:Vancouver BC.Challenges of the 21st century. Proceedings of the International Ginseng Conference. Canada:Simon Fraser Univ, 1994.93-100
    [170]Holmes A, Govan J, Goldstein R. Agricultural use of Burkholderia(Pseudomonas) cepacia:A threat to human health? Emerging Infectious Diseases,1998,4(2): 221-227.
    [171]罗远婵,谢关林.伯克氏细菌是我们的敌人还是朋友?.微生物学报,2005,45:647-652.
    [172]Sharma S, Sharma S, Singh RK, et al. Colonization behavior of bacterium Burkholderia cepacia inside the Oryza sativa roots visualized using green fluorescent protein reporter. World Journal of Microbiology& Biotechnology, 2008,24(7):1169-1175.
    [173]Estrada-De los Santos P, Bustillos-Cristales R, Caballero-Mellado J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology,2001,67(6): 2790-2798.
    [174]Minerdi D, Fani R, Gallo R, et al. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology,2001,67(2): 725-732.
    [175]O'Sullivan LA, Mahenthiralingam E. Biotechnological potential within the genus Burkholderia. Letters in Applied Microbiology,2005,41(1):8-11.
    [176]Sangodkar UM, Chapman PJ, Chakrabarty AM. Cloning, physical mapping and expression of chromosomal genes specifying degradation of the herbicide 2,4,5-T by Pseudomonas cepacia AC1100. Gene,1988,71(2):267-77.
    [177]Johnston RB, Jr. Clinical aspects of chronic granulomatous disease. Current Opinion in Hematology,2001,8(1):17-22.
    [178]Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine,2003,168(8):918-51.
    [179]张立新,谢关林,罗远婵.洋葱伯克氏菌在农业上应用的利弊探讨.中国农业科学2006,39(6):1166-1172.
    [180]Jarvis WR, Olson D, Tablan O, et al. The epidemiology of nosocomial Pseudomonas cepacia infections:endemic infections. European Journal of Epidemiology,1987,3(3):233-6.
    [181]Gonzalez CF, Pettit EA, Valadez VA, et al. Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia(Pseudomonas) cepacia. Molecular Plant-Microbe Interactions, 1997,10(7):840-851.
    [182]Bernier SP, Silo-Suh L, Woods DE, et al. Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infection and Immunity,2003,71(9):5306-5313.
    [183]O'Sullivan LA, Weightman AJ, Jones TH, et al. Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environmental Microbiology,2007,9(4):1017-1034.
    [184]Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology,2005,96(7): 769-777.
    [185]Hsu AF, Jones KC, Foglia TA, et al. Continuous production of ethyl esters of grease using an immobilized lipase. Journal of the American Oil Chemists Society, 2004,81(8):749-752.
    [186]刘涛.大孔树脂固定化洋葱假单胞菌脂肪酶工艺及催化合成生物柴油研究.武汉:华中科技大学硕士论文,2008.
    [187]de Freitas L, Dos Santos JC, Zanin GM, et al. Packed-bed reactor running on babassu oil and glycerol to produce monoglycerides by enzymatic route using immobilized Burkholderia cepacia lipase. Applied Biochemistry and Biotechnology,2010(161):372-381.
    [188]Priya K, Chadha A. Synthesis of hydrocinnamic esters by Pseudomonas cepacia lipase. Enzyme andMicrobial Technology,2003,32(3-4):485-490.
    [189]Salunkhe MM, Nair RV. Novel route for the resolution of both enantiomers of dropropizine by using oxime esters and supported lipases of Pseudomonas cepacia. Enzyme and Microbial Technology,2001,28(4-5):333-338.
    [190]Yu L, Xu Y, Wang X, et al. Highly enantioselective hydrolysis of dl-menthyl acetate to 1-menthol by whole-cell lipase from Burkholderia cepacia ATCC 25416. Journal of Molecular Catalysis B:Enzymatic,2007,47(3-4):149-154.
    [191]Nara SJ, Harjani JR, Salunkhe MM, et al. Lipase-catalysed polyester synthesis in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Tetrahedron Letters,2003,44(7):1371-1373.
    [192]Wang HK, Liu RJ, Lu FP, et al. A novel alkaline and low-temperature lipase of Burkholderia cepacia isolated from Bohai in China for detergent formulation. Annals of Microbiology,2009,59(1):105-110.
    [193]萨姆布鲁克J,拉塞尔D,W.分子克隆实验指南.第三版ed.黄培堂.北京:科学出版社,2002.93-96
    [194]Svendsen A, Borch K, Barfoed M, et al. Biochemical properties of cloned Upases from the Pseudomonas family. Biochimica Et Biophysica Acta,1995,1259:9-17.
    [195]Bevivino A, Peggion V, Chiarini L, et al. Effect of fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Research in Microbiology,2005,156(10):974-983.
    [196]Takeda Y, Aono R, Doukyu N. Purification, characterization, and molecular cloning of organic-solvent-tolerant cholesterol esterase from cyclohexane-tolerant Burkholderia cepacia strain ST-200. Extremophiles,2006,10(4):269-77.
    [197]Wang Xq, Yu Xw, Xu Y. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme and Microbial Technology,2009,45(2):94-102.
    [198]Quyen DT, Schmidt-Dannert C, Schmid RD. High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding. Applied and Environmental Microbiology,1999,65(2):787-794.
    [199]Ogino H, Inoue S, Akagi R, et al. Refolding of a recombinant organic solvent-stable lipase, which is overexpressed and forms an inclusion body, and activation with lipase-specific foldase. Biochemical Engineering Journal,2008, 40(3):507-511.
    [200]El Khattabi M, Van Gelder P, Bitter W, et al. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. Journal of Biological Chemistry,2000, 275(35):26885-26891.
    [201]Oshima-Hirayama, Yoshikawa N, Nishioka K, et al. Lipase from Pseudomonas aeruginosa:production in Escherichia coli and activation in vitro with a protein from the downstream gene. European Journal of Biochemistry,1993,215(2): 239-246.
    [202]Rosenau F, Jaeger K, Overexpression and secretion of biocatalysts in Pseudomonas, in Enzyme functionality:Design, engineering and screening, Svendson A, Editor.2004, Marcel Dekker Inc:New York. p.617-630.
    [203]Brunschwig E, Darzins A. A two-component T7 system for the overexpression of genes in Pseudomonas aeruginosa. Gene,1992,111(1):35-41.
    [204]Ahn JH, Pan JG, Rhee JS. Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp.. Applied and Environmental Microbiology,2001,67(12):5506-5511.
    [205]Dennis JJ, Sokol PA, Electrotransformation of Pseudomonas, in Methods in Molecular Biology, Electroporation Protocols for Microorganisms, Nickoloff JA, Editor.1995, Humana Press Inc:Totowa, N.J. p.125-133.
    [206]Quandt J, Hynes MF. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene,1993,127(1):15-21.
    [207]Sletta H, Tondervik A, Hakvag S, et al. The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Applied and Environmental Microbiology,2007,73(3):906-912.
    [208]Yin YW, Steitz TA. The structural mechanism of translocation and helicase activity in T7 RNApolymerase. Cell,2004,116(3):393-404.
    [209]Barnard GC, Henderson GE, Srinivasan S, et al. High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expression and Purification,2004,38(2):264-271.
    [210]Santiago-Machuca AE, Ruiz-Perez F, Delgado-Dominguez JS, et al. Attenuated Salmonella enterica serovar typhi live vector with inducible chromosomal expression of the T7 RNA polymerase and its evaluation with reporter genes. Plasmid,2002,47(2):108-119.
    [211]Kang Y, Son MS, Hoang TT. One step engineering of T7-expression strains for protein production:Increasing the host-range of the T7-expression system. Protein Expression and Purification,2007,55(2):325-333.
    [212]Jaeger KE, Schneidinger B, Liebeton K, et al. Lipase of Pseudomonas aeruginosa: Molecular biology and biotechnological application. Molecular Biology of Pseudomonads,1996:319-330.
    [213]Omori K, Isoyama-Tanaka J, Ihara F, et al. Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. Journal ofBioscience andBioengineering,2005,100(3):323-330.
    [214]Kuderova A, Nanak E, Truksa M, et al. Use of rifampicin in T7 RNA polymerase-driven expression of a plant enzyme:Rifampicin improves yield and assembly. Protein Expression and Purification,1999,16(3):405-409.
    [215]Zhang AL, Zhang TY, Luo JX, et al. Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture. Journal of Industrial Microbiology & Biotechnology,2007,34(2):117-122.
    [216]王海燕.荧光假单孢菌脂肪酶基因的克隆、改造及其在毕赤酵母中的表达:中国农业科学院博士学位论文,2006.
    [217]Delroisse JM, Dannau M, Gilsoul JJ, et al. Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein expression and Purification,2005,42(2):286-294.
    [218]Waterham HR, Digan ME, Koutz PJ, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene,1997,186(1):37-44.
    [219]Sears IB, O'Connor J, Rossanese OW, et al. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast,1998,14(8): 783-790.
    [220]Vassileva A, Chugh DA, Swaminathan S, et al. Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. Journal of Biotechnology,2001,88(1):21-35.
    [221]Boer H, Teeri TTK, Oivula A. Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnology and Bioengineering,2000,69(5):486-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700