用户名: 密码: 验证码:
人参皂苷Rg1的选择性糖皮质激素样作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖皮质激素(Glucocorticoid, GC)是由肾上腺分泌的一类甾体激素,在生物体的生长、发育、生殖、代谢、免疫及维持内环境稳定等过程都有重要的调节作用;同时GC也是临床上广泛应用的抗炎药物,用于治疗哮喘、风湿性关节炎等疾病。然而,由于不可避免的副作用,如骨质疏松、糖尿病、脂肪重新分布、水钠潴留状等,极大地限制了激素的使用。糖皮质激素的生理和药理作用主要是由糖皮质激素受体(Glucocorticoid receptor, GR)介导的。GR作为配基依赖性的转录调节因子调节基因表达,GC与GR结合导致GR的活化,活化的GR以同源二聚体的形式转移到核内,通过转录激活或转录抑制作用调节基因转录。现在普遍认为,转录抑制作用是GC发挥抗炎效应的关键机制;而一些严重副作用则主要与它的转录激活作用有关。因此,如果有一种GC类药物与GR结合后保留转录抑制作用,而没有或较少发挥转录激活作用,从而在发挥治疗作用的同时,没有或较少产生副作用,则对于炎性疾病的临床治疗具有重要价值。
     现代药理研究表明,许多中药、中药单体或中药复方都可发挥抗炎作用,并且许多中药提取物中含有与甾体类激素相似的化学结构。人参皂苷(Ginsenosides, GSS)是人参的主要活性成份,具有类似甾体激素样结构,具有抗炎、抗应激、调节免疫等广泛的药理学活性。我科前期的临床研究发现,GSS联合泼尼松能够增强其疗效,减少GC副作用的发生率,比如柯兴征、带状疱疹、细菌感染等。此外,GSS联合地塞米松(Dexamethasone, Dex)还可以有效防治经动脉化疗栓塞(Transcatheter arterial chemoembolization, TACE)后肝肾功能的损伤,防治TACE术后综合征。因此,我们推测:GSS中很可能含有某种成分,具有类似于GC样的抗炎作用,而较少发挥GC样的副作用。通过复习文献,我们发现人参皂苷Rgl (Ginsenosides Rgl, G-Rg1)可以作为GR的功能性配体,激活荧光素酶报告基因的活性。因此,我们推测G-Rg1极有可能能够发挥GC样的抗炎作用,而具有较少的副作用。
     研究目的
     观察G-Rg1在体内外的抗炎作用及其对糖代谢、骨质代谢的影响,并进一步阐明G-Rg1的作用机制,探讨G-Rg1是否能够作为一种新型的GR调节剂通过抑制NF-κB参与抗炎反应,同时较少引起GC样的副作用。
     研究方法
     (1)体外抗炎作用及副作用
     LPS刺激Raw264.7细胞8h后,收集上清液,酶联免疫吸附法(Enzyme-linked immunosorbent assay; ELISA)检测肿瘤坏死因子a (Tumor necrosis factor-alpha;TNF-α)及白介素6 (Interleukin-6, IL-6)水平。MTT法检测G-Rg1对小鼠原代培养成骨细胞增殖的作用。荧光定量PCR法检测TNF-a mRNA水平。
     (2)体内抗炎作用及副作用
     采用酵母多糖诱导的小鼠脚掌肿胀急性炎症模型和牛Ⅱ型胶原诱导的小鼠关节炎模型,检验G-Rgl在体内的抗炎作用。观察G-Rg1一次性用药后血糖的变化及长期用药后小鼠体重、胸腺和脾脏重量及骨密度的变化。
     (3)G-Rg1作用机制
     采用Western blot方法观察G-Rg1对GR核转位和磷酸化,MAPK通路,IκB以及NF-κB的影响,探讨G-Rg1的作用机制。
     结果
     (1)体外抗炎作用及副作用
     G-Rg1和Dex能显著抑制LPS诱导的TNF-α和IL-6分泌,其作用呈一定的浓度依赖性;Dex对TNF-α的抑制作用在10-5-10-7M显著强于G-Rg1,但二者对IL-6的抑制作用在10-5-10-8M时差异无统计学意义。尽管低浓度时Dex对成骨细胞无明显抑制作用,而随着Dex浓度的增加,其抑制小鼠原代培养成骨细胞增殖的作用逐渐增强,呈明显的浓度依赖性;G-Rg1在选取的浓度范围内(10-9-10-5M)对成骨细胞增殖均无显著的抑制作用。GR特异性阻断剂Ru486能够部分阻断G-Rg1的抗炎作用,提示G-Rg1可部分通过GR发挥抗炎作用。
     (2)体内抗炎作用及副作用
     G-Rgl (12.5mg/kg)和Dex (2.5mg/kg)对酵母多糖诱导的小鼠脚掌肿胀急性炎症模型均具有显著的抗炎作用(与溶剂对照组相比P<0.05或P<0.01),而两种药物之间作用差异无统计学意义(P>0.05)。给牛Ⅱ型胶原诱导的关节炎模型小鼠给药两周后,G-Rg1组(12.5mg/kg-d)和Dex (2.5mg/kg-d)组小鼠关节炎症状评分明显小于溶剂对照组(P<0.01),两组之间差异无统计学意义(P>0.05)。按抗炎剂量给小鼠腹腔注射药物6h后,Dex组小鼠外周血血糖水平较溶剂对照组明显升高(P<0.01),而G-Rg1组小鼠血糖水平无明显升高(P>0.05)。给小鼠腹腔注射药物4周后,Dex组小鼠体重明显轻于溶剂对照组及G-Rg1组(P<0.01);而G-Rg1组小鼠体重与溶剂对照组差异无统计学意义(P>0.05)。Dex组小鼠脾脏重量明显低于溶剂对照组及G-Rg1组(P<0.01);而G-Rg1组小鼠脾脏重量与溶剂对照组差异无统计学意义(P>0.05)。Dex长期给药(4周)亦可导致小鼠胸腺重量较溶剂对照组明显降低(P<0.01),G-Rg1对小鼠胸腺重量无明显影响(P>0.05);Dex组小鼠胸腺重量亦显著低于G-Rg1组(P<0.01)。为消除体重变化对小鼠胸腺、脾脏重量的影响,我们计算了其胸腺、脾脏指数。与小鼠胸腺、脾脏重量变化一致,Dex组小鼠脾脏、胸腺指数亦低于溶剂对照组和G-Rg1组(P<0.01);G-Rg1组小鼠胸腺指数与溶剂对照组无统计学差异(P>0.05),而脾脏指数大于溶剂对照组(P<0.05)。给药4周后各组小鼠胫骨骨小梁、皮质密度及总骨密度差异均无统计学意义(P>0.05);然而,Dex组小鼠胫骨皮质厚度明显小于溶剂对照组及G-Rg1组小鼠(P<0.05),其横断面面积亦小于溶剂对照组及G-Rg1组小鼠(P<0.01;P<0.05),而溶剂对照组和G-Rg1组皮质厚度和骨面积差异无统计学意义(P>0.05);Dex组小鼠骨含量亦较溶剂对照组及G-Rg1组小鼠降低(P<0.01;P<0.05),溶剂对照组和G-Rg1组小鼠骨含量差异无统计学意义(P>0.05)。
     (3)G-Rg1作用机制
     药物处理1h后,G-Rg1及Dex均可引起GR的核转位,Dex促进GR核转位的作用强于G-Rg1;Dex能引起Ser211位点磷酸化的GR显著增加,而G-Rg1对GRSer211位点的磷酸化无明显影响。LPS刺激后核内p65的水平明显升高,而G-Rg1能够明显的抑制LPS作用后核内p65的水平;LPS作用后可导致IκB的降解,在LPS处理30 min后其基本被完全降解,而在第60 min时,又可以观察到新合成的IκB,G-Rg1预处理2h后可明显增加IKB的水平,抑制LPS对IκB的降解,提示G-Rg1可通过减弱LPS对IκB的降解,降低p65的水平,抑制NF-κB的激活发挥抗炎作用。LPS刺激15min后,JNK、p38和ERK磷酸化水平明显升高:而Rg1预处理则可明显抑制ERK、JNK和p38磷酸化,提示抑制MAPK的磷酸化,进而抑制炎症因子的表达是G-Rg1发挥抗炎作用的机制之一。
     结论
     (1)G-Rg1在体内外均可发挥较显著的抗炎作用;
     (2)G-Rg1在糖代谢、体重、淋巴器官重量及骨质代谢等方面不会引起GC样的副作用;
     (3)G-Rg1能够通过抑制MAPK磷酸化、抑制NF-κB的激活发挥抗炎作用;G-Rg1未出现GC样副作用的机制可能与不引起GR Ser211位点磷酸化有关;
     (4)G-Rg1是一个潜在的,具有较优治疗指数(抗炎作用/副作用比)的抗炎药物。
Background
     Glucocorticoid (GC), a steroid hormone secreted by the adrenal gland, regulates many important physiological processes in the body, including growth, metabolism, and immunological reactivity. GC is also one of the most commonly used medicines in treating chronic asthma, rheumatoid arthritis, etc. However, their use is limited by the unavoidable side effects, such as osteoporosis, diabetes, redistribution of fat and sodium retention, etc. The physiological and pharmacologic effects of GC are mainly mediated by glucocorticoid receptor (GR), a ligand dependent transcription factor. Binding of GC to GR activates GR. Activated GR translocates to nucleus as a dimer, and then regulates gene transcription directly or indirectly. The transrepression is generally considered the key mechanism for the anti-inflammatory activity of GC. In contrast, several side effects are thought to be predominantly mediated via transactivation. Thus, ligands that preferentially induce the transrepression and not transactivation function of GR and could be as effective as standard GC but with fewer undesirable effects would be more valuable for the clinical use of GC.
     It has been demonstrated that many Chinese herbs, herbs'monomers and herbs compounds may exert anti-inflammatory effects. Many herbs' extraction also has a similar structure to steroid hormones. Ginsenosides (GSS) which have a steroid-like structure and possess anti-inflammatory, anti-stress and modulating immunology effects are the main activity components of ginseng. In our previous clinical studies, GSS may enhance the effectiveness of prednisolone and attenuate its side effects, such as Cushing's syndrome, Shingles and Bacterial infection, etc. Furthermore, GSS combined with dexamethasone (Dex) could prevent and cure the injury of liver and kidney after transcatheter arterial chemoembolization (TACE) effectively. Previous studies have reported that Ginsenosides Rgl (G-Rgl) could transactivate the activity of GRE-luciferase reporter gene as a GR functional ligand. Therefore, we supposed that G-Rgl may exert GC-like anti-inflammatory effect but with little side effects.
     Objective
     To observe the anti-inflammatory effects in vitro and in vivo and the effects on glucose and bone metabolism of G-Rgl; to investigate the molecular mechanisms of G-Rg1 effects; to study whether G-Rgl may repress NF-κB through GR then participate anti-inflammation and induce little GC-like side effects meanwhile.
     Methods
     (1) Anti-inflammatory effect and side effects of G-Rgl in vitro. Eight hours after stimulation of Raw264.7 cells with lipopolysaccharide (LPS), supernatant was collected. Tumor necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6) were determined with enzyme-linked immunosorbent assay (ELISA). The effect of G-Rgl on mouse primary osteoblasts proliferation was examined by MTT method.
     (2) Anti-inflammatory effect and side effects of G-Rg1 in vivo. The anti-inflammatory effect of G-Rg1 in vivo was examined in two mouse models, zymosan-induced inflamed paw model and bovine type II collagen-induced arthritis (CIA) mouse model. Glucose level was determined 6 h after administration of G-Rgl. Body, spleen and thymus weight and bone metabolism were determined following a four-week mouse administration.
     (3) The impacts of G-Rgl on the nuclear translocation and phosphorylation of GR, NF-κB and MAPK pathway were investigated by western blot to study the mechanisms of G-Rg1 actions.
     Results
     (1) Anti-inflammatory effect and side effects of G-Rg1 in vitro
     G-Rgl may significantly inhibit the secretion of TNF-a and IL-6 in a concentration-dependent manner. Its anti-inflammatory effect was less than Dex at the same concentration. Dex exhibited a proliferation inhibition effect on mouse primary osteoblasts cells in a concentration-dependent manner, but G-Rg1 had little inhibition effect on mouse primary osteoblasts cells at indicated concentrations (10-9-10-5 M).
     (2) Anti-inflammatory effect and side effects of G-Rg1 in vivo
     Both G-Rg1 and Dex could exert anti-inflammatory effects in zymosan-induced inflamed paw model (P<0.05 or P<0.01, vs vehicle group), but no significant difference was found between the two groups (P>0.05). In CIA mouse model, after 2-week treatment with G-Rgl or Dex, the symptom score was significantly less than that of vehicle group (P<0.01) and there was no significant difference between G-Rg1 and Dex groups (P>0.05). Six hours after intraperitoneal injection of Dex, mouse blood glucose level significantly increased compared with vehicle; however, there was no significant difference between G-Rgl and vehicle groups (P>0.05). after 4 weeks treatment of Dex, mouse body weight notablely decreased (P<0.01), but G-Rg1 treatment did not decrease the body weight compared with vehicle (P>0.05). The spleen weight in Dex treatment group was light than that of G-Rg1 and vehicle groups; no notable difference was detected between the G-Rgl and vehicle groups(P>0.05). The thymus weight of Dex treated mice was also much light than that treated with G-Rgl or vehicle (P<0.01); G-Rg1 may not affect the thymus weight (P>0.05). To eliminate the affect of body weight changes on spleen and thymus weight, we also calculated the spleen and thymus index, consistent with spleen and thymus weight changes, the spleen and thymus index of Dex treated mice were also lower than of G-Rgl and vehicle treated mice (P<0.01); there was no significant difference of the thymus index between G-Rgl and vehicle groups (P>0.05), but significant difference was found of spleen index between the two groups (P<0.05). There was no significant difference of mouse bone trabeculae, cortex and total density between the three groups (P>0.05); however, the cortex thickness of Dex group was thinner than that of G-Rgl and vehicle groups (P<0.05), and the bone area was also less that another two groups (P<0.01; P<0.05). The bone mineral content was decreased by four-week injection of Dex (P<0.01), but G-Rg1 didn't decrease that compared with vehicle. There was also a significant difference between Dex and G-Rgl groups (P<0.05).
     (3) Mechanisms of G-Rgl effects
     One hour after the treatment, both G-Rgl and Dex could induce nuclear translocation of GR. G-Rgl could not induce the phosphorylation of GR Ser-211 site, but Dex may induce the phosphorylation of GR Ser-211 site significantly. LPS stimulation could increase the level of p65 protein in nucleus, but G-Rgl pretreatment may attenuate it. IκB was degraded by LPS and was completely degraded after 30 min of LPS treatment. After 60 min of LPS treatment, new synthetical IκB can be detected again. Two hours pretreatment of G-Rgl could markedly increase the stability of IκB, attenuate its degradation. Fifteen minutes after LPS stimulation, phosphorylation of JNK, p38, ERK was increased significantly; pretreatment with G-Rgl may inhibit LPS induced-phosphorylation of ERK, JNK and p38, indicating that inhibiting the phosphorylation of MAPK pathway, then inhibiting inflammatory cytokines secretion is one of the mechanisms of anti-inflammatory effects of G-Rgl.
     Conclusion
     (1) G-Rgl may exert anti-inflammatory effect in vitro and in vivo;
     (2) G-Rgl may not induce GC-like side effects on the glucose metabolism, body and lymphoid organs weight and bone metabolism;
     (3) G-Rgl may exert anti-inflammatory effect through inhibiting MAPK phosphorylation and NF-κB activation; the mechanism that G-Rgl may not induce GC-like side effects maybe related with non-phosphorylation of GR at Ser 211 site.
     (4) G-Rgl is a potential anti-inflammatory medicine with better therapy index (anti-inflammatory effect/side effects).
引文
1. Munck, A., Guyre, P.M., Holbrook, N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev.1984;5(1):25-44.
    2. De Bosscher, K., Vanden Berghe, W., Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1:molecular mechanisms for gene repression. Endocr Rev.2003;24(4):488-522.
    3. Stanbury, R.M., Graham, E.M. Systemic corticosteroid therapy-side effects and their management. Br J Ophthalmol.1998;82(6):704-708.
    4. Schacke, H., Docke, W.D., Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther.2002;96(1):23-43.
    5. Dittmar, K.D., Demady, D.R., Stancato, L.F., et al. Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. The role of p23 is to stabilize receptor.hsp90 heterocomplexes formed by hsp90.p60.hsp70. J Biol Chem. 1997;272(34):21213-21220.
    6. Schneikert, J., Hubner,S., Martin, E., et al. A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity. J Cell Biol.1999; 146(5):929-940.
    7. Meier, C.A. Regulation of gene expression by nuclear hormone receptors. J Recept Signal Transduct Res.1997;17(1-3):319-335.
    8. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889-895.
    9. Nicolaides, N.C., Galata, Z., Kino, T., et al. The human glucocorticoid receptor:molecular basis of biologic function. Steroids.2010;75(1):1-12.
    10. De Bosscher, K., Vanden Berghe, W., Haegeman, G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids:negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol.2000; 109(1):16-22.
    11. Schacke, H., Rehwinkel, H., Asadullah, K. Dissociated glucocorticoid receptor ligands: compounds with an improved therapeutic index. Curr Opin Investig Drugs.2005;6(5):503-507.
    12. ROSEN, J., MINER, J. The search for safer glucocorticoid receptor ligands. Endocr Rev. 2005;26(3):452-464.
    13. Vayssiere, B.M., Dupont, S., Choquart, A., et al. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol.1997; 11 (9):1245-1255.
    14. Belvisi, M.G., Brown, T.J., Wicks, S., et al. New Glucocorticosteroids with an improved therapeutic ratio? Pulm Pharmacol Ther.2001;14(3):221-227.
    15. Belvisi, M.G., Wicks, S.L., Battram, C.H., et al. Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol.2001;166(3):1975-1982.
    16. Schacke, H., Schottelius, A., Docke, W.D., et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci U S A.2004; 101(1):227-232.
    17. De Bosscher, K., Vanden Berghe, W., Beck, I.M., et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci U S A. 2005; 102(44):15827-15832.
    18. Dewint, P., Gossye, V., De Bosscher, K., et al. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol.2008;180(4):2608-2615.
    19. Coghlan, M.J., Jacobson, P.B., Lane, B., et al. A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol.2003;17(5):860-869.
    20. Newton, R., Holden, N.S. Separating transrepression and transactivation:a distressing divorce for the glucocorticoid receptor? Mol Pharmacol.2007;72(4):799-809.
    21. Kassel, O., Sancono, A., Kratzschmar, J., et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. Embo J.2001;20(24):7108-7116.
    22. King, E.M., Holden, N.S., Gong, W., et al. Inhibition of NF-kappaB-dependent transcription by MKP-1:transcriptional repression by glucocorticoids occurring via p38 MAPK. J Biol Chem. 2009;284(39):26803-26815.
    23. Mittelstadt, P.R., Ashwell, J.D. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem.2001;276(31):29603-29610.
    24. Yang, N., Zhang, W., Shi, X.M. Glucocorticoid-induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2 expression. J Cell Biochem.2008; 103(6):1760-1771.
    25.王晓玉,魏伟.抗炎免疫中药有效成分的药理学研究.中药新药与临床药理.2006;17(4):314-316.
    26.郭丽冰,王蕾,林爽,等.治疗类风湿性关节炎中药复方白仙汤剂的药理作用研究.时珍国医国药.2008;19(10):2489-2491.
    27.朱爱江,方步武.中药单体抗炎作用的研究近况.广州医药.2007;38(4):3-6.
    28.李淑惠,李晓辉,张海港,等.三七叶皂苷抗炎作用机理的实验研究.哈尔滨商业大学学
    报:自然科学版.2002;18(1):30-33.
    29.张纯武,滕红林,柳献云,等.人参皂甙对强直性脊柱炎镇痛和抗炎作用的实验研究.浙江中医杂志.2005;40(9):402-403.
    30.李宝丽,唐方.中药复方对类风湿关节炎抗炎作用的实验研究.中国免疫学杂志.2007;23(8):702-705,708.
    31.唐翩翩,徐德平.黄精中甾体皂苷的分离与结构鉴定.食品与生物技术学报.2008;27(4):34-37.
    32.唐世蓉,杨如同,潘福生,等.中国薯蓣属植物中的甾体皂苷及甾体皂营元.植物资源与环境学报.2007;16(2):64-72.
    33.孙国珍,张洁,马百平.蒺藜中甾体皂营类化学成分及其药理活性研究进展.中草药.2007;38(7):1111-1115.
    34.立川英,怡悦.人参甾体皂苷代谢物对肾上腺髓质细胞分泌几茶酚胺的影响.国外医学:中医中药分册.2004;26(1):36-37.
    35. Yue, P.Y., Mak, N.K., Cheng, Y.K., et al. Pharmacogenomics and the Yin/Yang actions of ginseng:anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med. 2007;2:6.
    36. Attele, A.S., Wu, J.A., Yuan, C.S. Ginseng pharmacology:multiple constituents and multiple actions. Biochem Pharmacol.1999;58(11):1685-1693.
    37. Kim, D.H., Moon, Y.S., Lee, T.H., et al. The inhibitory effect of ginseng saponins on the stress-induced plasma interleukin-6 level in mice. Neurosci Lett.2003;353(1):13-16.
    38. Park, E.K., Shin, Y.W., Lee, H.U., et al. Inhibitory effect of ginsenoside Rbl and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull.2005;28(4):652-656.
    39. Kim, H.A., Kim, S., Chang, S.H., et al. Anti-arthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice. Int Immunopharmacol.2007;7(10):1286-1291.
    40. Wu, C.F., Bi, X.L., Yang, J.Y., et al. Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol.2007;7(3):313-320.
    41. Lee, J.H., Han, Y. Ginsenoside Rgl helps mice resist to disseminated candidiasis by Thl type differentiation of CD4+ T cell. Int Immunopharmacol.2006;6(9):1424-1430.
    42. Xie, J.T., Mehendale, S.R., Wang, A., et al. American ginseng leaf:ginsenoside analysis and hypoglycemic activity. Pharmacol Res.2004;49(2):113-117.
    43. Xie, J.T., Zhou, Y.P., Dey, L., et al. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine.2002;9(3):254-258.
    44. Park, K.H., Shin, H.J., Song, Y.B., et al. Possible role of ginsenoside Rbl on regulation of rat liver triglycerides. Biol Pharm Bull.2002;25(4):457-460.
    45. Yinglu, F., Changquan, L., Xiaofeng, Z., et al. A New Way:Alleviating Postembolization Syndrome Following Transcatheter Arterial Chemoembolization. J Altern Complement Med. 2009.
    46. 封颖璐,程彬彬,凌昌全.人参皂苷联合地塞米松对肝总动脉结扎大鼠肝功能的保护作用.中华肝脏病杂志.2007;15(10):793-794.
    47. Lee, Y.J., Chung, E., Lee, K.Y., et al. Ginsenoside-Rgl, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol. 1997;133(2):135-140.
    48. Leung, K.W., Cheng, Y.K., Mak, N.K., et al. Signaling pathway of ginsenoside-Rgl leading to nitric oxide production in endothelial cells. FEBS Lett.2006;580(13):3211-3216.
    49. Leung, K.W:, Pon, Y.L., Wong, R.N., et al. Ginsenoside-Rgl induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factor-dependent pathway in human endothelial cells. J Biol Chem.2006;281(47):36280-36288.
    50. Leung, K.W., Leung, F.P., Huang, Y., et al. Non-genomic effects of ginsenoside-Re in endothelial cells via glucocorticoid receptor. FEBS Lett.2007;581(13):2423-2428.
    51. Niu, C.S., Yeh, C.H., Yeh, M.F., et al. Increase of adipogenesis by ginsenoside (Rh2) in 3T3-L1 cell via an activation of glucocorticoid receptor. Horm Metab Res.2009;41(4):271-276.
    52. Chan, R.Y., Chen, W.F., Dong, A., et al. Estrogen-like activity of ginsenoside Rgl derived from Panax notoginseng. J Clin Endocrinol Metab.2002;87(8):3691-3695.
    53. Lau, W.S., Chan, R.Y., Guo, D.A., et al. Ginsenoside Rgl exerts estrogen-like activities via ligand-independent activation of ERalpha pathway. J Steroid Biochem Mol Biol. 2008;108(1-2):64-71.
    54. Lee, Y., Jin, Y., Lim, W., et al. A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J Steroid Biochem Mol Biol. 2003;84(4):463-468.
    55. Cho, J., Park, W., Lee, S., et al. Ginsenoside-Rb1 from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and-beta, independent of ligand binding. J Clin Endocrinol Metab. 2004;89(7):3510-3515.
    56. Cohen, D., Adachi, J.D. The treatment of glucocorticoid-induced osteoporosis. J Steroid Biochem Mol Biol.2004;88(4-5):337-349.
    57. Gu, G., Hentunen, T.A., Nars, M., et al. Estrogen protects primary osteocytes against glucocorticoid-induced apoptosis. Apoptosis.2005;10(3):583-595.
    58. Ropero, A.B., Alonso-Magdalena, P., Quesada, I., et al. The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids.2008;73(9-10):874-879.
    59. Zhang, Y., Leung, D.Y., Nordeen, S.K., et al. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem. 2009;284(36):24542-24552.
    60. De Bosscher, K., Vanden Berghe, W:, Haegeman, G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene.2006;25(51):6868-6886.
    61. Ecarot-Charrier, B., Glorieux, F.H., van der Rest, M., et al. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol.1983;96(3):639-643.
    62. Ishida, Y., Heersche, J.N. Glucocorticoid-induced osteoporosis:both in vivo and in vitro concentrations of glucocorticoids higher than physiological levels attenuate osteoblast differentiation. J Bone Miner Res.1998; 13(12):1822-1826.
    63. Hulley, P.A., Gordon, F., Hough, F.S. Inhibition of mitogen-activated protein kinase activity and proliferation of an early osteoblast cell line (MBA 15.4) by dexamethasone:role of protein phosphatases. Endocrinology.1998; 139(5):2423-2431.
    64. Horsch, K., de Wet, H., Schuurmans, M.M., et al. Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation. Mol Endocrinol.2007;21(12):2929-2940.
    65. Miner, J.N., Ardecky, B., Benbatoul, K., et al. Antiinflammatory glucocorticoid receptor ligand with reduced side effects exhibits an altered protein-protein interaction profile. Proc Natl Acad Sci U S A.2007; 104(49):19244-19249.
    66. Williams, R.O. Rodent models of arthritis:relevance for human disease. Clin Exp Immunol. 1998;114(3):330-332.
    67. Anthony, D.D., Haqqi, T.M. Collagen-induced arthritis in mice:an animal model to study the pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol.1999;17(2):240-244.
    68. Barnes, P.J. How corticosteroids control inflammation:Quintiles Prize Lecture 2005. Br J Pharmacol.2006;148(3):245-254.
    69. Rhen, T., Cidlowski, J.A. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med.2005;353(16):1711-1723.
    70. McMaster, A., Ray, D.W. Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced side-effects. Exp Physiol. 2007;92(2):299-309.
    71. Vilcek, J., Lee, T.H. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem.1991;266(12):7313-7316.
    72. Sekut, L., Menius, J.A., Jr., Brackeen, M.F., et al. Evaluation of the significance of elevated levels of systemic and localized tumor necrosis factor in different animal models of inflammation. J Lab Clin Med.1994;124(6):813-820.
    73. Fye, K.H. New treatments for rheumatoid arthritis. Available and upcoming slow-acting antirheumatic drugs. Postgrad Med.1999;106(4):82-85,88-90,92.
    74. Cho, J.Y., Yoo, E.S., Baik, K.U., et al. In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-alpha production and its modulation by known TNF-alpha antagonists. Planta Med.2001;67(3):213-218.
    75. Rhule, A., Navarro, S., Smith, J.R., et al. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol.2006;106(1):121-128.
    76. O'Brien, C.A., Jia, D., Plotkin, L.I., et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004; 145(4):1835-1841.
    77. Weinstein, R.S., Jilka, R.L., Parfitt, A.M., et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest.1998; 102(2):274-282.
    78. Canalis, E. Mechanisms of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol. 2003;15(4):454-457.
    79. de Dios, A., Shih, C., Lopez de Uralde, B., et al. Design of potent and selective 2-aminobenzimidazole-based p38alpha MAP kinase inhibitors with excellent in vivo efficacy. J Med Chem.2005;48(7):2270-2273.
    80. Hofbauer, L.C., Gori, F., Riggs, B.L., et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells:potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999; 140(10):4382-4389.
    81. Danesch, U., Gloss, B., Schmid, W., et al. Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. Embo J.1987;6(3):625-630.
    82. Celec, P. Nuclear factor kappa B--molecular biomedicine:the next generation. Biomed Pharmacother.2004;58(6-7):365-371.
    83. Baeuerle, P.A., Baltimore, D. NF-kappa B:ten years after. Cell.1996;87(1):13-20.
    84. Baldwin, A.S., Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol.1996;14:649-683.
    85. May, M.J., Ghosh, S. IkappaB kinases:kinsmen with different crafts. Science. 1999;284(5412):271-273.
    86. Brown, M.D., Sacks, D.B. Compartmentalised MAPK pathways. Handb Exp Pharmacol. 2008(186):205-235.
    87'. Hambleton, J., Weinstein, S.L., Lem, L., et al. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci U S A. 1996;93(7):2774-2778.
    88. van der Bruggen, T., Nijenhuis, S., van Raaij, E., et al. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun.1999;67(8):3824-3829.
    89. Casey, J.R., Petranka, J.G., Kottra, J., et al. The structure of the urokinase-type plasminogen activator receptor gene. Blood.1994;84(4):1151-1156.
    90. Broom, O.J., Widjaya, B., Troelsen, J., et al. Mitogen activated protein kinases:a role in inflammatory bowel disease? Clin Exp Immunol.2009;158(3):272-280.
    91. Scherle, P.A., Jones, E.A., Favata, M.F., et al. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol.1998;161(10):5681-5686.
    92. Wang, Z., Frederick, J., Garabedian, M.J. Deciphering the phosphorylation "code" of the glucocorticoid receptor in vivo. J Biol Chem.2002;277(29):26573-26580.
    93. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The G1SEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet.1997;349(9069):1857-1863.
    1. Gupta BBP, Lalchhandama K.Molecular mechanisms of glucocorticoid action. Curt Sci,2002,83(9): 1103-1111.
    2. Vanderbilt JN, Miesfeld R, Maler BA. Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol Endocrinol,1987,1:68-74.
    3. Marcel JM, Schaaf, John AC. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol,2003,83:37-48.
    4. Kim JJ, Yoon KS. Stress:metaplastic effects in the hippocampus. Trends Neurosci,1998,21(12): 505-509.
    5. Yehuda R. Stress and glucocorticoid. Science,1997,275(5306):1662-1663.
    6. Xu RB. The studies on glucocorticoid receptors in stress and shock. Physiol Sci,1989,9(2):1241.
    7. Filipovic D, Gavrilovic L, Dronjak S, et al. Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronicor combined stress. Neuropsychobiology,2005,51 (2):107-114.
    8.陈家旭,杨建新,赵歆,等.慢性束缚应激大鼠中枢糖皮质激素受体变化及中药复方的影响.中国应用生理学杂志,2005,21(4):402-406.
    9.常波,杨剑.序贯法和单纯进补法对慢性运动应激大鼠脑组织和胸腺组织糖皮质激素受体的影响.体育科学,2006,26(2):48-54.
    10.史亚飞,严灿,吴丽丽,等.加味四逆散对束缚制动心理应激大鼠HPA轴调节作用的影响.中药材,2008,31(1):88-91.
    11.凌昌全,李敏.参附汤对失血性休克大鼠糖皮质激素及其受体的影响.第二军医大学学报,1996,17(3):284-286.
    12.李敏,赵法仪.加味生脉散对热损伤大鼠糖皮质激素及其受体的影响.第二军医大学学报,1996,17(6):542-544.
    13.李敏,步世忠,王亚云,等.参附汤对HL-60细胞糖皮质激素受体mRNA表达的影响.上海中医药大学学报,2002,16(4):35-37.
    14.凌昌全,李敏,步世忠,等.参附汤上调HL-60细胞热休克蛋白和糖皮质激素受体mRNA表达及其对细胞存活的影响.中国中西医结合杂志,2003,23(1):32-34.
    15.凌昌全,李敏,苏永华,等.人参茎叶皂苷对失血性休克大鼠糖皮质激素受体的影响.中草药,2003,34(5):433-436.
    16.吕国平,崔德健,郭英江,等.大鼠哮喘模型肺组织、胸腺和脾脏糖皮质激素受体的研究.中华内科杂志,1996,35(2):120-121.
    17.包照日格图,吴敦序,陈淑俊,等.补肾健脾三方对哮喘大鼠糖皮质激素受体及皮质酮的影响. 中国中西医结合杂志,1999,19(8):488-489.
    18.许建华,范忠泽,吴敦序,等.补肾定喘汤对哮喘大鼠肺组织糖皮质激素受体及血浆皮质酮、ACTH的影响.中国中医基础医学杂志,2003,9(1):27-29.
    19.童舜华,吴敦序,包照日格图,等.小青龙汤对大鼠哮喘模型肺组织糖皮质激素受体的影响.中成药,1998,20(6):32-35.
    20.童瑶,张宁霞,倪力强,等.疏肝理肺法对应激条件下哮喘大鼠海马糖皮质激素受体mRNA表达的影响.中华中医药杂志,2005,20(1):57-58.
    21.薛汉荣,洪广祥,付向春,等.益气温阳护卫汤对哮喘豚鼠外周血白细胞糖皮质激素受体的影响.北京中医药大学学报,2002,25(2):47-49.
    22.冯文明,鲍鹰,朱鸣,等.雷公藤多甙对重症急性胰腺炎大鼠糖皮质激素受体的上调影响.中国中西医结合外科杂志,2008,14(2):135-137.
    23.钱民,陈德昌,刘红梅.人参皂苷对创伤后脓毒症大鼠糖皮质激素受体的影响.河北医药,2005,27(12):883-884.
    24.封颖璐,程彬彬,凌昌全.人参皂苷对大鼠肝缺血损伤后糖皮质激素受体的调节作用.中国中西医结合杂志,2008,28(3):252-254.
    25.徐克川,张善徵.甲亢类阴虚大鼠肝胞液糖皮质激素受体的实验研究.广州中医学院学报,1990,7(3):145-149.
    26.凌昌全,李敏,朱德增,等.阴阳虚证与糖皮质激素受体关系的临床与实验研究.浙江中西医结合杂志,2001,11(9):532-533.
    27.李敏,凌昌全,黄雪强,等.人参茎叶皂苷对热损伤大鼠不同脏器糖皮质激素受体的影响.中西医结合学报,2006,4(2):156-159.
    28.赵伟康,金国琴.固真方对老年大鼠胸腺细胞糖皮质激素受体作用的研究.中国中西医结合杂志1995,15(2):92-94.
    29.张玲娟,沈自尹,王文健,等.补肾益气法对淋巴细胞糖皮质激素受体老年性改变的影响.中西医结合杂志,1990,10(10):583-585.
    30.詹秀琴.补肾方药对老年大鼠胸腺细胞糖皮质激素受体的作用研究.南京中医药大学学报(自然科学版),2000,16(3):152-153.
    31.卢军华,凌昌全,谭金兴,等.固脱汤对失血性休克大鼠糖皮质激素受体的影响.中国病理生理杂志,1998,14(2):136-139.
    32.赵锦程,张明远,李艳萍,等.参附汤对失血性休克大鼠肝脏细胞液糖皮质激素受体的影响.黑龙江医药科学,2002,25(1):5-6.
    33.凌昌全,李敏,谭金兴,等.参附汤对休克大鼠不同器官糖皮质激素受体的上调作用.浙江中医学院学报,2003,27(3):56-57.
    34.杜娟,凌昌全,陈永安.淫羊藿和熟地煎剂对糖皮质激素受体下调模型大鼠糖皮质激素受体的影响.中国中西医结合杂志,2008,28(1):64-67.
    35.周太光,王峥,夏彦,等.雷公藤多甙对肾病综合征患儿糖皮质激素受体的影响及其临床意义.临床儿科杂志,2003,21(10):612-614.
    36.周太光,邓正华,黄善文.雷公藤总苷对肾病型紫癜性肾炎患儿糖皮质激素受体的影响及其临床意义.实用儿科临床杂志,2007,22(17):1315-1316.
    37.马以泉.六味地黄丸对肾病综合征患儿外周血糖皮质激素受体水平的影响.浙江中医学院学报,2000,24(3):49.
    38.姚连初.肾气丸对原发肾病综合征患者外周血糖皮质激素受体水平的影响.中成药,2000,22(10):704-705.
    39.刘保国,李志英,杜明.金匮肾气丸配合激素治疗大疱性类天疱疮疗效观察及对糖皮质激素受体表达的影响.中国中西医结合杂志,2006,26(10):881-884.
    40.肖平山,刘志国,邵慧梅.甲状腺功能亢进症患者甲状腺组织糖皮质激素受体的改变及意义.第二军医大学学报,2001,22(11):1081.
    41.杨宏杰,郑敏,张丹.甲亢阴虚证糖皮质激素受体改变和六味地黄丸作用的研究.浙江中医杂志,2003,(2):87-89.
    42.凌昌全,陈喆,俞超芹,等.52例阴虚阳虚患者外周血.混合白细胞糖皮质激素受体的实验观察.中医杂志,1998,39(10):619-620.
    43.刘福春,翟美芙,汤少玲,等.老年及老年虚证病人周围血白细胞糖皮质激素受体的研究.中医杂志,1989,30(7):40-42.
    44.张广宇,谢竹藩.虚寒及虚热证患者血浆皮质醇及其受体观察.中西医结合杂志,1991,11(11):664-665.
    45.步世忠,许金廉,孙继虎,等.柴胡皂甙d上调HL-60细胞糖皮质激素受体mRNA并诱导细胞凋亡.中华血液学杂志,1999,20(7):354-356.
    46.刘毅,叶松柏,金彰红.雷公藤多甙对糖皮质激素受体的影响.川北医学院学报,2000,15(2):4-6.
    47.李勇,李敏,王喜,等.人参茎叶皂甙增强糖皮质激素受体转录激活效应的实验研究.中国中西医结合杂志,2004,24(8):710-713.
    48. Ling C, Li Y, Zhu X, et al. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor. Gen Comp Endocrinol.2005,140(3):203-209.
    49.李勇,朱晓燕,凌昌全.人参皂甙单体Rb1对人急性早幼粒白血病细胞系增殖及糖皮质激素受体α表达的影响.中国病理生理杂志2004,20(9):1572-1575.
    50. Chung E, Lee KY, Lee YJ, et al. Ginsenoside Rg1 down-regulates glucocorticoid receptor and displays synergistic effects with cAMP. Steroids,1998,63(7-8):421-424.
    51.李勇,李毅平,虞胜,等.人参皂苷Rg1诱导人肝HL-7702细胞糖皮质激素受体报告基因表达的作用.中草药,2006,37(12):1823-1826.
    52.杨柳松,王浩丹,李曙光.小柴胡汤对大鼠肝脏胞液糖皮质激素受体的调节作用.中国病理生理杂志,1996,12(5):522-524.
    53.杨霞,王浩丹,侯桂华,等.小柴胡汤对糖皮质激素受体及其mRNA的调节作用.中国病理生理杂志,2000,16(12):1304-1306.
    54.赵锦程,李彦平,等.柴苓汤对大鼠肝脏细胞液糖皮质激素受体的调节作用.佳术斯医学院学报,1997,20(2):9-10.
    55.许泼实,黑洁,孙长义.小柴胡汤中具有糖皮质激素样作用单剂的实验研究.中国煤炭工业医学杂志,2004,7(8):781-783.
    56.赵晓山,罗仁.肾虚证相关基因的研究.中西医结合学报,2003,1(1):18-20.
    1. Buttgereit, F., Straub, R.H., Wehling, M., et al. Glucocorticoids in the treatment of rheumatic diseases:an update on the mechanisms of action. Arthritis Rheum.2004;50(11):3408-3417.
    2. Buttgereit, F., Saag, K.G., Cutolo, M., et al. The molecular basis for the effectiveness, toxicity, and resistance to glucocorticoids:focus on the treatment of rheumatoid arthritis. Scand J Rheumatol.2005;34(1):14-21.
    3. Adcock, I.M., Lane, S.J. Corticosteroid-insensitive asthma:molecular mechanisms. J Endocrinol.2003;178(3):347-355.
    4. Pratt, W.B. The hsp90-based chaperone system:involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med.1998;217(4):420-434.
    5. Buttgereit, F., Scheffold, A. Rapid glucocorticoid effects on immune cells. Steroids. 2002;67(6):529-534.
    6. Almawi, W.Y., Melemedjian, O.K. Molecular mechanisms of glucocorticoid antiproliferative effects:antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71(1):9-15.
    7. Wikstrom, A.C. Glucocorticoid action and novel mechanisms of steroid resistance:role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness. J Endocrinol. 2003;178(3):331-337.
    8. Spies, C.M., Schaumann, D.H., Berki, T., et al. Membrane glucocorticoid receptors are down regulated by glucocorticoids in patients with systemic lupus erythematosus and use a caveolin-1-independent expression pathway. Ann Rheum Dis.2006;65(9):1139-1146.
    9. Merrill, A.H., Jr., Wang, E., Hargrove, J.L. Hepatic enzymes of sphingolipid and glycerolipid biosynthesis in rats from Spacelab 3. Physiologist.1985;28(6 Suppl):S229.
    10. Ruppert, S., Boshart, M., Bosch, F.X., et al. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. Cell.1990;61(5):895-904.
    11. Meyer, T., Carlstedt-Duke, J., Starr, D.B. A weak TATA box is a prerequisite for glucocorticoid-dependent repression of the osteocalcin gene. J Biol Chem. 1997;272(49):30709-30714.
    12. De Bosscher, K., Vanden Berghe, W., Vermeulen, L., et al. Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci U S A. 2000;97(8):3919-3924.
    13. Sakai, D.D., Helms, S., Carlstedt-Duke, J., et al. Hormone-mediated repression:a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 1988;2(9):1144-1154.
    14. Zong, J., Ashraf,J., Thompson, E.B. The promoter and first, untranslated exon of the human glucocorticoid receptor gene are GC rich but lack consensus glucocorticoid receptor element sites. Mol Cell Biol.1990; 10(10):5580-5585.
    15. Chen, R., Burke, T.F., Cumberland, J.E., et al. Glucocorticoids inhibit calcium-and calcineurin-dependent activation of the human IL-4 promoter, J Immunol. 2000;164(2):825-832.
    16. Schacke, H., Rehwinkel, H., Asadullah, K., et al. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp Dermatol.2006;15(8):565-573.
    17. Reichardt, H.M., Schutz, G. Glucocorticoid signalling-multiple variations of a common theme. Mol Cell Endocrinol.1998;146(1-2):1-6.
    18. Schacke, H., Docke, W.D., Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther.2002;96(1):23-43.
    19. Lin, C.W., Nakane, M., Stashko, M., et al. trans-Activation and repression properties of the novel nonsteroid glucocorticoid receptor ligand 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y 1)-1H-[1]benzopyrano[3,4-f]quinoline (A276575) and its four stereoisomers. Mol Pharmacol.2002;62(2):297-303.
    20. Vayssiere, B.M., Dupont, S., Choquart, A., et al. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol.1997; 11 (9):1245-1255.
    21. Belvisi, M.G., Brown, T.J., Wicks, S., et al. New Glucocorticosteroids with an improved therapeutic ratio? Pulm Pharmacol Ther.2001;14(3):221-227.
    22. Belvisi, M.G., Wicks, S.L., Battram, C.H., et al. Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol.2001; 166(3):1975-1982.
    23. Schacke, H., Schottelius, A., Docke, W.D., et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci U S A.2004;101(1):227-232.
    24. De Bosscher, K., Vanden Berghe, W., Beck, I.M., et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci USA.2005;102(44):15827-15832.
    25. Dewint, P., Gossye, V., De Bosscher, K., et al. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol.2008;180(4):2608-2615.
    26. Coghlan, M.J., Jacobson, P.B., Lane, B., et al. A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol.2003;17(5):860-869.
    27. Newton, R., Holden, N.S. Separating transrepression and transactivation:a distressing divorce for the glucocorticoid receptor? Mol Pharmacol.2007;72(4):799-809.
    28. Kassel, O., Sancono, A., Kratzschmar, J., et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. Embo J.2001;20(24):7108-7116.
    29. Mittelstadt, P.R., Ashwell, J.D. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem.2001;276(31):29603-29610.
    30. Yang, N., Zhang, W., Shi, X.M. Glucocorticoid-induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2 expression. J Cell Biochem.2008;103(6):1760-1771.
    31. King, E.M., Holden, N.S., Gong, W., et al. Inhibition of NF-kappaB-dependent transcription by MKP-1:transcriptional repression by glucocorticoids occurring via p38 MAPK. J Biol Chem. 2009;284(39):26803-26815.
    32. Wolthers, O.D., Pedersen, S. Short term linear growth in asthmatic children during treatment with prednisolone. BMJ.1990;301(6744):145-148.
    33. Avioli, L.V. Glucocorticoid effects on statural growth. Br J Rheumatol.1993;32 Suppl 2:27-30.
    34. Wolthers, O.D. Long-, intermediate-and short-term growth studies in asthmatic children treated with inhaled glucocorticosteroids. Eur Respir J.1996;9(4):821-827.
    35. Lane, N.E., Lukert, B. The science and therapy of glucocorticoid-induced bone loss. Endocrinol Metab Clin North Am.1998;27(2):465-483.
    36. Silvestrini, G., Ballanti, P., Patacchioli, F.R., et al. Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone.2000;26(1):33-42.
    37. Weinstein, R.S., Jilka, R.L., Parfitt, A.M., et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest.1998;102(2):274-282.
    38. Khosla, S. Minireview:the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050-5055.
    39. Wada, T., Nakashima, T., Hiroshi, N., et al. RANKL-RANK signaling in osteoclastogenesis and
    bone disease. Trends Mol Med.2006; 12(1):17-25.
    40. Simonet, W.S., Lacey, D.L., Dunstan, C.R., et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell.1997;89(2):309-319.
    41. Yasuda, H., Shima, N., Nakagawa, N., et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG):a mechanism by which OPG/OC1F inhibits osteoclastogenesis in vitro. Endocrinology.1998; 139(3):1329-1337.
    42. Hofbauer, L.C., Gori, F., Riggs, B.L., et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells:potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999; 140(10):4382-4389.
    43. Pereira, R.M., Delany, A.M., Canalis, E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone.2001;28(5):484-490.
    44. Pereira, R.C., Delany, A.M., Canalis, E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation:correlation with CCAAT-enhancer binding protein expression. Bone.2002;30(5):685-691.
    45. Canalis, E. Mechanisms of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol. 2003;15(4):454-457.
    46. Price, S.R., Du, J.D., Bailey, J.L., et al. Molecular mechanisms regulating protein turnover in muscle. Am J Kidney Dis.2001;37(1 Suppl 2):S112-114.
    47. Bielefeld, P. [Present status of cortisone myopathy]. Rev Med Interne.1996; 17(3):255-261.
    48. Shee, C.D. Risk factors for hydrocortisone myopathy in acute severe asthma. Respir Med. 1990;84(3):229-233.
    49. Andrews, R.C., Walker, B.R. Glucocorticoids and insulin resistance:old hormones, new targets. Clin Sci (Lond).1999;96(5):513-523.
    50. Henriksen, J.E., Alford, F., Ward, G.M., et al. Risk and mechanism of dexamethasone-induced deterioration of glucose tolerance in non-diabetic first-degree relatives of NIDDM patients. Diabetologia.1997;40(12):1439-1448.
    51. Wajngot, A., Giacca, A., Grill, V., et al. The diabetogenic effects of glucocorticoids are more pronounced in low-than in high-insulin responders. Proc Natl Acad Sci USA. 1992;89(13):6035-6039.
    52. Schweizer-Groyer, G., Cadepond, F., Jibard, N., et al. Stimulation of transcription in vitro from a liver-specific promoter by human glucocorticoid receptor (hGRalpha). Biochem J.1997;324 (Pt 3):823-831.
    53. Rigaud, G., Roux, J., Pictet, R., et al. In vivo footprinting of rat TAT gene:dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell.1991;67(5):977-986.
    54. Beurton, F., Bandyopadhyay, U., Dieumegard, B., et al. Delineation of the insulin-responsive sequence in the rat cytosolic aspartate aminotransferase gene:binding sites for hepatocyte nuclear factor-3 and nuclear factor I. Biochem J.1999;343 Pt 3:687-695.
    55. Yoshiuchi, I., Shingu, R., Nakajima, H., et al. Mutation/polymorphism scanning of glucose-6-phosphatase gene promoter in noninsulin-dependent diabetes mellitus patients. J Clin Endocrinol Metab.1998;83(3):1016-1019.
    56. Scott, D.K., Stromstedt, P.E., Wang, J.C., et al. Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor-binding sites. Mol Endocrinol.1998;12(4):482-491.
    57. Friedman, J.E., Sun, Y., Ishizuka, T., et al. Phosphoenolpyruvate carboxykinase (GTP) gene transcription and hyperglycemia are regulated by glucocorticoids in genetically obese db/db transgenic mice. J Biol Chem.1997;272(50):31475-31481.
    58. Hummel, M., Warnecke, H., Schuler, S., et al. [Risk of adrenal cortex insufficiency following heart transplantation]. Klin Wochenschr.1991;69(6):269-273.
    59. Felner, E.I., Thompson, M.T., Ratliff, A.F., et al. Time course of recovery of adrenal function in children treated for leukemia. J Pediatr.2000; 137(1):21-24.
    60. Henzen, C., Suter, A., Lerch, E., et al. Suppression and recovery of adrenal response after short-term, high-dose glucocorticoid treatment. Lancet.2000;355(9203):542-545.
    61. Goichot, B., Wicky, C., Grunenberger, F., et al. [Hypothalamo-pituitary-adrenocortical function during and after steroid therapy:recent data and critical review]. Ann Endocrinol (Paris). 2000;61(5):452-458.
    62. Kountz, D.S., Clark, C.L. Safely withdrawing patients from chronic glucocorticoid therapy. Am Fam Physician.1997;55(2):521-525,529-530.
    63. Robinzon, B., Cutolo, M. Should dehydroepiandrosterone replacement therapy be provided with glucocorticoids? Rheumatology (Oxford).1999;38(6):488-495.
    64. Stuck, A.E., Minder, C.E., Frey, F.J. Risk of infectious complications in patients taking glucocorticosteroids. Rev Infect Dis.1989; 11 (6):954-963.
    65. Kennedy, W.A., Laurier, C., Gautrin, D., et al. Occurrence and risk factors of oral candidiasis treated with oral antifungals in seniors using inhaled steroids. J Clin Epidemiol. 2000;53(7):696-701.
    66. Walfisch, A., Hallak, M., Mazor, M. Multiple courses of antenatal steroids:risks and benefits. Obstet Gynecol.2001;98(3):491-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700