用户名: 密码: 验证码:
~(13)C代谢通量分析平台的建立与改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,系统生物学的概念和理论得到了迅速的发展,系统生物学的研究如火如荼地开展。系统生物学的核心是要整合各个层面,各个构成要素的知识。这些层面当中,除开耳熟能详的基因组,转录组,蛋白质组和代谢组外,通量组(Fluxome)成为越来越重要一个组成部分。
     对这个体系的研究产生了新的组学,即代谢通量组学(Fluxomics)。其重点是对目标体系内的代谢通量的速度的方向和取值进行测定。所获得的信息对刻画生物系统的生理特性、评估遗传和环境对细胞的影响具有重要意义。
     代谢通量组学的主要研究手段是代谢通量分析,它可以分为纯计量性代谢通量分析和13C代谢通量分析两类。其中13C代谢通量分析是近十多年来,国际上新发展并仍然处于发展当中的技术。它除开具有纯计量性代谢通量分析的能力外,还具有获取信息更多,适用范围更广的优点。它能获得代谢途径的交换通量,并且不依赖于除稳态假设外的其他生理假设,因而适用各种试验条件。但是对于13C代谢通量分析技术,国内还未见有博士论文专题研究。
     本博士论文的内容主要分成二部分,一部分描述在中国科技大学建立13C代谢通量分析平台的工作,另一部分是对通量分析平台中的13C质量同位素异构体检测技术进行改进的工作。
     第一章详细介绍了13C代谢通量分析的基本理论。
     代谢通量分析的基础是代谢通量拟稳态假设。在此假设基础上,可以建立各个代谢物的物质平衡方程。13C代谢通量分析实验在培养底物里引入不完全的13C标记。13C会分布到所有代谢物中,而由于13C在代谢物中数量和位置的不同,可以得到同一种物质的不同的13C同位素异构体和质量同位素异构体(同位素异构体的一类特殊组合形式)。从同位素异构体概念出发,通过原子转移矩阵和同位素异构体转移矩阵,可以将物质平衡方程推广到同位素异构体守恒方程。通过对中间代谢物建立同位素异构体守恒方程组,可以得到代谢通量和代谢物的同位素异构体分布之间的确定但是隐式的关系。这个关系是一个较为复杂的多元二次方程组。当我们测量了同位素异构体分布的信息,依据此大规模的方程组和参数优化的数值方法,可以反推出代谢通量。同时,通过构建理论的测量值空间,利用Monte Carlo采样,仿照此求解过程,可以估计代谢通量的置信区间。
     第二章的主要内容是13C通量分析平台的建立和实例研究。
     第二章的第一部分详细介绍了13C代谢通量分析的检测技术。
     首先,详细介绍了13C标记技术,这是进行13C代谢通量分析的基础。对于估计最后的代谢通量而言,我们还需要获取两方面的信息。一方面是关于同位素异构体比例的信息。通过核磁(Nuclear magnetic resonance, NMR)波谱,可以获得特定的同位素异构体组合的比例信息。这包括J-resovled HSQC脉冲序列,它主要用于测量单键相连接的13C异构体组合。通过质谱(Mass spectrometry, MS),可以测量质量同位素异构体比例的信息。另一方面是关于代谢物流出代谢体系的量值信息。一部分中间代谢物的流出量值通过细胞的生物质的质量和成分构成;还有一部分中间代谢物的流出量值,通过测量这些中间代谢物在培养液中的残留浓度来获取。最后介绍了参数优化的目标函数和置信区间估计的方法。
     第二章的第二部分,以连续培养的大肠杆菌JM101株的代谢通量分析为例子,描述了连续培养下进行13C代谢通量分析的完整流程,也就是13C代谢通量分析实验平台的建立和实现。
     第三章阐述了对13C质量同位素异构体检测技术所作的改进。改进后的方法可以提高质量同位素异构体比例的测量确度,从而提高13C代谢通量分析的准确度。
     第三章的第一部分首先粗略地介绍了质谱测量的原理和基本过程。然后按照测量发生的顺序,介绍了质谱仪的基本的结构和功能单元。这些单元包括进样器,离子源,质量分析仪和信号检测器。之后论文较为详细地描述了用于气质联用的衍生化方法,特别是氨基酸的特丁基二甲基硅烷衍生化方法。最后,仔细地讨论了用以解决重同位素引起的质量位移作用的数学框架修正举证。
     第三章的第二部分首先详细介绍了用质谱进行13C质量同位素异构体检测的基本假设,并对该假设进行了数学化的描述。利用该数学描述,对之前的各种提高质谱测量确度的方法进行了分类和描述。之后则介绍了如何提高13C质量同位素异构体测量确度的方法。利用已知了同位素异构体比例的样品,作为标准样,制作任意质谱仪的校准曲线,是一种最具有广泛性的提高测量精度的方法。我们使用以甲醇作为碳源的嗜甲基菌Methylobacterium salsuginis sp.,将其在排除了天然CO2的环境下,以13C标记的甲醇作为唯一碳源来进行培养。产生的各种生成物的同位素异构体比例可以用二项式公式来计算。我们引进一个新的量,它是两个连续的质量同位素异构体(13C原子数目相差1)的比值,由此避开了对多维向量进行校准的麻烦。而且,我们后验地测定每个产物的整个分子的平均13C比例,从而使得生物同位素效应的对13C分布不均匀性的影响降至最低。
     第三章的第三部分则是对第二部分理论的实验实现,包括实验程序,理论模拟和结果讨论。经过校准后的结果,其绝对误差都小于0.9mol%,比未校准的结果有明显进步。而且,若采用理想的实验步骤,则误差可预计下降到0.4mol%以下。
     在13C MFA平台上,我们分析研究了大肠肝菌中心代谢通量在超氧化应激情况下的变化情况。这部分内容是由芮斌同学和我共同完成的,请参看芮斌同学的博士论文。
     此外,我们还进行了“不同剂量的氧化剂引起代谢系统不同强度反应”的研究,正在成文中。
In recent years, the concept and theory of systems biology have been undergoing a major development in accordance with its wide application in various areas. The core of this newly established discipline is the information integration across different "omes". Among these omes, the fluxome has played an increasingly important role in linking omes of different level.
     Investigation of fluxome gives birth to the fluxomics which aims at quantitatively analyzing the direction and quantity of metabolic flux. Insights acquired from fluxomics would be of significant biological importance for depicting the physiological characteristic of cell as well as assessing the influence of the genetic and environmental manipulations on cell.
     The primary technique for fluxomics is metabolic flux analysis, which consists of stoichiometry metabolic flux analysis and 13C metabolic flux analysis (13C MFA). 13C MFA has been the research hotspot of metabolic engineering internationally due to its accuracy and applicability. However, there is no domestic doctorate thesis concerning about 13C metabolic flux analysis.
     This PhD thesis consists of two parts. The first part details the fundamental principle of 13C MFA and the implementation of its experimental platform. The second part describes a method to improve the measurement accuracy of 13C mass isotopomer analysis.
     Chapter 1 illustrates the fundamental principle of 13C MFA.
     The first part of chapter 1 describes the fundamental principle of 13C MFA.13C MFA introduces partial 13C labeling in cultivation substrate.13C will distribute among intermediates and metabolites and results in different isotopomer distribution. Starting from the concept of isotopomer, the mass balance relationship could be extended as isotopomers balance relationship which relates the metabolic flux with the isotopomer distribution of intermediates and metabolites. Isotopomers balance relationship is a complicated square equation of multiple variables. Based on these equations, the metabolic flux quantity could be deduced from the measured isotopomer information through evolution algorithm based parameter optimization. Afterwards, we could construct the theoretical measurement space and quantify the confidence interval of estimated flux value by Monte Carlo sampling.
     Chapter 2 focuses on the introduction and implementation of experimental technique for 13C MFA.
     The first part of chapter 2 describes experimental techniques which are necessary for 13C MFA.
     The 13C labeling technique is the basis for 13C MFA. To estimate the intracellular metabolic flux value, information of isotopomer distribution as well as the information of the metabolites efflux must be obtained. The information of specific isotopomers can be acquired through NMR measurements. J-resolved HSQC could be used to analyze the isotopomers containing directly connected carbon-carbon bond. The mass isotopomer distribution could be quantified by MS measurement. The metabolites efflux is the other kind of information necessary for 13C MFA. Efflux value of some certain metabolites could be determined by analysis of the accumulated amount and the cellular composition of biomass. Besides, quantitatively analyzing the residual concentration could determine efflux value of other intermediates and metabolites. At the last stage, the objectivity for parameter optimization and confidence interval estimation method are presented.
     The second part of chapter 2 is exhaustive experimental protocol of 13C MFA in continuous cultivation. That is the first implementation of 13C MFA platform in USTC.
     Chapter 2 describes the second part of our work that is the improvement of measurement accuracy of 13C mass isotopomer analysis hence the flux accuracy of 13C MFA.
     The first part of chapter 2 introduces concisely the principle and process of MS measurement. Then the basic structural and functional units of MS instrument are discussed. These units includes samples introduction, ionization source, mass separation and signal detection. Additionally, the derivatization methods, especially the TMBDMS-derivatization for GC-MS, are illustrated detailedly. Then a mathematical framework, correction matrix, is described to address the mass shift effect introduced by heavy isotopes in nonskeleton carbon.
     The second part of chapter 2 firstly describes in particular the basic assumption for 13C mass isotopomer analysis by MS measurement. Then we re-state this assumption in a mathematical framework. Based upon this mathematical frame, we can easily classify and depict the previous methods of improving the MS measurement accuracy. These methods utilize linear extrapolation, nonlinear relationship or theoretical correction. These methods indeed produce accurate results than simple measurement. However, they have a shared shortcoming that they are instrument specific
     The second part describes how to increase the accuracy of mass iotopomer analysis through calibration curves constructed using biologically synthesized compounds. Using the compounds with known isotopomer distribution as the standard sample one could plot calibration curve for any instrument. Thus, the correction method relying on calibration curve would be a general method that is universally applicable to MS measurements. The bacterium strain Methylobacterium salsuginis sp. nov. is cultivated with partially 13C labeled methanol as the only carbon source to produce 13C enriched compounds. The resulting product isotopomers obey binomial distribution. We introduces a new variable to replace the mass isotopomer distribution as optimization objectivity in order to circumvent the calibration for MID. Moreover, posterior measurement of average 13C abundance minimized the interference of intramolecular inhomogeneity of 13C isotope abundances caused by biological isotope fractionation.
     The third part deals with the experimental implementation of the theory raised in the second part. This includes experimental protocol, numeric modeling, results and discussion. The absolute uncertainty after correction by calibration curve has decreased to 0.9mol%, remarkably reduced compared to the uncalibrated results. If the average 13C abundance is measured by gas chromatography-combustion-isotope ratio mass spectrometry, the expected error would decrease to 0.4mol%.
     Ground on this 13C MFA platform, Rui Bin and I performed a global investigation of central carbon metabolism in response to superoxide stress in E.coli. Please refer to Rui Bin's PhD thesis for detailed description.
     Besides, we had performed an investigation titled "serial metabolic flux analysis revealed a dose-dependent response of E.coli metabolism to oxidative stress".
引文
Bailey, J. E. (1991). "Toward a science of metabolic engineering." Science 252(5013):1668-75.
    Beard, D. A., S. C. Liang, et al. (2002). "Energy balance for analysis of complex metabolic networks." Biophysical Journal 83(1):79-86.
    Burgard, A. P. and C. D. Maranas (2001). "Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions." Biotechnol Bioeng 74(5): 364-75.
    Christensen, B. and J. Nielsen (1999). "Isotopomer analysis using GC-MS." Metab Eng 1(4): 282-90.
    Covert, M. W., C. H. Schilling, et al. (2001). "Regulation of gene expression in flux balance models of metabolism." Journal of Theoretical Biology 213(1):73-88.
    De Graaf, A. A., K. Striegel, et al. (1999). "Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C-and 31P-NMR spectroscopy." Arch Microbiol 171(6):371-85.
    Edwards, J. S. and B. O. Palsson (2000). "The Escherichia coli MG1655 in silico metabolic genotype:its definition, characteristics, and capabilities." Proc Natl Acad Sci U S A 97(10):5528-33.
    Edwards, J. S. and B. O. Palsson (2000). "Robustness analysis of the Escherichia coli metabolic network." Biotechnol Prog 16(6):927-39.
    Fell, D. A. and J. R. Small (1986). "Fat synthesis in adipose tissue. An examination of stoichiometric constraints." Biochem J 238(3):781-6.
    Fischer, E., N. Zamboni, et al. (2004). "High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints." Anal Biochem 325(2): 308-16.
    Kauffman, K. J., P. Prakash, et al. (2003). "Advances in flux balance analysis." Curr Opin Biotechnol 14(5):491-6.
    Lee, J. M., E. P. Gianchandani, et al. (2006). "Flux balance analysis in the era of metabolomics." Brief Bioinform 7(2):140-50.
    Mahadevan, R., J. S. Edwards, et al. (2002). "Dynamic flux balance analysis of diauxic growth in Escherichia coli."Biophysical Journal 83(3):1331-1340.
    Malloy, C. R., A. D. Sherry, et al. (1988). "Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy." J Biol Chem 263(15):6964-71.
    Marx, A., A. A. de Graaf, et al. (1996). "Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing." Biotechnol Bioeng 49(2):111-29.
    Metallo, C. M., J. L. Walther, et al. (2009). "Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells." J Biotechnol 144(3):167-74.
    Nielsen, J. and M. C. Jewett (2008). "Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae." FEMS Yeast Res 8(1):122-31.
    Papoutsakis, E. T. (1984). "Equations and calculations for fermentations of butyric acid bacteria." Biotechnol Bioeng 26(2):174-87.
    Park, S. M., M. I. Klapa, et al. (1999). "Metabolite and isotopomer balancing in the analysis of metabolic cycles:II. Applications." Biotechnol Bioeng 62(4):392-401.
    Pasternack, L. B., D. A. Laude, Jr., et al. (1994). "Whole-cell detection by 13C NMR of metabolic flux through the Cl-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect, of antifolate exposure in Saccharomyces cerevisiae." Biochemistry 33(23):7166-73.
    Petersen, S., A. A. de Graaf, et al. (2000). "In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum." Journal of Biological Chemistry 275(46):35932-35941.
    Pramanik, J. and J. D. Keasling (1997). "Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements." Biotechnol Bioeng 56(4):398-421.
    Ramakrishna, R., J. S. Edwards, et al. (2001). "Flux-balance analysis of mitochondrial energy metabolism:consequences of systemic stoichiometric constraints." Am J Physiol Regul Integr Comp Physiol 280(3):R695-704.
    Sauer, U. (2006). "Metabolic networks in motion:13C-based flux analysis." Mol Syst Biol 2:62.
    Sauer, U. and J. E. Bailey (1999). "Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum riboflavin yield." Biotechnol Bioeng 64(6):750-4.
    Savinell, J. M. and B. O. Palsson (1992). "Optimal selection of metabolic fluxes for in vivo measurement. Ⅰ. Development of mathematical methods." J Theor Biol 155(2):201-14.
    Savinell, J. M. and B. O. Palsson (1992). "Optimal selection of metabolic fluxes for in vivo measurement. Ⅱ. Application to Escherichia coli and hybridoma cell metabolism."J Theor Biol 155(2):215-42.
    Schilling, C. H., J. S. Edwards, et al. (2000). "Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems." Biotechnol Bioeng 71(4): 286-306.
    Schmidt, K., M. Carlsen, et al. (1997). "Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices." Biotechnol Bioeng 55(6):831-40.
    Schmidt, K., A. Marx, et al. (1998). "13C tracer experiments and metabolite balancing for metabolic flux analysis:comparing two approaches." Biotechnol Bioeng 58(2-3):254-7.
    Sherry, A. D., P. Zhao, et al. (1994). "13C isotopomer analyses in intact tissue using [13C]homonuclear decoupling." Magn Reson Med 31(4):374-9.
    Vallino, J. J. and G. Stephanopoulos (1993). "Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction." Biotechnol Bioeng 41(6):633-46.
    Vallino, J. J. and G. Stephanopoulos (2000). "Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Reprinted from Biotechnology and Bioengineering, Vol.41, Pp 633-646 (1993)." Biotechnol Bioeng 67(6):872-85.
    van Winden, W. A., J. J. Heijnen, et al. (2002). "Cumulative bondomers:a new concept in flux analysis from 2D [13C,1H] COSY NMR data." Biotechnol Bioeng 80(7):731-45.
    Varma, A., B. W. Boesch, et al. (1993). "Biochemical production capabilities of escherichia coli." Biotechnol Bioeng 42(1):59-73.
    Wang, M., R. J. Lamers, et al. (2005). "Metabolomics in the context of systems biology:bridging traditional Chinese medicine and molecular pharmacology." Phytother Res 19(3):173-82.
    Wiechert, W. (2001). "13C metabolic flux analysis." Metab Eng 3(3):195-206.
    Wiechert, W. (2002). "An introduction to 13C metabolic flux analysis." Genet Eng (N Y) 24: 215-38.
    Wiechert, W. and A. A. de Graaf (1997). "Bidirectional reaction steps in metabolic networks:I. Modeling and simulation of carbon isotope labeling experiments." Biotechnol Bioeng 55(1):101-17.
    Wiechert, W., M. Mollney, et al. (1999). "Bidirectional reaction steps in metabolic networks:III. Explicit solution and analysis of isotopomer labeling systems." Biotechnol Bioeng 66(2): 69-85.
    Wiechert, W., M. Mollney, et al. (2001). "A universal framework for 13C metabolic flux analysis." Metab Eng 3(3):265-83.
    Wiechert, W. and K. Noh (2005). "From stationary to instationary metabolic flux analysis." Adv Biochem Eng Biotechnol 92:145-72.
    Wiechert, W., C. Siefke, et al. (1997). "Bidirectional reaction steps in metabolic networks:Ⅱ. Flux estimation and statistical analysis." Biotechnol Bioeng 55(1):118-35.
    Zamboni, N. and U. Sauer (2009). "Novel biological insights through metabolomics and 13C-flux analysis." Curr Opin Microbiol 12(5):553-8.
    Zhang, H, Zhu, J, et al. (2003). " A Quantitative Analysis of Intracellular Metabolic Fluxes for Central Metabolism " Prog.Biochem.Biophys.30 (2):301-307
    Zupke, C. and G. Stephanopoulos (1994). "Modeling of Isotope Distributions and Intracellular Fluxes in Metabolic Networks Using Atom Mapping Matrices." Biotechnology Progress 10(5):489-498.
    Zupke, C. and G. Stephanopoulos (1995). "Intracellular flux analysis in hybridomas using mass balances and in vitro (13)C nmr."Biotechnol Bioeng 45(4):292-303.
    Antoniewicz, M. R., J. K. Kelleher, et al. (2006). "Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements." Metab Eng 8(4):324-37.
    Antoniewicz, M. R., J. K. Kelleher, et al. (2007). "Accurate Assessment of Amino Acid Mass Isotopomer Distributions for Metabolic Flux Analysis." Anal Chem.
    Antoniewicz, M. R., J. K. Kelleher, et al. (2007). "Elementary metabolite units (EMU):a novel framework for modeling isotopic distributions." Metab Eng 9(1):68-86.
    Arauzo-Bravo, M. J. and K. Shimizu (2003). "An improved method for statistical analysis of metabolic flux analysis using isotopomer mapping matrices with analytical expressions." J Biotechnol 105(1-2):117-33.
    Bruinenberg, P. M., J. P. van Dijken, et al. (1983). "An enzymic analysis of NADPH production and consumption in Candida utilis." J Gen Microbiol 129(4):965-71.
    Carvalho, R. A., F. M. Jeffrey, et al. (1998). "C isotopomer analysis of glutamate by heteronuclear multiple quantum coherence-total correlation spectroscopy (HMQC-TOCSY)." FEBS Lett 440(3):382-6.
    Costenoble, R., D. Muller, et al. (2007). "13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae." FEMS Yeast Res 7(4):511-26.
    Ettenhuber, C, T. Radykewicz, et al. (2005). "Metabolic flux analysis in complex isotopolog space. Recycling of glucose in tobacco plants." Phytochemistry 66(3):323-35.
    Isermann, N. and W. Wiechert (2003). "Metabolic isotopomer labeling systems. Part Ⅱ:structural flux identifiability analysis." Math Biosci 183(2):175-214.
    Maaheimo, H., J. Fiaux, et al. (2001). "Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids." Eur J Biochem 268(8):2464-79.
    Neidhardt FC, Umbarger FH.1996. Chemical composition of Escherichia coli, p.13-16. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter. and Ⅱ. E. Umbarger (eds.). Escherichia coli and Salmonella:cellular and molecular biology. ASM Press. Washington. D C.
    Oliveira, A. P., J. Nielsen, et al. (2005). "Modeling Lactococcus lactis using a genome-scale flux model." BMC Microbiol 5:39.
    Quek, L. E., C. Wittmann, et al. (2009). "OpenFLUX:efficient modelling software for 13C-based metabolic flux analysis." Microb Cell Fact 8:25.
    Sauer, U. (2006). "Metabolic networks in motion:13C-based flux analysis." Mol Syst Biol 2:62.
    Sauer, U., D. R. Lasko, et al. (1999). "Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism." J Bacteriol 181(21):6679-88.
    Schmidt, K., L. C. Norregaard, et al. (1999). "Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components." Metab Eng 1(2):166-79.
    Sriram, G, O. Gonzalez-Rivera, et al. (2006). "Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis." Biotechnol Prog 22(6):1659-63.
    Suthers, P. F., Y. J. Chang, et al. (2010). "Improved computational performance of MFA using
    elementary metabolite units and flux coupling." Metab Eng 12(2):123-8.
    Szyperski, T. (1995). "Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism." Eur J Biochem 232(2): 433-48.
    Szyperski, T. (1998). "13C-NMR, MS and metabolic flux balancing in biotechnology research." Q Rev Biophys 31(1):41-106.
    Szyperski, T., R. W. Glaser, et al. (1999). "Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy." Metab Eng 1(3):189-97.
    Szyperski, T., D. Neri, et al. (1992). "Support of 1H NMR assignments in proteins by biosynthetically directed fractional 13C-labeling." J Biomol NMR 2(4):323-34.
    van Winden, W., D. Schipper, et al. (2001). "Innovations in generation and analysis of 2D [(13)C,(1)H] COSY NMR spectra for metabolic flux analysis purposes." Metab Eng 3(4):322-43.
    van Winden, W. A., W. M. van Gulik, et al. (2003). "Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C,1H] COSY NMR measurements and cumulative bondomer simulation." Biotechnol Bioeng 83(1):75-92.
    Varma, A., B. W. Boesch, et al. (1993). "Biochemical production capabilities of escherichia coli." Biotechnol Bioeng 42(1):59-73.
    Varma, A. and B. O. Palsson (1995). "Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism."Biotechnol Bioeng 45(1):69-79.
    Wiechert, W. and A. A. de Graaf(1997). "Bidirectional reaction steps in metabolic networks:I. Modeling and simulation of carbon isotope labeling experiments." Biotechnol Bioeng 55(1): 101-17.
    Wiechert, W. and M. Wurzel (2001). "Metabolic isotopomer labeling systems. Part Ⅰ:global dynamic behavior." Math Biosci 169(2):173-205.
    Yang, C., Q. Hua, et al. (2002). "Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose." Metab Eng 4(3):202-16.
    Yang, J., S. Wongsa, et al. (2007). "Metabolic flux estimation--a self-adaptive evolutionary algorithm with singular value decomposition." IEEE/ACM Trans Comput Biol Bioinform 4(1):126-38.
    Antoniewicz, M. R., J. K. Kelleher, et al. (2007). "Accurate Assessment of Amino Acid Mass Isotopomer Distributions for Metabolic Flux Analysis." Anal Chem.
    Bandsma, R. H., F. Kuipers, et al. (2000). "The contribution of newly synthesized cholesterol to bile salt synthesis in rats quantified by mass isotopomer distribution analysis." Biochim Biophys Acta 1483(3):343-51.
    Christensen, B. and J. Nielsen (1999). "Isotopomer Analysis Using GC-MS."
    Comte, B., G. Vincent, et al. (1997). "A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts." J Biol Chem 272(42):26125-31.
    Dauner, M. and U. Sauer (2000). "GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing." Biotechnology Progress 16(4):642-649.
    Efimova, T. P. and I. M. Tereshin (1977). "[Gas chromatography in biology and medicine: application and prospects]." Usp Sovrem Biol 83(2):240-50.
    Fagerquist, C. K., M. K. Hellerstein, et al. (2001). "Elimination of the concentration dependence in mass isotopomer abundance mass spectrometry of methyl palmitate using metastable atom bombardment." J Am Soc Mass Spectrom 12(6):754-61.
    Fernandez, C. A., C. Des Rosiers, et al. (1996). "Correction of 13C mass isotopomer distributions for natural stable isotope abundance." J Mass Spectrom 31(3):255-62.
    Fischer, E., N. Zamboni, et al. (2004). "High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints." Anal Biochem 325(2): 308-16.
    Griffiths, W. J., A. P. Jonsson, et al. (2001). "Electrospray and tandem mass spectrometry in biochemistry." Biochem J 355(Pt 3):545-61.
    Hare, P. E., M. L. Fogel, et al. (1991). "The Isotopic Composition of Carbon and Nitrogen in Individual Amino Acids Isolated from Modern and Fossil Proteins." Journal of Archaeological Science 18:211-292.
    Heinzle, E., Y. Yuan, et al. (2008). "Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry." Anal Biochem 380(2):202-10.
    Hellerstein, M. K. and R. A. Neese (1999). "Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations." American Journal of Physiology-Endocrinology and Metabolism 276(6):E1146-E1170.
    Hellerstein, M. K., R. A. Neese, et al. (1997). "Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study." J Clin Invest 100(5):1305-19.
    Hellerstein, M. K., J. M. Schwarz, et al. (1996). "Regulation of hepatic de novo lipogenesis in humans." Annu Rev Nutr 16:523-57.
    Herron, W. J., J. Eadie, et al. (1995). "Estimation of ranolazine and eleven phase Ⅰ metabolites in human plasma by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry with selected-ion monitoring." J Chromatogr A 712(1):55-60.
    Hopfgartner, G, E. Varesio, et al. (2004). "Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules." J Mass Spectrom 39(8):845-55.
    Huege, J., R. Sulpice, et al. (2007). "GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after (CO2)-C-13 labelling." Phytochemistry 68(16-18):2258-2272.
    James, H. S. D., M. O. (2006). Astrobiol.6:867-880.
    Jeffrey, F. M. H., J. S. Roach, et al. (2002). "C-13 isotopomer analysis of glutamate by tandem mass spectrometry." Analytical Biochemistry 300(2):192-205.
    Jennings, M. E. and D. E. Matthews (2005). "Determination of complex isotopomer patterns in isotopically labeled compounds by mass spectrometry." Analytical Chemistry 77(19): 6435-6444.
    Klapa, M. I., J. C. Aon, et al. (2003). "Ion-trap mass spectrometry used in combination with gas chromatography for high-resolution metabolic flux determination." Biotechniques 34(4): 832-+.
    Klapa, M. I., J. C. Aon, et al. (2003). "Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry." European Journal of Biochemistry 270(17):3525-3542.
    Krzycki, J. A., W. R. Kenealy, et al. (1987). "Stable Carbon Isotope Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or Carbon Dioxide-Hydrogen." Appl Environ Microbiol 53(10):2597-2599.
    Lee, W. N., L. O. Byerley, et al. (1991). "Mass isotopomer analysis:theoretical and practical considerations." Biol Mass Spectrom 20(8):451-8.
    Lee, W. N. P., L. O. Byerley, et al. (1991). "Mass Isotopomer Analysis-Theoretical and Practical Considerations." Biological Mass Spectrometry 20(8):451-458.
    McKinlay, J. B., Y. Shachar-Hill, et al. (2007). "Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers." Metab Eng 9(2):177-92.
    Nissim, I. and M. Yudkoff (1990). "Carbon flux through tricarboxylic acid cycle in rat renal tubules." Biochim Biophys Acta 1033(2):194-200.
    Noh, K., A. Wahl, et al. (2006). "Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions." Metab Eng 8(6):554-77.
    Noh, K. and W. Wiechert (2006). "Experimental design principles for isotopically instationary 13C labeling experiments." Biotechnol Bioeng 94(2):234-51.
    Nordhoff, E., V. Egelhofer, et al. (2001). "Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry:an analytical challenge for studying complex protein mixtures." Electrophoresis 22(14):2844-55.
    Pasikanti, K. K., P. C. Ho, et al. (2008). "Gas chromatography/mass spectrometry in metabolic profiling of biological fluids." J Chromatogr B Analyt Technol Biomed Life Sci 871(2): 202-11.
    Patterson, B. W., F. Carraro, et al. (1993). "Measurement of 15N enrichment in multiple amino acids and urea in a single analysis by gas chromatography/mass spectrometry." Biol Mass Spectrom 22(9):518-23.
    Patterson, B. W. and R. R. Wolfe (1993). "Concentration dependence of methyl palmitate isotope ratios by electron impact ionization gas chromatography/mass spectrometry." Biol Mass Spectrom 22(8):481-6.
    Platzner, I., S. Ehrlich, et al. (2001). "Isotope-ratio measurements of lead in NIST standard
    reference materials by multiple-collector inductively coupled plasma mass spectrometry." Fresenius J Anal Chem 370(5):624-8.
    Portais, J. C, R. Schuster, et al. (1993). "Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation." Eur J Biochem 217(1):457-68.
    Riazi, R., M. Khairallah, et al. (2009). "Probing pyruvate metabolism in normal and mutant fibroblast cell lines using DC-labeled mass isotopomer analysis and mass spectrometry." Mol Genet Metab 98(4):349-55.
    Rosenblatt, J., D. Chinkes, et al. (1992). "Stable isotope tracer analysis by GC-MS, including quantification of isotopomer effects." Am J Physiol 263(3 Pt 1):E584-96.
    Savidge, W. B. and N. E. Blair (2004). "Patterns of intramolecular carbon isotopic heterogeneity within amino acids of autotrophs and heterotrophs." Oecologia 139(2):178-89.
    Schadereit, R. and K. Krawielitzki (1998). "Whole body protein metabolism estimated by 15N tracer experiments and body composition of mice selected for different growth parameters." Isotopes Environ Health Stud 34(1-2):127-34.
    Schmidt, K., M. Carlsen, et al. (1997). "Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices." Biotechnology and Bioengineering 55(6): 831-840.
    Szyperski, T. (1998). "C-13-NMR, MS and metabolic flux balancing in biotechnology research.' Quarterly Reviews of Biophysics 31(1):41-106.
    Tang, Y., F. Pingitore, et al. (2007). "Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry." Journal of Bacteriology 189(3):940-949.
    Tang, Y. J., H. G. Martin, et al. (2009). "Advances in analysis of microbial metabolic fluxes via (13)C isotopic labeling." Mass Spectrom Rev 28(2):362-75.
    Tcherkez, G. and G D. Farquhar (2005). "Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves." Functional Plant Biology 32(4): 277-291.
    Thompson, G. N., P. J. Pacy, et al. (1989). "Practical considerations in the use of stable isotope labelled compounds as tracers in clinical studies." Biomed Environ Mass Spectrom 18(5): 321-7.
    Tsikas, D. (1998). "Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans." J Chromatogr B Biomed Sci Appl 717(1-2):201-45.
    Van Dien, S. J. and M. E. Lidstrom (2002). "Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AMI, with application to reconstruction of C(3) and C(4) metabolism." Biotechnol Bioeng 78(3): 296-312.
    Van Dien, S. J., T. Strovas, et al. (2003). "Quantification of central metabolic fluxes in the facultative methylotroph Methylobacterium extorquens AM1 using C-13-label tracing and mass spectrometry." Biotechnology and Bioengineering 84(1):45-55.
    van Eijk, H. M. H., D. R. Rooyakkers, et al. (1999). "Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry." Analytical Biochemistry
    271(1):8-17.
    Vogt, J. A., U. Wachter, et al. (2003). "Non-linearity in the quadrupole detector system: implications for the determination of the C-13 mass distribution of an ion fragment." Journal of Mass Spectrometry 38(2):222-230.
    Wang, X., F. Sahr, et al. (2007). "Methylobacterium salsuginis sp. nov., isolated from seawater." Int J Svst Evol Microbiol 57(Pt 8):1699-703.
    Wiechert, W. and A. A. deGraaf (1997). "Bidirectional reaction steps in metabolic networks.1. Modeling and simulation of carbon isotope labeling experiments." Biotechnology and Bioengineering 55(1):101-117.
    Wiechert, W. and K. Noh (2005). "From stationary to instationary metabolic flux analysis." Adv Biochem Eng Biotechnol 92:145-72.
    Wiechert, W. and M. Wurzel (2001). "Metabolic isotopomer labeling systems-Part I:global dynamic behavior." Mathematical Biosciences 169(2):173-205.
    Wittmann, C. and E. Heinzle (1999). "Mass spectrometry for metabolic flux analysis." Biotechnology and Bioengineering 62(6):739-750.
    Wittmann, C. and E. Heinzle (2001). "Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum:a novel approach for metabolic flux analysis." Eur J Biochem 268(8):2441-55.
    Wu, A. H. (1995). "Mechanism of interferences for gas chromatography/mass spectrometry analysis of urine for drugs of abuse." Ann Clin Lab Sci 25(4):319-29.
    Zhao, J. and K. Shimizu (2003). "Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method." J Biotechnol 101(2):101-17.
    Zhao, Z., K. Kuijvenhoven, et al. (2008). "Isotopic non-stationary 13C gluconate tracer method for accurate determination of the pentose phosphate pathway split-ratio in Penicillium chrysogenum." Metab Eng 10(3-4):178-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700