用户名: 密码: 验证码:
基于层次分类与数据融合的星载激光雷达数据反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶是大气研究的重要参数,它不仅影响着气候变化、水汽循环,同时还因其对电磁波的吸收和散射作用,降低了定量遥感的测量精度,粒径较小的颗粒物还能通过呼吸进入人体,对人类的身体健康构成了一定的危害。为了研究和了解气溶胶的分布及其对气候环境的变化,以及对辐射传输的影响,目前全世界已广泛开展了对气溶胶浓度、分布和光学特性的研究。我国广泛采用的气溶胶观测主要是地基单点的观测,尚未将其观测数据扩展为面数据,即大范围、高密度的多点观测。悬浮在大气中的气溶胶又容易受到大气环流的影响,并不会长期悬浮在气溶胶排放源的上空,而是会产生扩散和漂移。因此,单点的地基观测数据应用范围相对较小。基于此,本文采用了星载卫星观测数据,对我国区域性气溶胶的特性进行分析,不同于以往的被动观测数据,如MODIS (MODerate-resolution Imaging Spectro-radiometer)和MISR (the Multiangle ImagingSpectroRadiometer),本文采用的是主动星载激光雷达的观测数据。从底层数据处理和算法改进、优化等角度入手,在对区域性气溶胶分布特性,光学特性分析的同时,还进一步获得其层次分布特征值。
     目前,地基激光雷达作为气溶胶观测的重要观测手段已发展的较为成熟,但作为新兴的探测方式,星载激光雷达仍有别于地基激光雷达的传统反演方法。针对NASA官法开发的星载激光雷达气溶胶反演方法,结合其他同步卫星的观测数据和对地观测的分类方法,并提供了可行的改进方案,为大气气溶胶反演的假设前提参数——激光雷达比的正确选择提出了可靠的理论依据。进一步应用改进后的反演结果分析我国部分区域气溶胶的空间分布和光学厚度等特性。
     首先,本文提出多星数据融合的层次查找方法。主要引入A-Train星系中与CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)近似同步的观测卫星CloudSat。针对星载激光雷达噪声较大,多层次下气溶胶回波信号与噪声信号易混合的情况,提高层次识别的正确性,为后期的层次分类奠定良好的基础。基于此改善,进一步针对现有的PDF (Probability Density Functions)分类方法中存在的不足提出了相应的改进措施,在训练样本有限的情况下有效的确保层次分类的正确性。为了有效的验证分类的结果,还引入了另一同属于A-Train星系的中Aqua加载的传感器MODIS影像进行分类结果的验证。
     考虑到我国当前面临的沙漠化程度严重、沙尘暴频发等情况的出现,本文就信噪比较低、背景光噪声较大的白天沙尘数据进行分析。结果显示改进后的分类算法在合理的样本选取情况下,尽管样本数量较少但仍然能获取较好的分类结果。对分类后的结果进行统计分析,获知沙尘气溶胶同冰晶云相比的粒径和形状特征与差别,以及不同高度上的云顶冰晶颗粒的尺度差别。
     在数据应用部分,参考NASA兰利数据处理中心(Langley Research Center)提出的多分辨率气溶胶参数反演法,对我国局部区域做气溶胶光学参数反演,同时,考虑其他相关的大气要素对气溶胶光学厚度变化的影响给出相应的分析结果。从分析结果中可以获得大气层中,各悬浮层次的气溶胶光学厚度、整层大气的气溶胶光学厚度、区域气溶胶的分布特点。实验结果中可以显示,针对湖北地区的研究发现,受大气运动的影响气溶胶光学厚度的分布特征有别于地表覆盖情况,即非理论上推导的工业排放城市的气溶胶光学厚度相对较大,而农业生产地区的较小,并综合对比了四季的变化特点;此外,在北京地区,气溶胶光学厚度自06年星载激光雷达发射至2008年底气溶胶光学厚度普遍偏低,说明为奥运会的筹办,大气质量已有明显的改善,特别是在2008年7月至9月间的气溶胶光学厚度明显小于2007年同期的观测值:最后融合MODIS和CALIPSO的观测结果对我国华东地区做2008年春季的气溶胶分布特性研究,在3月至5月期间明显的湖北东部,江浙西部气溶胶光学厚度较大,而冬季则显著减小。
Aerosol is the important atmospheric ingredient, it influences both the climate change and water cycle, in the same time, by absorbing and scattering of electromagnetic wave, it can change the accuracy of quantitative remote sensing. The particles which have the smaller size can be absorbed into the body through breathing and influence the health. Trying to research the distribution of aerosol, investigate how it change the climate, as well as the radiative transfer, there are many research has been developed in the world wide. At present, the observation in our country is based on the ground based station and does not develop into the regional analysis. The aerosol suspend on the ground does not invariable and always change, commonly, aerosol is usually influence by the atmospheric circulation and the aerosol particles still diffusing and transporting. In the end, the station observation is limited. In this paper, the data is from spaceborne lidar, different from the passive remote sensor, lidar is an active remote sensor. Start from the data processing improvement, then analyzing the aerosol characteristics and the feature of layers.
     At present, the ground based lidar has been widely used, and it is the mature technology, but as the new method used for atmosphere observation, the algorithm of spaceboren lidar is different from the ground based lidar. Based on the official method, this paper study the pre-processing of spaceborne lidar retrieval, and give the improved scheme, all of these can choose a more appropriate lidar ratio, and support the correct retrieval. After that, used the atmospheric parameter from new processes analyze the distribution and aerosol optical depth in different area, China.
     At first, in this paper we give the method of data fusion between CALIPSO and CloudSat, and discriminate the layer suspends in the atmosphere which is the aerosol and which is the pseudo layer (cause by noise). Though introduce the CloudSat, which is also a satellite of A-train constellation, it is almost synchronous with CALIPSO. In view of the lower SNR (signal noise rate) of CALIOP observation and the layers signal below thick cloud is difficult to discriminate, the data fusion between them can avoid error layer detection, to lay the foundation for the subsequent analysis. Based on this improvement, consider the deficiency of scene classification about cloud and aerosol, the former algorithm employ the PDF (probability density functions), but it needs many samples and the parameter estimation is difficult. Further, for the effective validation of classification, we also introduce another remote sensor, MODIS. MODIS load on Aqua satellite which is also an A-Train satellite, the interval between them is less than one minute.
     Because the dust storm is a problem exists in our country, the appearance of dust storm is still serious, this paper analyzes the dust storm which happens in day time and conquer the influence from lower SNR. The result shown that, if the correct samples we choose, then the result is satisfactory, through calculate the particle size and shape, the differences between dust aerosol and ice cloud is known.
     In the part of data application, we use the Hybrid Extinction Retrieval Algorithms (HERA), and receive the aerosol characteristics of China. From the retrieval result, the aerosol optical depth, and their distribution of each layer is obtained. The result shown, aerosol distribution in Hubei province doesn't always in according with the ground surface, not the higher aerosol optical depth value above megalopolis. Further, the aerosol optical depth in Beijing is debased obviously, this means for the Olympic Games in 2008, the air quality in the urban areas picked up gradually. In the last part of the paper, the data fusion between MODIS and CALIPSO retrieval data used to analyze the aerosol optical characteristic in the Southeast China, this step can improve the accuracy and give more detailed information. The aerosol concentration in winter is lower than in summer.
引文
[1]白宇波,石广玉,田村耕一等(2000),拉萨上空大气气溶胶光学特性的激光雷达探测.大气科学,24,4,559-567.
    [2]陈启买,陈森平(2009),支持向量机的一种特征选取算法,计算机工程与应用,45,23,49-54.
    [3]迟如利,刘厚通,王珍珠,刘东,周军,胡欢陵(2009),偏振-米散射激光雷达对卷云的探测,强激光与粒子束,21,9,1295-1300.
    [4]戴永红(2002),激光雷达原理,国防工业出版社.
    [5]范柏祥,孙熙(2003),可吸入细颗粒物的治理,003,31-33.
    [6]高庆先,李令军,张运刚等(2000),我国春季沙尘暴研究,中国环境科学,20,6,495-500.
    [7]胡秀清,张玉香,黄意玢,张广顺(2001),利用太阳辐射计940 nm通道反演大气柱水汽总量,3,12-17.
    [8]贺应红(2004),Mie散射激光雷达实验系统设计与大气消光系数反演方法研究,四川大学硕士毕业论文.
    [9]柯宗建,汤洁,王炳忠,颜鹏(2004),积分浊度计在沙尘暴监测网试验中应用分析,气 象科技,32,4,258-262.
    [10]李海萍,熊利亚,庄大方(2003),中国沙尘灾害遥感监测研究现状即发展趋势,地球科学进展,22,1,45-52
    [11]李俊,龚威(2008),武汉地区气溶胶光学特性的初步研究,武汉大学学报(信息科学版),33,专辑,35-38.
    [12]李学彬,宫纯文,李超,陈秀红(2008),利用双角度光学粒子计数器测量大气气容胶质量浓度,3,6,444-447.
    [13]刘东,戚福弟,金传佳等(2003),合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测,大气科学,27,6,1093-1100.
    [14]刘广员,孙毅义(1998),大气气溶胶光学厚度的卫星双通道遥感方法,南京气象学院学报,21,3,321—327.
    [15]刘洁玉,杨忠东(2001),MODIS遥感信息处理原理与算法,科学出版社.
    [16]刘志刚(2004),支撑向量机在光谱遥感影像分类中的若干问题研究,武汉大学博士毕业论文.
    [17]刘志刚,史文中,李德仁,秦前清(2005),一种基于支撑向量机的遥感影像不完全监督分类新方法,遥感学报,9,4,363-373.
    [18]柳晶(2008),中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究,博士论文.
    [19]吕达人,魏重,林海(1977),低层大气消光系数分布的激光探测,大气科学,3,199-205.
    [20]马盈盈,龚威(2009),中国东南部地区气溶胶光学特性激光雷达探测,13,715-722.
    [21]毛飞跃,龚威,李俊,张金业(2010),基于改进微分零交叉法的Mie散射激光雷达云检测与参数反演,光学学报,已接收.
    [22]毛节泰,李成才(2002),MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比,应用气象学报,13,1,127-135.
    [23]孙林,(2006),城市地区大气气溶胶遥感反演研究,中国科学院遥感应用研究所博士论文.
    [24]唐家奎,薛勇,虞统等(2005).MODIS陆地气溶胶遥感反演一利用TERRA和AQUA双星MODIS数据协同反演算法,SCIENCE IN CHINA,35,5,474-481.
    [25]王天河(2009),利用MFRSR反演西北混合相和沙尘云光学极物理特性的研究,兰州大学博士毕业论文.
    [26]吴涧,蒋维相,刘红年等(2002),硫酸盐气溶胶直接和间接辐射气候效应的模拟研究,环境科学学报,22,2,129-134.
    [27]吴健,杨春平,刘建斌等(2005),大气中的光传输理论,北京邮电大学出版社.
    [28]夏祥鳌,王普才,陈洪滨等(2005),中国北方地区春季气溶胶光学特性地基遥感研究闭,遥感学报,9,004,429-437.
    [29]谢昱姝(2006),大气颗粒物对人体健康影响研究进展,铁道劳动安全卫生与环保,33,4,205-208.
    [30]辛金元,王跃思,李占清等(2006),中国地区太阳分光辐射观测网的建立与仪器标定,环境科学,27,009,1697-1702.
    [31]徐萌,郁凡,李亚春(2006),6S模式对MODIS数据进行大气校正的方法,南京大学学报(自然科学版),42,6,582-589.
    [32]薛纪善,陈德辉(2008),数值预报系统GRAPES的科学设计与应用,科学出版社.
    [33]阎吉祥,龚顺生,刘智深(2001),环境监测激光雷达,科学出版社出版
    [34]延吴,矫梅燕,毕宝贵,刘桂清(2006),国内外气溶胶观测网络发展进展及相关科学计划,气象科学,26,1,110-117.
    [35]袁本凡等(2001),美国新一代对地观测卫星EOS-TERRA,中国图象图形学报,5,1824.
    [36]袁海军,顾行发,陈良富,余涛,刘强,李小文(2006),江西千烟洲气溶胶光学厚度的反演与分析,10,5,762-769.
    [37]张玉香,胡秀清,刘玉洁,戎志国(2002),北京地区大气气溶胶光学特性监测研究应,用气象学报,13,1,136-143.
    [38]赵柏林,俞小鼎(1986),海上大气气溶胶的卫星遥感研究.科学通报,31,16451649.
    [39]赵天宏,史奕,王春乙,黄国宏(2003),C02和03浓度倍增及其复合作用对大豆叶绿素含量的影响,生态学杂志,22,6,117-120.
    [40]郑伟,曾志远(2004),遥感图像大气校正方法综述,遥感信息,4,66-70.
    [41]周军,岳古明,戚福弟,金传佳,吴永华,熊黎明,陈毓红,窦根娣,胡欢陵(1998),大气气溶胶光学特性激光雷达探测,量子电子学报,15,2,138-145.
    [42]冼广铭,曾碧卿,冼广淋(2008),支持向量机在分类和回归中的应用,计算机工程与应用,44,27,134-136.
    [43]A General Introduetion to MISR, http://www-misr.jpl.nasa.gov/introduction/introduction.html
    [44]Ackeman, S. A., et al. (1998), Discriminating clear-sky from clouds with MODIS, J. Geophys. Res.,103,32141-32158.
    [45]Alexandrov, M. D., A. A. Lacis, B. E. Carlson and B. Cairns (2000), Using MFRSR networks to build an aerosol climatoloty, J. Aero. Sci,31, supplement 1,642-643.
    [46]Alexandrov, M. D., A. Marshak, B. Caims, A. A. Laeis and B. E. Carlson (2004), Automated cloud screening algorithm for MFRSR data, GeoPhys. Res. Lett.,31, L0411s.
    [47]Ansmann, A., M. Riebesell, and C. Weitkamp (1990), Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Optics Letters,15,13 /,746-748.
    [48]Barnes, W. L., T. S. Pagano, V. V. Salomonson (1998), Prelaunch characteristics of the Moderate Resolution Imaging spectro-radiometer (MODIS) on EOS-AMI, IEEE Trans. Geosci. Remote Sens.,36,1088-1100.
    [49]Beyerle, G, M. R. Gross, D. A. Haner, N. T. Kjome, I. S. McDermid, T. J. McGee, J. M. Rosen, H.-J. Schafer, and O. Schrems, (2001), A Lidar and Backscatter Sonde Measurement Campaign at Table Mountain during February-March 1997:Observations of Cirrus Clouds, J Atmos Sci,58,1275-1287.
    [50]Bockmann, C., U. Wandinger, A. Ansmann, J. Bosenberg, V. Amiridis, A. Boselli, A. Delaval, et al. (2004), Aerosol Lidar Intercomparison in the Framework of the EARLINET Project.2. Aerosol Backscatter Algorithms, Applied Optics,43,977-989.
    [51]Carlson, T. N., and S. G Benjamin (1980), Radiative heating rates of Saharan dust, J. Atmos. Sci.,37,193-213.
    [52]Chen, Y., and Lin C. (2006), Combining SVMs with Various Feature Selection Strategies, Studies in Fuzziness and Soft Computing,315-324.
    [53]Cho, H., P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, Patrick Minnis, Charles Trepte, David Winker (2008), Depolarization ratio and attenuated backscatter for nine cloud types:analyses based on collocated CALIPSO lidar and MODIS measurements, OPTICS EXPRESS,16,6, 3931-3948.
    [54]Claquin, T., M. Schulz, Y. Balkanski, and O. Boucher (1998), Uncertainties in assessing radiative forcing by mineral dust, Tellus,50,491-505.
    [55]Collis, R. T. H. (1966), Lidar:a new atmosphere probe, Q. J. R. Meteorol. Soc,92,220-230.
    [56]Drury, E., J. J. Daniel, J. Wang, J. Robert and K.Chance (2008), Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America, J. Geophys. Res.,113,D16204.
    [57]Diner, D. J., J.V., Martonchik and R. Kahn (2005), Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrieval over land, Remote Sensing of Environment,94,2,155-171.
    [58]Duda, R. O., P. E. Hart, and D. G Stork (2001), Pattern Classification, Wiley.
    [59]Eck, T. F., B. N. Holben, D. E. Ward, M. M. Mukelabai, O. Dubovik, A. Smirnov, J. S. Schafer, N. C. Hsu, S. J. Piketh, A. Queface, J. Le Roux, R. J. Swap and I. Slutsker (2003), Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res.,108, D13,8477.
    [60]Fernald, F. G, B. M. Hermann, and J. A. Reagan, (1972), Determination of Aerosol Height Distribution by Lidar. Journal of Applied Meteorology,11,482-489.
    [61]Fernald, F.G (1984), Analysis of atmosphere lidar observation:some comments. Applied Optics,23,652-653.
    [62]Flake, G W., E. J. Glover, S. Lawrence, and C. L. Giles (2002), Extracting query modifications from nonlinear SVMs, Proceedings of the 11th international conference on World Wide Web, May 07-11, Honolulu, Hawaii, USA.
    [63]Gettelman A., E. M. Weinstock, E. J. Fetzer, F. W. Irion, A. Eldering, E. C. Richard, K. H. Rosenlof, T. L. Thompson, J. V. Pittman, C. R. Webster, R. L. Herman (2004), Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments,31, L22107.
    [64]Gong, W., J. Zhang (2009), Measurement of aerosol extinction, backscatter, and lidar ratio profiles at Wuhan in China with Raman/Mie lidar, Chinese optic letter, accepted.
    [65]Graeme L. Stephens, Deborah G Vane, Simone Tanelli, Eastwood Im, Stephen Durden, Mark Rokey, Don Reinke, Philip Partain, Gerald G Mace, Richard Austin, Tristan L'Ecuyer, John Haynes, Matthew Lebsock, Kentaroh Suzuki, Duane Waliser, Dong Wu, Jen Kay, Andrew Gettelman, Zhien Wang, and Rojer Marchand (2008), CloudSat mission:Performance and early science after the first year of operation,113, D00A18.
    [66]Gupta P., F. Patadia and A. Sundar (2008), Multisensor Data Product Fusion for Aerosol Research, IEEE Trans. Geosci. Remote Sensing,46,5,1407-1415.
    [67]Hart W. D., J. D. Spinhirne, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS space-borne lidar in the Indian Ocean region, Geophys. Res. Lett., vol.32, L22S06.
    [68]Hogan, R. J., M. D. Behera, E. J. O'Connor, and A. J. Illingworth (2004), Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar, Geophysical Research Letters,31, L05106.
    [69]Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, et al. (1998), AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment,66,1-16.
    [70]http://earthobservatory.nasa.gov/
    [71]http://earthobservatory.nasa.gov/NaturalHazards/quarterly.php?cat_id=7&y=2007&q=l
    [72]HU, H. L., X. B. LI, Y. C. ZHANG, et al. (2006) Determination of the refractive index and size distribution of aerosol from dual-scattering-angle optical particle counter measurements, Appl.Opt,45,16,3864-3870.
    [73]Hu, Y., M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker (2007), The depolarization-attenuated backscatter relation:CALIPSO lidar measurements vs. theory, Opt. Express 15,5327-5332.
    [74]Huang, J., P. Minnis, Y. Yi, Q. Tang, X. Wang, Y. Hu, Z. Liu, K. Ayers, C. Trepte, D. Winker (2007), Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys Res Lett,34, L18805.
    [75]Ichoku, C., D. A. Chu, et al. (2002), A spatio-temporal approach for global validation and analysis of MODIS aerpsol products. Geophys Res Lett,29,12, MOD1-1-4.
    [76]Jethva, H., S. K. Satheesh, J. Srinivasan. Assessment of second-generation MODIS aerosol retrieval (Collection) at Kanpur, India (2007), Geophysical Research Letters,39,19.
    [77]Kahn, B. H., M. T. Chahine, G L. Stephens, G G Mace, R. T. Marchand, Z. Wang, C. D. Barnet, A. Eldering, R. E. Holz, R. E. Kuehn, and D. G Vane (2008), Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount, Atmos. Chem. Phys.,8,1231-1248.
    [78]Kastner M. (1987), Assessment of lidar inversion algorithms for backscatter signals of a satellite lidar, Final report ESTEC contract No 6712/86/NL/IW, Universitat Munchen.
    [79]Kaufman, Y. J., D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet (1997), Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. Geophys. Res.,102, D14,16,815-830.
    [80]King, M. D., Y. J. Kaufmann, W. P. Menzel and D. Tanre (1992), Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS), IEEE Transactions on Geoscience and Remote Sensing,30,2-27.
    [81]Klett, J. D. (1981), Stable analytical inversion solution for processing Lidar return. Applied Optics,20,211-220.
    [82]Klett, J. D. (1983), Lidar calibration and extinction coefficients, Applied Optics,22, 514-515.
    [83]Klett, J. D. (1985), Lidar inversion with variable backscatter/extinction ratios, Applied Optics,
    24,1638-1643.
    [84]Kneizys F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough (1988), Users Guide to LOWTRAN-7 (Air Force Geophysics Laboratory, AFGL-TR-88-0177).
    [85]Leslie, C., E. Eskin, andW. S. Noble (2002a), The spectrum kernel:A string kernel for SVM protein classification. Proc. of the Pacific Biocomputing Symposium 7,566-575.
    [86]Leslie, C., E. Eskin, J. Weston, and W. S. Noble (2002b), Mismatch string kernels for SVM protein classification. Neural Information Processing Systems 15.
    [87]Leslie, C. and R. Kuang (2003), Fast kernels for inexact string matching. Conf. on Learning Theory and Kernel Workshop.
    [88]Li, J., W. Gong, et al. (2008), Retrieval of Aerosol Optical Properties Based on Measurements of LIDAR, Sun-photometer, and CALIPSO at Wuhan, China, IGARSS 2008, Ⅲ969-972.
    [89]Liang, S., B. Zhong and H. Fang (2006), Improved estimation of aerosol optical depth from MODIS imagery over land surfaces,104,4,416-425.
    [90]Liou, K., and H. Lahore (1974), Laser Sensing of Cloud Composition:A Backscattered Depolarization Technique, Journal of Applied Meteorology; 13,257-263.
    [91]Liou, K. (1986), Influence of Cirrus Clouds on Weather and Climate Processes:A Global Perspective, Monthly Weather Review,114,1167-1199.
    [92]Liu, Z., D. Liu, J. Huang, et al. (2008), Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys.,8,5045-5060.
    [93]Liu, Z., M. Vaughan, D. Winker, C. Kittaka, B. Getzewich, R. Kuehn, A. Omar, K. Powell, C. Trepte, and C. Hostetler (2009), The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance, Journal of Atmospheric and Oceanic Technology,26,1198-1213.
    [94]Mamouri, R. E., V. Amiridis, A. Papayannis, E. Giannakaki, G. Tsaknakis and D. S. Balis (2009), Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece,2,513-522.
    [95]Martonchik J.V., D. J. Diner and K. A. Crean (2002), Regional aerosol retrieval results from MISR, IEEE Trans. Geosci. Remote Sens.,40,7,1520-1531.
    [96]McCormick, M.P., D.M. Winker, E.V. Browell, J.A. Coakley, C.S. Gardner, R.M. Hoff, G.S. Kent, S.H. Melfi, R.T. Menzies, C.M.R. Platt, D.A. Randall, J.A. Reagan, (1993), Scientific Investigations Planned for the Lidar In-Space Technology Experiment (LITE), Bull. Am. Meteor. Soc.,74,205.
    [97]Moosmuller, H., and T. D. Wilkerson (1997), Combined Raman-elastic backscatter lidar method for the measurement of backscatter ratios, Applied optics,36,21,5144-5147.
    [98]NOAA, NASA, and USAF (1976), U.S. Standard Atmosphere, (U.S. Government Printing Office,1976), p.227.
    [99]Omar, A. H., D. M. Winker, and J. Won (2003), Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio. Geoscience and Remote Sensing Symposium, Toulouse, France,1526-1530.
    [100]Omar, A. H., D. M. Winker, and J. Won (2004), AEROSOL models for the CALIPSO lidar inversion algorithms. Proceedings of SPIE,5240,153-164.
    [101]Pal, S. R., W. Steinbrecht, and A. I. Carswell (1992), Automated method for lidar determination of cloud base height and vertical extent, Appl Optics,31,1488-1494.
    [102]Platt, C. M. R. (1973), Lidar and Radiometric Observations of Cirrus Clouds, J Atmos Sci, 30,1191-1204.
    [103]Platt, C. M. R., S. A. Young, A. I. Carswell, S. R. Pal, M. P. McCormick, D. Winker, M. D. Guasta, L. Stefanutti, W. L. Eberhard, R. M. Hardesty, P. H. Flamant, R. Valentin, B. Forgan, G G Gimmestad, H. Jager, S. S. Khmelevtsov, I. Kolev, B. Kaprielov, D.-R. Lu, K. Sassen, V. S. Shamanaev, O. Uchino, Y. Mizuno, U. Wandinger, C. Weitkamp, A. Ansmann, and C. Wooldridge (1994), The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud radiation research, B Am Meteorol Soc,75,1634-1654.
    [104]Platt C. M. R., D. M. Winker, M. A. Vaughan, and S. D. Miller (1999), Backscatter-to-extinction ratios in the top layer of tropical mesoscale convective systems and in isolated cirrus from LITE observations, J Appl Meteorol,38,1330-1345.
    [105]Platt, C. M. R., S. A. Young, R. T. Austin, G R. Patterson, D. L. Mitchell, and S. D. Miller (2002), LIRAD Observations of Tropical Cirrus Clouds in MCTEX. Part I:Optical Properties and Detection of Small Particles in Cold Cirrus, J Atmos Sci,59,3145-3162.
    [106]Rosenfeld, D., W. L. Woodley, Deep convective clouds with sustained highly supercooled liquid water until-37.5oC. Nature,405,440-442,2000.
    [107]Salomonson, V. V., W. L. Barnes, et al. (1989), MODIS advanced facility instrument for studies of the earth as a system, IEEE Trans. Geosci. Remote Sensing,27,2,145-153.
    [108]Sassen, K (1992), Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols:Climatic Implications,257,5069,516-519.
    [109]Scala, A, W. S. Francis, E. Nave, F. Sciortino, and H. Eugene Stanley (2000), Configurational entropy and diffusivity of supercooled water, nature,406,166-169.
    [110]Shapiro, M. A., and A. J. Thorpe (2004a), THORPEX:A global atmospheric research program for the beginning of the 21st century, WMO Bull.,53,222-226.
    [111]Shapiro, M. A., and A. J. Thorpe (2004b), THORPEX International Science Plan, WMO, WWRP, document (available at http://www.wmo.int/pages/prog/arep/thorpex/).
    [112]Sokolova, M., N. Japkowicz, S. Szpakowicz (2006), Beyond accuracy, F-score and ROC:a family of discriminant measures for performance evaluation. In:Australian conference on artificial intelligence,4304. LNCS, Germany,1015-1021.
    [113]Spinhime, J. D., S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton (2005), Cloud and aerosol measurements from GLAS:Overview and initial results, Geophys. Res. Lett.,32, L22S03.
    [114]Suykens J. A. K. and J. Vandewalle (1999), Least Squares Support Vector Machine Classifiers, Neural Processing Letters,9,293-300.
    [115]Suykens, J. A. K., J. De Brabanter, L. Lukas and J. Vandewalle (2002), Weighted least squares support vector machines:robustness and sparse approximation,48,85-105.
    [116]Tanre, D., B. N. Holben, and Y. J. Kaufman (1992), Atmospheric correction algorithm for NOAA-AVHRR products:Theory and application, IEEE Trans. Geosci. Remote Sens.,30.
    [117]Tian, L. (2009), Atmospheric correction of ocean color imagery over turbid coastal water using active and passive remote sensing,127,124-128.
    [118]Tong, S., and D. Koller (2002), Support vector machine active learning with applications to text classification, The Journal of Machine Learning Research,2,45-66.
    [119]Uttal, T., L. I. Church, B. E. Martner and J. S. Gibson (1993), CLDSTATS:A Cloud Boundary Detection Algorithm for Vertically Pointing Radar Data, NOAA Technical Memorandum ERL WPL-233.
    [120]Varotsos, C. (2005a), Airborne Measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere, Journal of Geophysical Research-Atmospheres,110, D9, D09202.
    [121]Varotsos, C. A., J. M. Ondov and M. Efstathiou (2005b), Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland, Atmospheric Environment,39,4041-4047.
    [122]Varotsos, C. A., J. M. Ondov, A. P. Cracknell, M. N. Efstathiou, and M. N. Assimakopoulos (2006), Long-range persistence in global Aerosol Index dynamics, International Journal of Remote Sensing,27,3593-3603.
    [123]Vaughan, M. A., S. A. YOUNG and D. M. Winker (2004), Fully automated analysis of space-based lidar data:An overview of the CALIPSO retrieval algorithms and data products, Proceedings of SPIE,5575,16-30.
    [124]Vaughan, M., D. Winker, and K. Powell (2005), CALIOP Algorithm Theoretical Basis Document, part 2, Feature detection and layer properties algorithms, PC-SCI-202.01, NASA Langley Res. Cent., Hampton, Va. (Available at http://www-calipso.larc.nasa.gov/resources/project_documentation.php).
    [125]Tripathi, S. N., S. Dey, A. Chandel, S. Srivastaval, R. P. Singh, and B. N. (2005), HolbenComparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India, Annales Geophysicae,23,1093-1101.
    [126]Weisz, E., J. Li, P. Menzel, A. Heidinger, B. H. Kahn, and C. Liu (2007), Comparison of AIRS, MODIS, CloudSat, and CALIPSO cloud top height retrievals, Geophys. Res. Lett.,34, L17811.
    [127]Winker, D. and M. Vaughan (1994), Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs, Atmos Res,34,17-133.
    [128]Winker, D. M., M. P. McCormick, and R. Couch (1996), An Overview of LITE:NASA's Lidar In-space Technology Experiment, Proc. IEEE 84, pp.164-180,1996.
    [129]Winker, D. M., J. Pelon and M. P. McCormick (2003), The CALIPSO mission:Spaceborne lidar for observation of aerosols and clouds, Proc SPIE 4893,1-11.
    [130]Winker, D. M., W. H. Hunt and M. J. McGill (2007), Initial performance assessment of CALIOP, Geophys. Res. Lett.,34, L19803,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700