用户名: 密码: 验证码:
基于面向对象技术的遥感震害信息提取与评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种自然灾害中,地震灾害是最为严重的自然灾害之一。由于它具有突发性、持续时间短和破坏性强的特点,对人民的生命和财产安全构成了极大的威胁。我国是一个遭受地震灾害破坏严重的国家,然而目前,对于地震发生的时间、地点以及震级都不能实现准确的预报,在这种情况之下,震前积极做好防震减灾防御工程,震后第一时间获取震害信息,快速完成调查评估工作,组织起有效的抗震救灾工作是降低地震损失保证人民生命财产安全的重要途径。遥感技术凭借其获取信息的同步性、时效性、综合性和经济性的特点,为震害信息的快速获取与评价提供了一种新的技术手段。随着高分辨率、高光谱、多平台、多时相遥感信息技术的出现,使遥感震害信息的获取方式发生了根本性变革,进入了一个全新的发展阶段。
     本论文以“快速、准确、高效”为目标,围绕“高分辨率遥感技术在震害信息的提取和评价中的应用”展开研究,力求探索一套遥感震害信息提取与评价的方法和流程,为该领域的研究积累一些宝贵经验,做出自己的贡献。论文研究内容分为两个大的方面:①遥感震害信息的提取。主要内容有:多时相遥感数据的预处理、基于遥感变化检测技术的震害信息提取(变化信息检测方法、图像分割、震害信息的识别与提取)、基于像元级别和面向对象级别的震害滑坡信息提取、基于像元和面向对象的震害损毁建筑物的提取。②遥感震害信息的评价。提出遥感地震灾害破坏危险性评价的概念、模型和标准,对研究区震害破坏危险性进行评价。
     论文的主要研究成果和创新点总结如下:
     (1)提出了多时相遥感震害信息提取数据预处理的技术流程。对遥感数据经历从“粗”→“细”→“精”三次几何校正的过程,在对两时相影像进行几何校正的同时,完成了影像的镶嵌与分幅、影像的融合以及数据的辐射增强处理,内容全面,操作设计合理,能够充分满足震害变化信息检测对遥感数据的高质量要求。
     (2)提出了基于MNF/ICA多源遥感变化信息检测方法,该方法成功消除了遥感数据之间的高阶相关性,抑制了噪声的出现,实现了变化信息与噪声的有效分离,进一步集中和突出了不同时相间的变化信息,与常用变化信息检测方法相比,明显提高了变化检测的效果和精度。
     (3)提出了双阈值模糊识别分割算法,该算法能够在一定程度上消除单阈值(最优阈值)分割法中混杂在变化信息中的离散噪声和个别地类,使得变化信息的表达更加准确、集中,从而提高了变化信息分割的精度。
     (4)针对研究区震害滑坡信息发生的特征,提出了一种基于标准化植被指数(NDVI)和坡度信息的快速、高效的地震滑坡信息提取思路,分别从基于像元和面向对象的两个角度进行了验证。实践证明,面向对象方法成功的避免了高分辨率遥感影像由于单个像元光谱异质性大而产生的NDVI差值“亮点噪声”效应,使得提取的结果更加科学可靠,效果更好,精度更高。
     (5)针对像元级别,提出基于“多层次区域分割”思想的震害损毁建筑物提取方法,与传统的分类提取方法相比,它体现着面向对象分析方法中的多层、分割的思想,是一种全新的尝试。基于对象级别,利用多尺度分割思想,按照分割尺度的大小建立了三层体系结构,根据每一层的特征提取不同地物类别,分析其光谱、纹理、形状、上下文关系、空间位置等特征,建立各自的模糊判定规则,进行损毁建筑物的提取。分别从方法原理、目视效果和精度评价三个方面对两种提取结果进行综合比较,结果显示面向对象提取方法(总体精度90.38%)有着比基于像元方法(总体精度76.84%)更高的精度。实践证明,面向对象影像分析技术在遥感震害信息提取方面有着巨大的潜力和广阔的应用前景。
     (6)在地震灾害破坏危险性评价中,选取高程、坡度、水系、土地利用、植被覆盖以及特殊因子6种影响因子建立评价指标体系,利用层次分析模型(AHP)构建遥感震害破坏危险性评价指数(EDRI),实现对研究区遥感震害破坏危险性的评价。由于在评价指标中引入了特殊因子(震害信息因子),并在比较判断矩阵中发挥着重要的作用,使得评价具有很强的针对性,对震害信息极其敏感,结果科学可靠。
Earthquake, being bursty, transitory and powerful is thought as one of the greatest natural disasters in the world, it poses a grievous threat to human's lives and properties. China is a country who suffers badly from the earthquake disaster. But up till now, it is impossible to forecast the exactly time, place and magnitude of an earthquake. Under this situation, the efficient way to reduce the earthquake loss and protect human lives is to do well in protecting against and emitipung earthquake disasters project pre-earthquake and to obtain the earthquake information at the first time and finish the evaluation work quickly so as to organize the anti-quake and relief work as soon as possible. Remote sensing characterized with synchronism, timeliness, comprehensiveness and economy of information provides a new technology to earthquake information extraction and assessment. With the development of high-resolution, hyper-spectral, multi-platform and multi-date remote sensing technology, the method of earthquake information extraction has changed fundamentally and step into a new stage.
     This paper, aimed at quick, precise and efficient, did research in application of High-resolution remote sensing on earthquake information extraction and assessment in order to explore a suite of procedure and way so as to accumulate some valuable experience and make a contribution to this field. There are two contents of this paper:On the one hand, the research of earthquake information extraction, including:the preprocessing of multi-source remote sensing data, the information extraction based on change detection technology (change detection method, image segment and earthquake information identification and extraction), the slope information extraction with pixel-oriented and object-oriented method, the dilapidated buildings extraction with pixel-oriented and object-oriented method; On the other hand, earthquake information evaluation, this paper brings forward the concept of earthquake disaster damage risk, assessment model as well as criterion and proceeds the assessment of the study area.
     The main research findings and innovations are summarized as follows:
     (1) The study put forward the preprocessing technique flow of multi-sources remote sensing data; there are three stages of geometric correction. Besides the geometric correction, the technique flow can also accomplish the image mosaicking, image subdivision, image fusion and radiometric enhancement. The result shows that the procedure feasible and reliable enough to meet the high-quality requirement of remote sensing data for earthquake information change detection.
     (2) A new change detection method of multi-sources data based on MNF/ICA theory was brought forward. Compared to other traditional change detection ways, this method can not only reduce the appearance of noise by overcoming the high-order relevance of remote sensing data but also detach change information from noise so as to concentrate and highlight the change information of different data. The outcome suggests the MNF/ICA method enhances the accuracy and effect of change information detection obviously.
     (3) The research put up with an image segment algorithm called two-threshold fuzzy recognition algorithm. This algorithm can eliminate the noise and some individual land cover classes mixed in change information to some extent as compared to one-threshold segmental algorithm. The segmental image shows more precise result.
     (4) By analyzing the landslide characters of study area, the present study advanced a quick-and-effective way of landslide extraction with NDVI and slope information and validated with pixel-oriented and object-oriented methods. It is shown that the object-oriented way can successfully avoid the phenomenon of NDVI-differential bright noise caused by the spectral diversity of high-resolution remote sensing data and make the result more scientific and accurate.
     (5) A pixel-oriented method on the basis of the multi-layer regional segment idea which embodies the thoughts of layer and segment from object-oriented was applied to collapsed buildings extraction. As compared to traditional way, it is an innovative experiment. When it comes to object-oriented method, the multi-scale segment algorithm is applied on order to build up three-layer hierarchy. Then by analyzing the spectrum, texture, shape, location and context of individual classes in different layer, the fuzzy determined rule system is established for earthquake collapsed buildings extraction. We compared with the two results from three aspects which are principle, visual impact and precision assessment. It is depicted that the object-oriented analyzing method has good potential and prospect of application to earthquake information extraction as the overall accuracy of 90.3% as compared to 76.84% of pixel-oriented method.
     (6) The elevation, slope, hydrographic net, land use, vegetation cover and special factor were selected as the indicators to build up the estimation system. Then the AHP was applied to set up EDRI index in order to assess the earthquake damage risk of study area. As the factor of earthquake information is introduced to the assessment indicators and plays an important role in determination matrix, the evaluation result is reliable, scientific and sensitive to earthquake information.
引文
[1]A.Katartzis, H.Sahli, Detection buildings from a single airborne using Markov Random Field Model[C], In Proc of IEEE International Geosciences and Remote sensing symposium (IGARSS2001), Sydney, Australia,2001.
    [2]A. Croitoru et al., Right-angle building hypothesis generation in regularized urban areas by pose clustering [J], Photogrammetric Engineering & Remote Sensing,2004, 69(2):151-169.
    [3]Alex H. Barbat, Jose A. Canas. Damage scenarios simulation for seismic risk assessment in urban zones [J]. Earthquick Spectra,1996,12(3):4-8.
    [4]Ashbindu Singh, Digital change detection techniques using remotely sensed Data. International Journal of Remote Sensing,1989,10(6):989-1003.
    [5]ATC, Applied technology council-ATC13-earthquick damage evaluation data for California [R],1985.
    [6]Ayalew L., Yamagishi H., The application of GIS based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains [J], Central Japan. Geomorphology,2005,65(1-2):15-31.
    [7]B. Pradhan, R.P.Singh, M.F. Buchroithner. Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Advances in Space Research,2006,37:698-709.
    [8]Baatz M., Schape A., Object-Oriented and multi-scale image analysis in semantic networks [A], In:Proc of the 2nd International Symposium on Operationalization of Remote Sensing [C], August 16-20th 1999.Enschede ITC.
    [9]Baofeng Di, Hongjuan Zeng, Minghua Zhang et al., Quantifying the spatial distribution of soil mass wasting processes after the 2008 earthquake in Wenchuan, China--A case study of the Longmenshan area [J], Remote Sensing of Environment,2009,1(1):1-11.
    [10]Blaschke T. et al., Object-oriented image analysis and Scale-space:Theory and Methods for modeling and evaluating multiscale landscape structures. In: International Archives of Photogrammetric and Remote Sensing,2001,34, part 4/W 5:22-29.
    [11]Blaschket, Langs, Lorupe, et al., Object-Oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmenial Applications[J], Environmental Information for Planning [C]. Metropolis-Verlag, 2000, (2):555-570.
    [12]Bruce D.M., Donald L.T., Fausto G. et al., Landslides, earthquakes, and erosion. Earth and Planetary Science Letters,2004,229:45-59.
    [13]Catani F., Farina P., Moretti S., Nico G. and Strozzi T., On the application of SAR interferometry to geomorphological studies:estimation of landform attributes and mass movements [J], Geomorphology,2005,66(1-4):119-131.
    [14]Chadwick J., et al., Application of multi-temporal high-resolution imagery and GPS in a study of the motion of a canyon rim landslide[J], ISPRS Journal of Photogrammetric and Remote Sensing,2005,59 (4):212-221.
    [15]Chang C.I., Chiang S.S., et al., Linear spectral random mixture analysis for hyperspectral imagery [J], IEEE Trans.on Geosci. Remote Sensing,2002,40 (2): 375-392.
    [16]Chen R F., Chang K.J. et al., Topographical changes revealed by high-resolution airborne LiDAR data:The 1999 Tsaoling landslide induced by the Chi-Chi earthquake [J], Engineering Geology,2006,88(3-4):160-172.
    [17]Chen S., Zhao Y., Geo-Science Analysis of Remote Sensing [M], Beijing:The Publishing House of Surveying and Mapping,1989.
    [18]Cheng K.S., Wei C. and Chang S.C., Locating landslides using multi-temporal satellite images [J], Advances in Space Research,2004,33 (3):296-301.
    [19]Chiroiu L and Andre G. Damage assessment using high resolution satellite imagery: application to 2001 Bhuj, India, earthquake [A].7th US National Conference on Earthquake Engineering[C]. Boston, USA, July,2002.
    [20]Christopher R.J. Kilburn, Alessandro Pasuto. Major risk from rapid, large-volume landslides in Europe [J], Geomorphology,2003,54:3-9.
    [21]Congaton R. G., A review of assessing the accuracy of classification of remotely sensed data [J], Remote Sensing of Environment,1991,37:35-46.
    [22]Coppin, P., E.Lambin, LJonckheere, et al., Digital change detection methods in natural ecosystem monitoring:A review. In Proceedings of the First International Workshop on Multitemp 2001, World Scientific Publishing,3-36.
    [23]Dane Kottke, Ying Sun. Adaptive segmentation of coronary angiograms. IEEE.1998: 287-290.
    [24]Dane Kottke, Ying Sun. Comparison of gray-scale thresholding algorithms applied to coronary arteriograms. IEEE,1989:382-383.
    [25]Dario Tarchi, Nicola Casagli, Riccardo Fanti et al., Landslide monitoring by using ground-based SAR interferometry:an example of application to the Tessina landslide in Italy. Engineering Geology,2003,68:15-30.
    [26]David M. Tralli, Ronald G. Blom, Victor Zlotnicki, et al. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry&Remote Sensing,2005,59:185-198.
    [27]Demoulin A. and Chung C., Mapping landslide susceptibility from small datasets:A case study in the Pays de Herve (EBelgium) [J], Geomorphology,2007,89 (4): 391-404.
    [28]Driss Haboudane, John R. Milker, et al., Hyperspectral vegetation indices and novel algorithms for prediction green LAI of crop canopies:Modeling and validation in the context of precision agriculture [J], Reomte Sensing of Environment,2004,90: 337-352.
    [29]Du J.C. and Teng H.C.,3D laser scanning and GPS technology for landslide earthwork volume estimation [J], Automation in Const ruction,2007,16(5):657-663.
    [30]Farina P., Colombo D., Fumagalli A., Marks F. and Moretti S., Permanent Scatterers for landslide investigations:outcomes from t he ESA-SLAM project [J], Engineering Geology,2006,88(3-4):200-217.
    [31]Ferah Akinci. The aftermath of disaster in urban areas:An evaluation of the 1999 earthquake in Turkey. G.U. Journal of Science,2008,21(2),43-49.
    [32]Fourniadis I.G., Liu J.G. and Mason P.J., Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery:Wushan-Badong [J], Geomorphology, 2007,84(1-2):26-144.
    [33]Fu K. S., Mui J K.A survey on image segmentation. Pattern Recognition,1981, 13:3-16.
    [34]Gamba P et al., GIS and image understanding for near-real-time earthquake damage assessment [J], Journal of Photogrammetry & Remote sensing,1998,10:987-994.
    [35]Gonzalez R. C., Woods R.E., Digital Image Processing [M],3rd.ed:Addison-wesley, 1992.
    [36]Graciela Metternicht, Lorenz Hurni, Radu Gogu. Remote-sensing, of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment,2005,98:284-303.
    [37]Green, A.A., M.Berman, P.Switzer and M.D.Craig. A transformation for ordering multispectral data in terms of image quality with implications for noise removal.IEEE Transactions on Geoscience and Remote Sensing,1988,26(1):65-74.
    [38]H.L. Perotto-Baldiviezo, T.L. Thurow, C.T. Smith, R.F. Fisher, X.B. Wu. GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras. Agriculture, Ecosystems and Environment,2004,103:165-176.
    [39]Hall D. K., Riggs G A., et al., MODIS snow cover products [J], Remote Sensing of Environment,2002,83:181-191.
    [40]Hazel, G.G., Object-level change detection in spectral imagery. IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):553-561.
    [41]Hervas J., Barredo J I., Rosin P L., Pasuto A., Mantovani F.,Silvano, S., Monitoring landslides from optical remotely sensed imagery:the case history of Tessina landslide[J], Italy.Geomorphology,2003,54 (2):63-75.
    [42]Hirotada Hasegawa, Hisashi Aoki and Fumio Yamazaki. Attempt for automated detection of damaged buildings using aerial HDTV image, Asian Conference on Remote Sensing 1999[C].
    [43]Hyvarinen, A., and E. Oja, Independent Component Analysis [M], New York:Wiley, 2001.
    [44]Janet E. Nichol, Ahmed Shaker, Man-Sing Wong. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorohologv,2006, 76:68-75.
    [45]Jenssen R., Eltoft T., Independent component analysis for texture segmentation [J], Pattern Recognition,2003,36:2301-2315.
    [46]Ketting, R. L. and Landgrebe, D.A., Computer classification of Remotely Sensed Multispetral Image Data by Extraction and Classification of Homogeneous Object [J], IEEE Transactions on Geoscience Electronics,1976,14(1):19-26.
    [47]Koi T., Hotta N., Ishigaki I. et al., Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed:The Tanzawa region, Japan. Geomorphology,2008,101:692-702.
    [48]Lacroix V et al., Feature Extraction using constrained gradient [J], Journal of Photogrammetry & Remote sensing,1998,53:85-94.
    [49]Lee S. and Lee M.J., Detecting landslide location using KOMPSAT 1 and its application to landslide -susceptibility mapping at the Gangneung area, Korea[J], Advances in Space Research,2006,38(10):2261-2271.
    [50]Li Ping, Tao Xiaxin. Integrating RS technology into a GIS-based earthquake-prevention and disaster reduction system for earthquake damage evaluation. Earthquake Engineering and Engineering Vibration,2009,8(1):7-14.
    [51]Li, Jiacun, Shaomeng Qian, Xue Chen. Object-oriented method of land cover change detection approach using high spatial resolution remote sensing data. In Proceeding of IGARSS'03,2003, V:3005-3007.
    [52]Lin W.T., Chou W.C., Lin C.Y., Huang P H and Tsai J.S., Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan[J], Forest Ecology and Management,2005,210 (1-3):55-66.
    [53]Masashi Matsuoka, Fumio Yamazaki. Characteristics of satellite images of damaged areas due to the Kobe Earthquake.2nd Conference on the Applications of Remote Sensing and GIS for Disaster Management[C], The George Washington University, CD-ROM,1999.
    [54]Masashi Matsuoka, Fumio Yamazaki. Use of SAR Intensity Imagery for Earthquake Damage Detection.2nd Workshop on Application of Remote Sensing Technologies for Disaster Response[C],2004, Newport Beach, CA, USA:1-5.
    [55]Meisina C., Zucca F., Fossati D., Ceriani M. and Allievi J., Ground deformation monitoring by using the Permanent Scatterers Technique:The example of the Oltrepo Pavese (Lombardia, Italy)[J], Engineering Geology,2006,88(3-4):240-259.
    [56]Metzler. V. T., Aach, C., Object-Oriented image analysis by evaluating the causal object hierarchy of a partitioned reconstructive scale-space[C]. Proceedings of ISMM 2002 Redistribution rights reserved CSIRO Publishing, ed. by Talbot, H., and Beare, R.,2002,265-276.
    [57]Mitomi H., Yamazaki F., et al., Development of auto-mated extraction method for building damage area based on maximum likelihood classifier. Proceedings of 8t h International Conference on Structural Safety and Reliability [C]. California, New Beech,2001:2430-3442.
    [58]Mitomi Hajime, Fumio Yamazaki, Masashi Matsuoka. Auto-mated detection of building damage due to recent earthquakes using aerial television images. Proceedings of the 21st Asian Conference on Remote Sensing[C]. Taiwan,Taipei, 2000:1-7.
    [59]Mitomi Y, Takeuchi S. Analysis of spectral feature of the damaged areas by liquefaction and fire using airborne MSS data.18th Japanese Conference on Remote Sensing [C].1995:117-118.
    [60]Mouat, D.A., C.GMahin, J.Lancaster. Remote sensing techniques in the analysis of change detection. Geocarto International,1993,8(2):39-50.
    [61]Noferini L., Pieraccini M. et al., Using GB-SAR technique to monitor slow moving landslide [J], Engineering Geology,2007,95(3-4):88-98.
    [62]Ping Li, Xiaxin Tao. Quantitative Earthquake Damage Detection from Changes in Remote Sensing Images-A case study [J], Geoscience and Remote Sensing Symposium,2005,3:1-4.
    [63]Poesen, J.W.A. and Hooke, J.M., Erosion, flooding and channel management in Mediterranean environments of southern Europe [J], Progress in Physical Geography, 1997,21:157-199.
    [64]Qi Y, Wu J., Effects of Changing Spatial Resolution on the Results of Landscape Pattern Analysis Using Spatial Autocorrelation Indices [J], Landscape Ecology,1996, 11:39-50.
    [65]Rathje E.M., Crawford M., et al., Earthquake damage identification using multi-temporal high-resolution optical satellite imagery[C], IEEE International 2005,7:5045-5048.
    [66]Rott H. and Nagler T., The contribution of radar interferometry to the assessment of landslide hazards [J], Advances in Space Research,2006,37 (4):710-719.
    [67]Sahin, S. and Kurum, E., Erosion risk analysis by GIS in environmental impact assessments:A case study-Seyhan Kopru Dam construction [J], Journal of Environmental Management,2002,66:239-247.
    [68]Schulz W.H., Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle. Washington [J], Engineering Geology,2007,89(1-2):67-87.
    [69]Schwab M., Rieke-Zapp D., et al., Landsliding and sediment flux in the Central Swiss Alps:A photogrammetric study of the Schimbrig landslide [M], Entlebuch. Geomorphology,2007, In Press, Corrected Proof.
    [70]Scira Menoni. Chains of damages and failures in a metropolitan environment:Some observations on the Kobe earthquake in 1995[J], Journal of Hazardous Materials, 2001,86:101-119.
    [71]Shaker A. and Wong M.S., Application of high-resolution stereo satellite images to detailed landslide hazard assessment [J], Geomorphology,2006,76 (1-2):68-75.
    [72]Singhroy V. and Molch K., Characterizing and monitoring rockslides from SAR techniques [J], Advances in Space Research,2004,33 (3):290-295.
    [73]Squarzoni C., Delacourt C. and Allemand P., Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry[J], Engineering Geology,2003,68(1-2):53-66.
    [74]Stassopoulou et al., Automatic extraction of building statistics from digital orthophotos [J], International Journal of Geographical Information Science,2000,14(8):759-841.
    [75]Turker M., San B.T., Detection of collapsed buildings caused by the 1999 Izmit, Turkey earthquake through digital analysis of post-event aerial photographs [J], INT. J.Remote Sensing,2004,25 (21):4701-4714.
    [76]V. Singhroy, K. E. Mattar and A. L. Gray. Landslide cliara-sation in Canada using interferometric Sar and combined Sar and TM images [J], Advances in Space Research,1998,21(3):465-476.
    [77]V. Singhroy. SAR integrated techniques for geohazard assessment [J], Advances in Space Research,1995,15(11):67-78.
    [78]Weirich F. and Blesius L., Comparison of satellite and air photo based landslide susceptibility maps [J], Geomorphology,2007,87 (4):352-364.
    [79]Wen-Tzu Lin, Wen-Chieh Chou, Chao-Yuan Linet al., Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan [J], Forest Ecology and Management,2005,21(0):55-67.
    [80]Wu J. et al., From Balance-of-nature to Hierarchical Patch Dynamics:A Paradigm Shift in Ecology [J], Quarterly Review of Biology,1995,70:439-466.
    [81]Zadeh L.A., Fuzzy Sets [J], Information and Control,1965, (8):338-353.
    [82]蔡殉,朱波,曾广周,一种彩色多级阈值的图像分割方法及在形状特征提取方面的应用[J],山东大学学报(工学版),2002,32(4):333-336.
    [83]曹宝,秦其明,马海建等,面向对象方法在SPOTS遥感图像分类中的应用—以北京市海淀区为例[J],2006,22(2):46-54.
    [84]曹爽,高分辨率遥感影像去云方法研究[D],南京:河海大学,2006.
    [85]陈世荣,马海建,范一大等,基于高分辨率遥感影像的汶川地震道路损毁评估,遥感学报,2008,12(6):950-957.
    [86]陈文凯,面向震害评估的遥感应用技术研究[D],兰州:中国地震局兰州地震研究所,2007.
    [87]陈鑫连等著,地震灾害的航空遥感信息快速评估与救灾决策[M],北京:科学出版社,1995.
    [88]成小平,我国国家防震减灾中心技术系统建设[J],地震地磁观测与研究,1999,20(5):2-8.
    [89]程家喻,杨喆,唐汉军等,利用航空摄影进行震害调查的精度估计[J],地震地质,1995,17(1):88-95.
    [90]戴昌达,姜小光,唐伶俐著,遥感图像处理应用与分析[M],北京:清华大学出版社,2004.
    [9l]党安荣等编著,ERDAS IMAGINE遥感图像处理方法[M],北京:清华大学出版社,2003.
    [92]邓辉,高精度卫星遥感技术在地质灾害调查与评价中的应用[D],成都,成都理工大学,2007.
    [93]佃袁勇,基于遥感影像的变化检测研究[D],武汉:武汉大学,2005.
    [94]窦爱霞,震害遥感图像变化检测技术研究[D],济南:山东科技大学,2003.
    [95]杜凤兰,田庆久,夏学齐等,面向对象的地物分类法分析与评价[J],遥感技术与应用,2004,19(1):20-23.
    [96]樊厚春,遥感图像薄云去除研究[D],北京:中科院遥感应用研究所,2004.
    [97]冯春,基于辐射传输模型的遥感定量化关键问题研究[D],北京:中国地质大学,2005.
    [98]冯德俊,基于遥感的土地利用变化监测及其信息自动提取[D],西南交通大学博士论文,2004.
    [99]傅征祥,李革平,地震生命损失研究[M],北京:地震出版社,1993.
    [100]宫鹏,黎夏,徐冰,高分辨率影像解译理论与应用方法中的一些研究问题[J],遥感学报,2006,10(1):1-5.
    [101]国家地震局防御司未来地震灾害损失预测研究组,中国地震灾害损失预测研究[M],北京:地震出版社,1990.
    [102]国家地震局灾害防御司译,未来地震的损失估计方法[M],北京:地震出版社,1991.
    [103]国家地震局震害防御司主编,地震灾害预测和评估工作手册[M],北京:地震出版社,2003.
    [104]韩用顺,崔鹏,朱颖彦,苏凤环等,汶川地震危害道路交通及其遥感监测评估 ——以都汶公路为例,2009,41(3):274-285.
    [105]胡进刚,张晓东,,沈欣,等,一种面向对象的高分辨率影像道路提取方法[J],.遥感技术与应用,2006,21(3):184-188.
    [106]黄桂兰,郑肇葆,杨敏,一种基于共生矩阵法的影像纹理分析方法[J],测绘通报,1996,3:6-9.
    [107]黄慧萍,面向对象影像分析中的尺度问题研究[D],北京:中国科学院研究生院,2003.
    [108]孔纪名,阿发友,吴文平,汶川地震滑坡类型及典型实例分析[J],水土保持学报,2009,23(6):66-71.
    [109]李德仁,论21世纪遥感与GIS的发展[J],武汉大学学报信息科学,2003,28(2):127-131.
    [110]李建平主编,小波分析与信号处理[M],重庆:重庆出版社,1997.
    [111]李树德,任秀生,岳升阳等,地震滑坡研究[J],水土保持研究,2001,8(2):24-25.
    [112]李希灿,模糊状态的马尔柯夫链预测模型[J],预测,1998,7:186-190.
    [113]李希灿,王静,李玉环等,基于模糊集分析的土壤质量指标高光谱反演[J],地理与地理信息科学,2008,24(4):25-29.
    [114]李希灿,宗学才等,模糊综合分析预测模式与应用[J],山东农业大学学报,2003:34(2):276-271.
    [115]李远华等,基于遥感调查与GIS分析的林芝地区地质灾害评价[J],国土资源遥感,2006,2(2):4-10.
    [116]刘亚岚,魏成阶,武晓波等,印度洋海啸灾害遥感监测与评估——以印度尼西亚亚齐省为例[J],遥感学报,2005,9(4):494-497.
    [117]柳稼航,杨建峰,魏成阶,关泽群,震害信息遥感获取技术历史、现状和趋势[J],自然灾害学报,2004,13(6):47-54。
    [118]楼宝堂主编,中国古今地震灾情汇总(公元前2221年至公元1994年)[M],北京:地震出版社,1996。
    [119]马廷,高分辨率卫星影像及其信息处理的技术模型[J],遥感信息,2001,(3):6-10.
    [120]孟亚宾,高分辨率卫星影像建筑物轮廓提取方法研究[D],辽宁:辽宁工程技术大学,2006.
    [121]潘耀忠,陈志军,聂娟,王秀山,基于多源遥感的土地利用动态变化信息综合监测方法研究[J],地球科学进展,2002,17(2):182-187.
    [122]蒲体信,陈龙华,冯德俊等主编,遥感技术在土地利用调查与监测中的应用[M],成都:电子科技大学出版社,2005.
    [123]乔程,骆剑承等,面向对象的高分辨率影像城市建筑物提取[J],地理与地理信 息科学,2008,24(5):36-40.
    [124]石菊松,吴树仁等,遥感在滑坡灾害研究中的应用进展[J],地质评论,2008,54(4):505-516.
    [125]宋俊高,朱元清等,上海市防震减灾应急决策信息系统—GIS的应用[J],地震应用,2000,22(3):16-22.
    [126]孙家抦主编,遥感原理与应用[M],武汉:武汉大学出版社,2003.
    [127]孙星和,覃平,遥感图像纹理分析方法[J],国土资源遥感,1992,3(13):61-67.
    [128]汤国安,张友顺等,遥感数字图像处理[M],北京:科学出版社,2004.
    [129]田新光,面向对象高分辨率遥感影像信息提取[D],北京:中国测绘科学研究院,2007.
    [130]铁永波,唐川,层次分析法在单沟泥石流危险度评价中的应用[J],中国地质灾害与防治学报,2006,17(4):79-83.
    [131]汪培庄,李洪兴著,模糊数学[M],北京:国防工业出版社,1994.
    [132]汪求来,面向对象遥感影像分类方法及其应用研究——以深圳市福田区植被提取为例[D],南京:南京林业大学,2008.
    [133]王丹,丁军,航空遥感影像上震害解译的结构模型与几何特征的获取[J],灾害学,1997,1:1-6.
    [134]王栋梁,遥感震害指数与地面调查震害指数关系的定量研究,中国地震局地震预测研究所硕士学位论文,2007年4月.
    [135]王恒进,基于小波的遥感图像薄云去除的研究与实现[D],西北工业大学硕士论文,2002.
    [136]王劲峰,中国自然灾害区划——灾害分区、影响评价、减灾对策[M],北京:中国科学技术出版社,1995.
    [137]王龙,基于遥感影像的地震灾害损失评估方法研究与实现,中国地震局地震预测研究所硕士学位论文,2007年7月.
    [138]王平,方洪宾,郭大海等著,飞向汶川——5·12地震灾害航空遥感调查[M],北京:科学出版社,2009.
    [139]王晓青,王龙等,汶川8.0级大地震应急遥感震害评估研究[J],震灾防御技术,2008,3(3):251-259.
    [140]王晓青,王龙等,汶川8.0级地震震害遥感定量化初步研究——以都江堰城区破坏为例,地震,2009,29(1):174-182.
    [141]王晓青,魏成阶,苗崇刚等,震害遥感快速提取研究一以2003年2月24日巴楚-伽师6.8级地震为例[J],地学前缘,2003,10(增刊):285-291.
    [142]王晓青等,航空影像震害自动识别的初步研究,中国地方遥感应用进展[C],北京:北京宇航出版社,1997.
    [143]王岩,王晓青,窦爱霞,面向对象遥感分类方法在汶川地震震害提取中的应用[J],地震,2009,29(3):54-61.
    [144]魏成阶,刘亚岚,王世新,张立福,黄晓霞,四川汶川大地震震害遥感调查与评估[J],遥感学报,2008,12(5):673-683。
    [145]魏成阶,张渊智,朱博勤等,地震烈度包络线的遥感与GIS方法快速生成[J],自然灾害学报,1996,5(3):18-28.
    [146]邬建国著,景观生态学—格局、过程、尺度与等级[M],北京:高等教育出版社,2000.
    [147]吴传庆,赵永超,童庆禧等,基于光谱信息的遥感图像空间域自适应滤波[J],遥感学报,2004,8(1):51-55.
    [148]肖承邺,世界奇异震害[M],北京:地震出版社,1992.
    [149]谢礼立,周雍年译,面对自然灾害[M],北京:地震出版社,1988.
    [150]徐国良,方伟华,史培军等,汶川地震损失快速评估[J],地震工程与工程振动,2008,28(6):74-84。
    [151]徐建华主编,现代地理学中的数学方法[M],北京:高等教育出版社,2002.
    [152]许冲,戴福初,姚鑫等,GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J],岩石力学与工程学报,2009,28(2):3978-3986.
    [153]杨泰平,唐川,齐信,基于GIS技术的汶川8.0级地震诱发地质灾害危险性评价—以四川省安县为例[J],灾害学,2009,24(4):68-76.
    [154]杨益军,赵荣椿,江文秉,航空图像中人工建筑物的自动检测[J],计算机工程,2002,28(8):20-27.
    [155]殷跃平等著,汶川地震地质与滑坡灾害概论[M],北京:地质出版社,2009.
    [156]游丽平,面向对象的高分辨率遥感影像分类方法研究[D],福建:福建师范大学,2007.
    [157]曾繁如、何政伟等,MATLAB软件与ALOS遥感影像在震害建筑物自动识别中的应用——以都江堰市区为例[J],西北地震学报,2009,31(4):30-36.
    [158]张炳智,张继贤,张丽,土地利用动态遥感监测中多元遥感影像融合方法比较研究[J],测绘科学,2000,25(3):46-50.
    [159]张德成,建筑物灾害航空照片目视判读标志的初步研究[J],地震,1993,1:26-30.
    [160]张德成,建筑物震害航空照片目视判读标志的初步研究[J],地震,1993,(2):26-30.
    [161]张风华,城市抗震能力指标体系的研究[D],中国地震局工程力学研究所博士学位论文,哈尔滨:中国地震局工程力学研究所,2002.
    [162]张继贤,李德仁,影像纹理的多尺度分析[J],环境遥感,1996,11(1):1-12.
    [163]张景发,建筑物震害遥感图像特征信息的增强、提取与震害识别技术[J],地壳 构造与地壳应力文集,2002,15:53-57.
    [164]张景发,谢礼立,陶夏新,建筑物震害遥感图像的变化检测与震害评估[J],自然灾害学报,2002,5:59-64.
    [165]张景发,谢礼立等,典型震害遥感图像的模型分析[J],自然灾害学报,2001,10(2):90-97.
    [166]张路,基于多元统计分析的遥感影像变化检测方法研究[D],武汉:武汉大学,2004.
    [167]张永生,巩丹超等著,高分辨率遥感卫星应用——成像模型、处理算法及应用技术科[M],北京:科学出版社,2004.
    [168]张则飞,基于独立成分分析的植被信息提取方法研究[D],吉林:吉林大学,2007.
    [169]张振勇,王萍,朱鲁等,eCognition技术在高分辨率遥感影像信息提取中的应用[J],国土资源信息化,2007,33(2):15-17.
    [170]章毓晋主编,图象分割[M],北京:科学出版社,2001.
    [171]章毓晋著,图像分割[M],北京:科学出版社,2000.
    [172]郑江,骆剑承,陈秋晓等,遥感影像理解智能化系统与模型集成方法[J],地球信息科学,2003,(1):95-102.
    [173]中国地震局,中国大陆地震灾害损失评估汇编(1990-1995年)[M],北京:地震出版社,1996.
    [174]中国地震局,中国大陆地震灾害损失评估汇编(1996-2000年)[M],北京:地震出版社,2001.
    [175]中国地震局监测预报司编著,汶川8.0级地震科学研究报告[M],北京:地震出版社,2009.
    [176]钟家强,基于多时相遥感图像的变化检测[D],国防科学技术大学博士论文,2005.
    [177]钟家强,王润生,基于独立成分分析的多时相遥感图像变化检测[J],电子与信息学报,2006,28(6):994-999.
    [178]周冠华,庄伟,陈云浩等,基于遥感与GIS的滑坡灾害风险区域评估方法—以江西省广昌县为例[J],自然灾害学报,2008,17(6):68-73.
    [179]朱博勤,魏成阶,张渊智,航空遥感地震灾害信息的快速提取[J],自然灾害学报,1998,7(1):34-39.
    [180]朱长青,杨晓梅等,基于样条二进小波的影像多尺度边缘检测[J],遥感学报,1997,1(4):282-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700