用户名: 密码: 验证码:
杨梅花色苷对胰岛细胞氧化应激损伤的保护作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是多基因遗传与环境因素长期共同作用所导致的一组以慢性高血糖为特征的代谢性疾病,由于体内胰岛素相对或绝对分泌不足或靶细胞对胰岛素敏感性降低所引起的内分泌代谢性疾病。胰岛移植是治疗1型及部分2型糖尿病极有前景的治疗手段,能够生理条件下动态调控血糖水平,脱离胰岛素依赖,延缓糖尿病相关并发症的发生。然而在移植过程中,胰岛在分离、纯化及移植操作中数量的损失及功能、活性的下降,移植后受炎症、排斥反应的打击损伤,使得需要更多的胰岛来达到受体脱离胰岛素的目标,而供体的短缺,使得胰岛移植在临床的广泛开展应用极大受限。因而,在供体缺乏的情况下,在移植前减少应激反应对胰岛细胞的损伤,最大程度的保护胰岛细胞的活性和功能对胰岛移植的成功具有重要意义。
     胰岛在分离过程中胶原酶对其的毒性,分离纯化过程中的机械性损伤,离体后缺血、缺氧等应激均可导致胰岛细胞内过量活性氧自由簇(ROS)的产生,而胰岛本身其胞内抗氧化酶表达程度低,ROS介导的氧化应激在这些不利因素导致细胞损伤过程中扮演重要角色。过量及长时的ROS将会破坏细胞,自由基将破坏细胞蛋白,膜脂以及核酸,最终导致细胞凋亡及坏死。研究发现在胰岛分离培养过程中加入一些抗氧化剂可以减轻细胞损伤。如在胰岛分离过程中加入烟酰胺能够提高胰岛得率及保护胰岛细胞降低H202诱导的细胞死亡。在培养基中加入谷胱甘肽可以减少胰岛分离后MCP-1和TF的分泌。近年,越来越多的研究者将目光转向天然的、特别是来源于植物的抗氧化剂,一些黄酮类物质(如姜黄素)能够减少细胞因子刺激引起的胰岛细胞的凋亡;移植前预处理还可延长移植物的生存;某些植物组分还具有降低糖尿病鼠血糖,减少胰岛的损失及促进残余细胞胰岛素分泌的作用。
     花色苷是一种广泛分布于自然界的水溶性天然食用色素,属于黄酮多酚类化合物,构成了花、果实、蔬菜中许多品种的蓝色、紫色、红色和黄色等,其在浆果类(edible berry)及其他有色植物中含量丰富。研究表明花色苷具有一系列的生理活性,如抗氧化,保持基因组DNA的完整性、抗炎症、抗肿瘤、降血脂等。富含花色苷的浆果类提取物能够增加红细胞对体外氧化应激的抵抗力,长期食用花色苷能够延缓糖尿病相关并发症的发生。Bollec等发现山茱萸花色苷可增加胰岛素释放功能。
     杨梅是我国特有的亚热带水果,因含有花色苷、杨梅素、二氢杨梅素等大量生物活性物质而具有较高的营养和保健价值。既往研究表明,杨梅果实黄酮类化合物中,花色苷占较高比例。提取花色苷对其进行HPLC分析后发现,矢车菊素-3-葡萄糖苷(C3G)是最主要组分,占90%以上。杨梅果实提取物具有较强的氧自由基清除活性,抗氧化能力与C3G含量呈正相关。研究发现在高脂喂养的C57BL/6小鼠食用C3G能够明显降低血脂、血糖水平。杨梅花色苷具有良好的保健、医药开发前景。目前关于杨梅花色苷在生物医学方面的研究甚少,而对于其在胰岛功能保护领域的研究国内外均未见报道。
     本研究属国家自然科学基金资助项目(编号:30872531),旨在探讨杨梅果实提取物(杨梅花色苷)对胰岛细胞氧化应激损伤的保护效应及其分子机制,探索其在胰岛移植领域的可能应用前景,为杨梅花色苷成为一种潜在的胰岛保护剂奠定相应理论基础。我们同时还初步探讨了自噬在胰岛体外氧化应激损伤及体内移植后的发生。
     研究方法
     1、杨梅花色苷对胰岛细胞的保护效应
     (1)杨梅果实提取物(花色苷)的制备、鉴定及抗氧化活性的测定
     杨梅(荸荠种)果实用含盐酸的甲醇溶液浸提,用旋转蒸发仪进行浓缩。提取物中总酚类化合物的含量采用Folin-Ciocalteau比色法测定,总黄酮类化合物的含量采用比色法测定,花色苷含量采用pH示差分光光度法测定。
     采用HPLC对杨梅花色苷组成进行鉴定及含量测定;采用DPPH方法测定杨梅花色苷自由基清除活性。MTT法观察其对胰岛细胞系INS-1的细胞毒性。
     (2)杨梅花色苷对H2O2诱导的胰岛细胞凋亡的影响
     采用MTT法观察花色苷预处理对胰岛细胞系的保护效应,用台盼蓝据染实验及LDH释放试验进一步验证。
     采用ROS特异荧光探针DCF-DA检测胞内ROS的产生。Hoechst33258染色观察细胞凋亡情况,流式细胞术观察细胞凋亡及死亡变化;提取细胞蛋白,western blot观察相关凋亡蛋白(cleaved) caspase-3,-9及Bcl-2的表达。
     (3)杨梅花色苷对H2O2诱导的胰岛细胞自噬的影响
     将:mRFP-GFP-LC3质粒转染INS-1细胞后,给予H2O2刺激,荧光显微镜下观察细胞内LC3的点聚情况。电镜观察H2O2刺激后细胞内自噬泡的形成。Western blot观察H2O2刺激不同时间后,LC3和BECN1的表达变化。
     采用BECN1 siRNA下调BECN1表达,western blot观察自噬相关蛋白LC3和凋亡相关蛋白(cleaved) caspase-9的变化,并进一步用MTT法及LDH释放试验验证。
     吖啶橙(AO)和单丹磺酰戊二胺(MDC)染色观察花色苷预处理是否可减少H2O2诱导的自噬的发生。Western blot观察LC3和BECN1蛋白的表达。
     (4)杨梅花色苷预处理在肾包膜下移植后早期对细胞移植物的影响
     将INS-1细胞移植入糖尿病受体小鼠肾包膜下,72h后取出移植物,部分用4%多聚甲醛固定,部分用戊二醛固定以备做电镜,部分OCT包埋剂包埋后液氮速冻,-80℃保存以备冰冻切片。石蜡切片行H&E、insulin和BECN-1免疫组化染色及TUNEL染色。冰冻切片行LC3免疫荧光染色,电镜观察移植物超微结构变化。
     将INS-1细胞在移植前给予花色苷预处理24后肾包膜下移植,72h后取出移植侧肾脏,切片,行cleaved caspase-3、LC3免疫荧光染色及BECN-1免疫组化染色。
     2.花色苷对胰岛细胞系保护机制的探讨
     采用RT-PCR及定量PCR检测花色苷处理后INS-1细胞HO-1 mRNA的表达。western blot方法检测HO-1的蛋白表达水平。
     分离小鼠原代胰岛,给予花色苷处理,RT-PCR和定量PCR观察HO-1的表达。将处理后的胰岛冰冻切片并进行Insulin和HO-1免疫荧光双染验证HO-1的表达。
     用HO-1 siRNA下调HO-1的表达后,给予1uM花色苷24h, western blot检测HO-1表达变化。MTT法检测HO-1下调后花色苷对胰岛细胞的保护效应。Western blot检测caspase-3,-9及LC3的表达。
     构建HO-1高表达的INS-1细胞。给予空载体及pLNCX2-HO1转染后的细胞H202刺激,MTT法检测两组细胞活性。免疫荧光观察两组细胞H202刺激后LC3的点聚情况。
     给予INS-1细胞花色苷处理后,western blot观察pAkt及Akt, pERK1/2及ERK1/2,pJNK及JNK1/2蛋白的表达。用PD98059或LY294002分别预先处理INS-1细胞,再给予花色苷孵育,western blot检测HO-1蛋白表达情况。细胞经PD98059或LY294002预处理1h,花色苷孵育24h后,再给予H202,MTT法检测细胞活性改变。
     给予INS-1细胞花色苷处理后,激光共聚焦显微镜方法检测Nrf2核转位情况,提取细胞核蛋白,western blot检测细胞核内Nrf2的表达。
     研究结果
     1.杨梅花色苷对胰岛细胞的保护效应
     (1)杨梅花色苷中最主要的成分为矢车菊素-3-葡萄糖苷
     杨梅果实提取物中花色苷为总黄酮类化合物中主要组成部分。对杨梅花色苷进行HPLC分析,发现矢车菊素-3-葡萄糖苷为杨梅花色苷最主要成分,比例在90%以上。DPPH法检测结果提示杨梅果实提取物具有较强的氧自由基清除活性。杨梅花色苷浓度在5uM以内时,对INS-1细胞的活性无明显影响。
     (2)杨梅花色苷减少了H2O2诱导的胰岛细胞的凋亡和坏死
     H2O2刺激导致细胞活性下降,并呈浓度和时间依赖性,MTT结果花色苷预处理能够显著提高细胞活性,降低H2O2对其的损伤。台盼蓝据染实验和LDH释放实验进一步证明1uM花色苷预处理24h可明显保护胰岛细胞系抵抗H2O2损伤。PI单染流式检测显示花色苷预处理明显减少了H2O2诱导的细胞坏死。
     荧光显微镜及流式细胞仪检测提示花色苷预处理减少了H2O2诱导的胞内过量ROS的产生。流式细胞仪检测结果提示花色苷预处理减少了H2O2诱导的细胞凋亡及坏死。Western blot显示花色苷预处理减少了H2O2诱导的caspase-3,-9的剪切体的产生,并上调了Bcl-2的表达,进一步支持花色苷可减少H2O2诱导的凋
     (3)杨梅花色苷减少了H2O2诱导的胰岛细胞的自噬
     mRFP-GFP-LC3质粒转染INS-1细胞,给予H2O2刺激后,荧光显微镜观察到胞浆内出现LC3的点聚。电镜观察发现在H2O2处理组细胞胞浆内出现较多明显的空泡,有肿胀的线粒体及含胞内容物的自噬泡。Western blot结果提示1mMH2O2作用0.5,1,2及4h后,LC3B及BECN1的表达逐渐上调,且在2h处表达量最高。
     采用BECN-1 siRNA转染INS-1细胞下调BECN-1的表达,降低了H2O2诱导的自噬的发生。Western blot结果显示BECN1 siRNA转染后H2O2诱导的caspase-9剪切体表达下降。MTT实验及LDH释放实验提示抑制自噬减少了H2O2刺激导致的细胞的损伤。
     AO及MDC染色结果提示花色苷预处理减少了H2O2刺激导致的胞内自噬泡及酸性溶酶体的产生。Western blot结果显示H2O2刺激2h后LC3Ⅱ表达明显增加,LC3II/LC3I值增大,而花色苷预处理则降低了LC3Ⅱ的表达和LC3II/LC3I的比例。
     (4)杨梅花色苷预处理对移植后早期细胞移植物的影响
     INS-1细胞移植入肾包膜下72h后,取出移植物,insulin免疫组化染色证实为胰岛细胞系。TUNEL染色显示部分细胞移植物在72h时出现凋亡。免疫组化染色提示BECN1强阳性,LC3免疫荧光提示移植物胞浆内出现LC3的点聚,电镜检查显示移植物胞浆内出现含胞内容物的自噬泡,支持自噬的发生。
     Cleaved caspase-3免疫荧光结果显示花色苷预处理组细胞移植物激活型caspase-3的表达低于未处理组。同时,与对照组相比,花色苷预处理组其BECN1的表达水平降低,胞浆内LC3的点聚程度也降低。
     2.杨梅花色苷保护胰岛的机制探讨
     (1)杨梅花色苷浓度及时间依赖型的上调HO-1的表达
     定量PCR及western blot结果提示花色苷浓度及时间依赖的上调了INS-1细胞HO-1的表达。在小鼠胰岛细胞系beta-TC-6,花色苷同样可浓度依赖型的上调HO-1的表达。
     RT-PCR及定量PCR结果显示花色苷孵育也明显上调了原代胰岛HO-1基因表达水平。胰岛冰冻切片Insulin和HO-1免疫荧光双染提示花色苷处理组胰岛细胞HO-1的表达水平高于未处理组。
     (2)HO-1的上调表达参与了花色苷的保护效应
     MTT结果显示HO-1 siRNA转染组细胞,H2O2刺激后,活性明显下降,并且降低了花色苷对INS-1细胞的保护效应。(?)Vestern blot结果显示,与单纯H2O2处理组相比,HO-1 siRNA转染组细胞caspase-3,-9前体表达水平下降,cleaved caspase-9表达增加,同时LC3Ⅱ表达及LC3Ⅱ/LC3Ⅰ值增加。
     给予空载体与pLNCX2-HO1转染组INS-1细胞H2O2刺激,MTT结果显示HO-1过表达细胞其活性较对照组高。LC3免疫荧光染色显示HO-1过表达细胞胞内LC3点聚程度低于对照组。
     (3)花色苷通过ERK1/2及P13K/Akt通路介导HO-1的上调表达Western blot结果提示花色苷浓度及时间依赖性的上调pERK1/2及pAkt的表达,而JNK通路则未被激活。PD98059及LY294002预处理抑制了花色苷对HO-1蛋白的上调表达。MTT结果显示与单一花色苷处理组相比,PD98059及LY294002预处理组细胞活性下降,降低了花色苷对胰岛细胞的保护效应。
     (4)花色苷诱导转录因子Nrf2向细胞核内转移
     激光共聚焦扫描结果表明,与未处理组相比,花色苷诱导了部分Nrf2向细胞核内的转移。提取细胞核蛋白,western blot结果提示1uM的花色苷诱导了Nrf2在细胞核内的表达。
     小结:
     1.杨梅花色苷中最主要成分为矢车菊素-3-葡萄糖苷,其比例占至90%以上。杨梅花色苷具有较强的氧自由基清除能力;其浓度在5uM以内时,对胰岛细胞系INS-1细胞无明显毒性。
     2.花色苷预处理可以明显降低H202刺激导致的细胞内过量ROS的产生,进而减少氧化应激损伤所致的细胞凋亡和坏死。
     3.H2O2刺激除可导致细胞凋亡和坏死外,还可引起细胞发生自噬,且发生的自噬促进细胞死亡(即为“自噬性细胞死亡”)。花色苷预处理可以减少H2O2诱导细胞自噬的发生。
     4.细胞移植入肾包膜下早期(72h),在各类刺激下可发生凋亡和自噬。在移植前予以花色苷预处理,可降低细胞移植后凋亡和自噬的发生程度。
     5.花色苷可上调胰岛细胞(系)HO-1的表达,且存在明显的时间-效应关系和剂量-效应关系。HO-1的上调表达可减少H202诱导的自噬和凋亡,参与了花色苷对胰岛细胞的保护作用。花色苷通过ERK1/2及PI3K/Akt通路介导了HO-1的表达上调。同时,花色苷还可诱导核转录因子Nrf2向胞核转移,增加其转录活性。
Diabetes is a metabolic disease, possibly caused by both of polygenic inheritance and environmental factors. It is characterized by chronic hyperglycemia, mainly due to absolutely or relatively insufficient insulin release from beta-cells or insulin resistance of surrounding tissues. Islet transplantation is a promising therapy for all of type 1 and part of type 2 diabetic patients, which could regulate blood glucose manipulating physiological condition, achieve insulin independence, and delay the occurrence of diabetes-associated complications. However, during the process of islet isolation, purification and transplantation, there exists notable decrease in the number, function and viability of islet grafts. After transplantation, non-specific inflammation and immune rejection also cause the injury to the grafts. All these factors cause the situation that more than one donor are needed for one receipt to achieve insulin independence. However, the inadequate of donor exacerbates the obstacles limiting the development of islet transplantation in clinics. Improved islet isolation and better viability/function preservation before transplantation have been the keys to the evolution of this procedure.
     During isolation procedure, islets are exposed to the cytotoxicity of collagenase. mechanical trauma, ischemia and hypoxia, all of which contribute to the excessive production of reactive oxygen species (ROS). ROS-mediated oxidative stress plays an important role in the process of cell injury caused by these stimulations. Pancreatic beta-cells usually express low levels of antioxidant enzymes, the long-term exposure of excessive ROS will damage the intracellular proteins, membrane lipid and nucleic acid, eventually leading to apoptosis and necrosis. Some researchers found that adding some antioxidants during islet isolation and culture process could alleviate cellular injury. Nicotinamide (NA) supplementation of the processing medium during islet isolation significantly improved islet yields and protected beta-cells from cell death (both necrosis and apoptosis) induced by H2O2. Addition of glutathione in culture medium significantly reduced CCL2/MCP-1 and tissue factor (TF) production. Recently, many researchers focused on the protective role of naturally existed antioxidant, especially from plant. Some flavonoids (such as curcumin) could protect islets against cytokines-induced apoptosis; pretreatment of islets with some antioxidants could prolong the survival of graft after transplantation. Some plants themselves have hypoglycemia effect in diabetic rodent model, reduce the extent of islet loss, and promote the insulin release from the left islets.
     Anthocyanins, one type of flavoids, are naturally occurring water soluble polyphenolic compounds in the plant foods and widely distributed in fruits, vegetables, and pigmented cereals, imparting color (blue, purple, red, yellow etc) to plants. Anthocyanin is rich in edible berries and other colorful plants. Many studies have shown that anthocyanins exhibits an array of pharmacological properties, such as keeping the integrity of genome DNA, antioxidative. anti-inflammatory, antitumor and antiatherosclerotic activities. Berry extracts rich in anthocyanins could improve resistance of red blood cell against oxidative stress in vitro. Long-term administration of berry-derived supplements including anthocyanins could inhibit the development of the early stages of some diabetic complications without adverse drug reactions. Bollec et al suggested that bioactive anthocyanins from Cornus fruits could increase insulin release of INS-1 cells.
     Chinese bayberry, one of six myrica species native to China, is a fruit with high nutrition and health values due to the content of various bioactive substances such as anthocyanins, myricetin and dihydro-myricetin. Our previous study demonstrated that anthocyanins occupies the major portion of total flavonoid compounds. HPLC analysis of Chinese bayberry extract showed that cyanidin-3-O-glucoside (C3G) was the major anthocyanin component, accounting for 95% of the total anthocyanins. Chinese bayberry extracts possess notable radical scavenging activities indicated by DPPH and ABTS cation assays, which is correlated to the content of C3G. C3G was observed to exert hypolipemia and hypoglycemia effects in high-fat-diet (HFD)-feed C57BL/6 mice. Up to now, the application of anthocyanins in CBE has not been fully investigated. Whether anthocyanins has protective effect for islet has not been reported before.
     The present topic, supported by the National Natural Science Foundation (serial number:30872531), is to explore whether Chinese bayberry extract could protect against oxidative stress-induced beta-cell injury and its possible mechanism, and is to investigate the possible application of anthocyanins as an islet-protective agent in the field of islet transplantation. We also discuss the occurrence of autophagy in beta-cells induced by oxidative stress in vitro or after transplantation.
     Experimental Procedures
     1. The protective effect of anthocyanins to pancreatic beta-cells
     (1) Chinese bayberry extract preparation, HPLC analysis and antioxidant ability assessment.
     Chinese bayberry fruits (Biqi) were ground and extracted in methanol acidified with HCl, and concentrated through rotary evaporation. Total phenolics content was estimated using the Folin-Ciocalteau colorimetric method. Total flavonoids were determined by colorimetric method after reaction with NaNO2 and Al(NO3)3. Anthocyanin quantitation was performed by the pH differential method. HPLC analysis was performed to identify the composition. Free radical scavenging activity of fruit extracts was measured according to the DPPH method. MTT assay was performed to observe the cytotoxicity of extract to INS-1 cells.
     (2) The effect of anthocyanins on H2O2-induced apoptosis of pancreatic beta-cells. INS-1 cells were pre-incubated with anthocyanins followed by H2O2 stimulation. Cell viability was evaluated by MTT assay. The protective effect of anthocyains was further confirmed by trypan blue exclusion method and LDH release assay.
     A ROS-specific probe, DCF-DA, was used to detect intracellular ROS production in INS-1 cells after various treatments. INS-1 cells stimulated by various agents were stained with Hoechst 33258 to observe the apoptosis. Flow cytometry analysis was adopted to quantify the apoptosis and necrosis. The expression of apoptosis-related proteins (caspase-3,-9 and Bcl-2) was assessed by western blot.
     (3) The effect of anthocyains on H2O2-induced autophagy in pancreatic beta-cells
     INS-1 cells, transfected with mRFP-GFP-LC3 plasmid, were treated with H2O2 and autophagy was evaluated by observing the formation of intracellular LC3 punctuate dots. After experimental manipulations, cells were fixed by glutaraldehyde and osmic acid, and were further observed by transmission electron microscopy. The expression of autophagic-related proteins (LC3 and BECN1) was determined by western blot to confirm the occurrence of autophagy.
     After transfected with BECN1 siRNA, INS-1 cells were exposed to H2O2 for 2h, and the expressions of LC3 and caspase-9 were evaluated. MTT assay and LDH release assay were performed to observe the changes of cell injury after downregulating autophagy.
     INS-1 cells, treated with various protocols, were stained by AO and MDC to assess the degree of lysosomes and autophagosome formation. The expression of LC3 and BECN1 were evaluated.
     (4) The effect of anthocyanins on cell graft at the early phase of posttransplantation beneath renal capsue
     INS-1 cells were transplanted under the left renal capsule of diabetic mice. Seventy-two hours later, the beta-cell grafts were harvested, snap frozen in liquid nitrogen or fixed with 4% paraformaldehyde, or were fixed in glutaraldehyde for transmission electronic microscopic analyzation.
     Immunohistochemistry staining for BECN1, immunofluorescence staining for LC3, TUNEL staining and transmission electronic microscopic analyzation were performed.
     INS-1 cells pretreated with or without anthocyanins were transplanted under renal capsule of diabetic mice. The cell grafts were harvest after 72h. Immunofluorescence for cleaved caspase-3 and LC3 and immunohistochemistry staining for BECN1 were carried out.
     2. Possible mechanism of anthocyanins'protective effect.
     RNA was extracted from INS-1 cells treated with luM anthocyanins for various time or incubated with various concentrations of anthocyanins for 12h. The mRNA level of HO-1 was determined by reverse transcription PCR and real-time PCR. The expression of HO-1 protein was evaluated by western blot.
     Primary islets were isolated from mice.100-200 islets were incubated in culture medium with or without 2uM anthocyanins for 6h. The expression of HO-1 mRNA in islets was determined by real-time PCR. Dual immunofluorescence for insulin and HO-1 of islets was performed to further observe the HO-1 expression.
     The expression of HO-1 in INS-1 cells was downregulated by siRNA transfection. After transfected with HO-1 or control siRNA. INS-1 cells were incubated with luM anthocyanins for 24h, then were exposed to H2O2 for 2h, MTT assay was performed to evaluate the cellular viability. The expression of caspase-3,-9 and LC3 proteins were determined.
     The pLNCX2-HO1 vector was constructed and transfected to INS-1 cells. INS-1 cells transfected with pLNCX2-HO1 or empty vector were exposed to H2O2. MTT assay was carried out to assess the viability between two groups. Immunofluorescence for LC3 was performed to evaluate the intracellular LC3 punctuate dot formation in both type of cells treated with H2O2.
     INS-1 cells were treated with various concentrations of anthocyanins for 24h, or 1uM anthocyanins for different time. The expressions of pAkt, Akt, pERK1/2, ERK1/2, pJNK and JNK protein were evaluated by western blot. After pretreated with PD98059 (ERK1/2 inhibitor) or LY294002 (PI3K inhibitor) for 1h, INS-1 cells were further incubated with anthocyanins. HO-1 protein expression was evaluated. INS-1 cells were preincubated with PD98059 or LY294002 for 1h, treated with anthocyanins for 24h, followed by H2O2 stimulation. MTT assay was performed to evaluate the viability.
     INS-1 cells were incubated with anthocyanins, and Immunofluorescence for Nrf2 was performed and observed under confocal microscopy. Nuclear protein fraction was extracted from cells treated as above, and immunoblotting for Nrf2 and LaminA/C was performed.
     Results
     1. The protective effect anthocyanins on pancreatic beta-cells.
     (1) The major portion of anthocyanins in Chinese bayberry extract is cyanidin-3-glucoside (C3G).
     Anthocyanin is the major portion of total flavonoids in Chinese bayberry extract. HPLC analysis of Chinese bayberry extract showed that cyanidin-3-O-glucoside (C3G) was the major anthocyanin component, accounting for more than 90% of the total anthocyanins. DPPH assay indicated the strong antioxidant capacity of CBE, and C3G is the dominant attributor. There is no cytotoxicity to INS-1 cells below the concentration of 5uM.
     (2) Anthocyanins alleviated H2O2-induced apoptosis and necrosis of INS-1 cells
     H2O2 injured INS-1 cells in a dose-and time-dependent manner. Pretreatment of INS-1 cells with anthocyanins resulted in the prevention of cell death by H2O2. Trypan blue exclusion assay and LDH release assay further confirmed that treatment with 1 uM anthocyanins for 24h could protect bete-cells against H2O2-induced injury. FCM analysis also displayed that anthocyanins decreased H2O2-induced cell necrosis.
     Compared to normal cells, H2O2 caused excessive ROS production. Anthocyanins preincubation also decreased oxidative stress-induced intracellular ROS generation. FCM demonstrated anthocyanins incubation reduced the extent of both cellular apoptosis and necrosis induced by H2O2 stimulation. Treatment of INS-1 cells with 1mM H2O2 caused the activation of caspase-9 and-3, which were mitigated by pretreatment with anthocyanins in a concentration dependent manner.
     (3) Anthocyanins decreased H2O2-induced autophagy in pancreatic beta-cells
     GFP-mRFP-LC3 fluorescence was diffusely distributed in untreated group, whereas in cells treated with H2O2 there were detectable the punctate dots of LC3 in the cytoplasm. Under TEM, cells stimulated by H2O2 showed the presence of swelling mitochondrial and some autophagosomes with cytoplasmic contents, which were rarely seen in control INS-1 cells. Western blot analysis showed that the expression of LC3B and BECN1 increased in H2O2-treated INS-1 cells in a time-dependent manner.
     Cells transfected with BECN1 siRNA displayed decreased expression of LC3Ⅱafter H2O2 treatment, compared with control siRNA transfection group. Downregulation of BECN1 also decreased ROS-induced activation of caspase-9. The results of MTT assay and LDH release assay demonstrated that H2O2-induced cell death was mitigated after inhibition of autophagy.
     Cells pretreated with anthocyanins exhibited decreased cytoplasmic AO and MDC staining. Immunoblotting analysis demonstrated decreased LC3II generation and the ratio of LC3Ⅱto LC3Ⅰin the presence of anthocyanins, compared with cells treated with H2O2 alone.
     (4) Anthocyanins pretreatment improved the graft's tolerance in beta-cell transplantation model.
     INS-1 cells were transplanted under left renal subcapsue.72h later, the graft was resected. Beta-cell grafts were confirmed by immunohistochemical staining for insulin. TEM examination showed that autophagic vacuolization was observed in transplanted cells. Notable immunopositive for BECN1 and detectable the punctate dots of LC3 in grafts further supported the occurrence of autophagy at the early phase of transplantation. In addition, TUNEL positive staining verified that some cells underwent apoptosis.
     Beta-cell grafts pretreated with anthocyanins for 24h displayed less positive for active caspase-3, BECN1 and decreased extent of punctate dots of LC3.
     2. The possible mechanism of anthocyanins'protective effect to beta-cells
     (1) Anthocyanins increased HO-1 expression in beta-cell lines and islets
     INS-1 cells treated with anthocyanins resulted in a dose-dependent increment in HO-1 mRNA(12h) and protein expression(24h). In Beta-TC-6 cells, a mouse insulinoma cell line, anthocyanins also cause the upregulation of HO-1 in a dose dependent manner.
     Real-time PCR analysis demonstrated that the expression of HO-1 was significantly upregulated in primary islets treated with anthocyanins (6.2±1.9 fold increase compared to control, p<0.01). Immunocytochemical analysis of HO-1 in islets further supported this observation.
     (2) Increased HO-1 expression contributed to the protective effect of anthocyanins
     Compared to control siRNA transfection group, INS-1 cells transfected with HO-1 siRNA displayed more notable cell death after H2O2 stimulation. Reducing HO-1 expression by siRNA attenuated the protective effect of anthocyanidins against H2O2-induced cytotoxity, as reflected by MTT assay. Additionally, downregulating HO-1 in INS-1 cells displayed decreased of pro-caspase-3 and-9, but increased expression of cleaved caspase-9 and LC3II protein.
     Overexpression of HO-1 in INS-1 cells reduced H2O2-induced injury. Similarly, immunofluorescence of MAP LC3 indicated that INS-1 overexpressing HO-1 displayed decreased autophagic cell death.
     (3) Anthocyanins upregulate HO-1 expression via ERK1/2 and PI3K/Akt pathways
     The results showed that anthocyanins dose-and time-dependently induced the activation of Akt and ERK1/2 via induction of phosphorylation. Inhibition of PI3K/Akt and ERK1/2 signaling with LY294002 and PD98059 attenuated the anthocyanins-induced HO-1 expression. The results of MTT assay showed that pre-incubating with PD98059 or LY294002 compromised the protective effect of anthocyanins compared with anthocyanins treating alone.
     (4) Anthocyanins induced the nuclear translocation of transcription factor Nrf2
     Compared to control group, INS-1 cells treated with anthocyanins displayed more notable Nrf2 accumulation in nucleus. Cellular protein of nuclear fraction was extracted, and immunoblotting for Nrf2 demonstrated that anthocyanins increased the expression of Nrf2 in nuleus.
     Conclusions:
     1. Cyanidin-3-O-glucoside (C3G) was indentified as a major anthocyanin component, which accounted for 95% of the total anthocyanins in Chinese bayberry fruit.
     2. Anthocyanins pre-incubation decreased oxidative stress-induced intracellular ROS generation, and reduced ROS-mediated apoptosis and necrosis of beta cells.
     3. Besides of apoptosis and necrosis, H2O2 exposure caused autophagic cell death in beta-cells and pretreated with anthocyanins attenuated such type of cell death.
     4. Under various stimulations, cell grafts underwent apoptosis and autophagy at the early phase of posttransplantation. Anthocyanins pretreatment improved the graft's tolerance in beta-cell transplantation model.
     5. Anthocyanins could time-and dose-dependently upregulate HO-1 expression in beta-cells. Overexpression of HO-1 decreased H2O2-induced apoptosis and autophagy, contributing to the protective effect of anthocyanins. Anthocyanins increased the HO-1 expression via ERK1/2 and PI3K/Akt pathways. Additionally, anthocyanins could induce transcription factor Nrf2 translocating into nucleus to increase its transcriptive activity.
引文
1. The World Health Organization. Global health situation and trends 1955-2025 In the world health report 1998:life in the 21st century:a vision for all. WHO 1998.
    2. Sutherland D. International Pancreas Transplant Registry (IPTR),2003. Annual Report 2003.
    3. Gruessner RW, Sutherland DE, Gruessner AC. Mortality assessment for pancreas transplants. Am J Transplant 2004; 4:2018-26.
    4. Sutherland DE, Gruessner RW, Dunn DL, Matas AJ, Humar A, Kandaswamy R, Mauer SM, Kennedy WR, Goetz FC, Robertson RP, Gruessner AC, Najarian JS. Lessons learned from more than 1,000 pancreas transplants at a single institution. Ann Surg 2001; 233:463-501.
    5. Nanji SA, Shapiro AM. Advances in pancreatic islet transplantation in humans. Diabetes Obes Metab 2006; 8:15-25.
    6. Balamurugan AN, Bottino R, Giannoukakis N, Smetanka C. Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas 2006; 32:231-43.
    7. Emamaullee J A, Shapiro AM. Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant 2007; 16:1-8.
    8. Mohseni Salehi Monfared SS, Larijani B, Abdollahi M. Islet transplantation and antioxidant management:a comprehensive review. World J Gastroenterol 2009; 15:1153-61.
    9. Tsujimura T, Kuroda Y, Avila JG, Kin T, Oberholzer J, Shapiro AM, Lakey JR. Influence of pancreas preservation on human islet isolation outcomes:impact of the two-layer method. Transplantation 2004; 78:96-100.
    10. Bottino R, Balamurugan AN, Tse H, Thirunavukkarasu C. Ge X, Profozich J, Milton M, Ziegenfuss A, Trucco M, Piganelli JD. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes 2004:53:2559-68.
    11. Paraskevas S, Maysinger D, Wang R. Duguid TP, Rosenberg L. Cell loss in isolated human islets occurs by apoptosis. Pancreas 2000; 20:270-6.
    12. Winter DT, Eich T, Jahr H. Brendel MD, Bretzel RG. Influence of antioxidant therapy on islet graft survival. Transplant Proc 2002; 34:2366-8.
    13. Ichii H, Wang X, Messinger S, Alvarez A, Fraker C, Khan A, Kuroda Y, Inverardi L, Goss JA, Alejandro R, Ricordi C. Improved human islet isolation using nicotinamide. Am J Transplant 2006; 6:2060-8.
    14. Hardikar AA, Risbud MV, Remacle C, Reusens B, Hoet JJ, Bhonde RR. Islet cryopreservation: improved recovery following taurine pretreatment. Cell Transplant 2001; 10:247-53.
    15. Marzorati S, Antonioli B, Nano R, Maffi P, Piemonti L, Giliola C, Secchi A, Lakey JR, Bertuzzi F. Culture medium modulates proinflammatory conditions of human pancreatic islets before transplantation. Am J Transplant 2006; 6:2791-5.
    16. Kanitkar M, Bhonde RR. Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci 2008; 82:182-9.
    17. Hara Y, Fujino M, Takeuchi M, Li XK. Green-tea polyphenol (-)-epigallocatechin-3-gallate provides resistance to apoptosis in isolated islets. J Hepatobiliary Pancreat Surg 2007; 14:493-7.
    18. Xiong FL, Sun XH, Gan L, Yang XL, Xu HB. Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur J Pharmacol 2006; 529:1-7.
    19. Ogborne RM, Rushworth SA, O'Connell MA. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cdelta and Nrf2. Biochem Biophys Res Commun 2008; 373:584-8.
    20. Morse D, Lin L, Choi AM, Ryter SW. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med 2009; 47:1-12.
    21. Lim JH, Kim KM, Kim SW, Hwang O, Choi HJ. Bromocriptine activates NQO1 via Nrf2-PI3K/Akt signaling:novel cytoprotective mechanism against oxidative damage. Pharmacol Res 2008; 57:325-31.
    22. Pugazhenthi S, Akhov L, Selvaraj G, Wang M, Alam J. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse beta-cells. Am J Physiol Endocrinol Metab 2007; 293:E645-55.
    23. Svarcova I, Heinrich J, Valentova K. Berry fruits as a source of biologically active compounds:the case of Lonicera caerulea. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007: 151:163-74.
    24. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 2007; 51:675-83.
    25. Milbury PE, Graf B, Curran-Celentano JM, Blumberg JB. Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. Invest Ophthalmol Vis Sci 2007:48:2343-9.
    26. Sorrenti V, Mazza F, Campisi A, Di Giacomo C, Acquaviva R, Vanella L, Galvano F. Heme oxygenase induction by cyanidin-3-O-beta-glucoside in cultured human endothelial cells. Mol Nutr Food Res 2007; 51:580-6.
    27. Zhang WS LX, Zheng JT, Wang GY, Sun CD, Ferguson IB, Chen KS. Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. Eur Food Res Technol 2008; 227:1091-7.
    28. Bao J, Cai Y, Sun M, Wang G, Corke H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem 2005; 53:2327-32.
    29. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5:415-8.
    30. Kaneto H, Kawamori D, Matsuoka TA, Kajimoto Y, Yamasaki Y. Oxidative stress and pancreatic beta-cell dysfunction. Am J Ther 2005; 12:529-33.
    31. Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y. Oxidative stress and the JNK pathway in diabetes. Curr Diabetes Rev 2005; 1:65-72.
    32. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004; 279:42351-4.
    33. Lenzen S. Oxidative stress:the vulnerable beta-cell. Biochem Soc Trans 2008; 36:343-7.
    34. Prior RL. Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 2003; 78:570S-8S.
    35. Ramirez-Tortosa C, Andersen OM, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR, Duthie GG. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med 2001; 31:1033-7.
    36. Pedersen CB, Kyle J, Jenkinson AM, Gardner PT, McPhail DB, Duthie GG. Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur J Clin Nutr 2000; 54:405-8.
    37. Youdim KA, Martin A, Joseph JA. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med 2000; 29:51-60.
    38. Youdim KA, Shukitt-Hale B, MacKinnon S, Kalt W, Joseph JA. Polyphenolics enhance red blood cell resistance to oxidative stress:in vitro and in vivo. Biochim Biophys Acta 2000; 1523:117-22.
    39. Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG, Vinson JA. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 2003; 523-524:87-97.
    40. Galli RL, Bielinski DF, Szprengiel A, Shukitt-Hale B, Joseph JA. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol Aging 2006; 27:344-50.
    41. Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu X, Lee HG, Smith MA, Joseph JA. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 2004; 7:309-16.
    42. Bickford PC, Gould T, Briederick L, Chadman K, Pollock A, Young D, Shukitt-Hale B, Joseph J. Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res 2000; 866:211-7.
    43. Saija A, Princi P, D'Amico N, De Pasquale R, Costa G. Effect of Vaccinium myrtillus anthocyanins on triiodothyronine transport into brain in the rat. Pharmacol Res 1990; 22 Suppl 3:59-60.
    44. Cignarella A, Nastasi M, Cavalli E, Puglisi L. Novel lipid-lowering properties of Vaccinium myrtillus L. leaves, a traditional antidiabetic treatment, in several models of rat dyslipidaemia:a comparison with ciprofibrate. Thromb Res 1996; 84:311-22.
    45. Head KA. Natural therapies for ocular disorders, part two:cataracts and glaucoma. Altern Med Rev 2001; 6:141-66.
    46. Wu X, Pittman HE,3rd, Prior RL. Fate of anthocyanins and antioxidant capacity in contents of the gastrointestinal tract of weanling pigs following black raspberry consumption. J Agric Food Chem 2006; 54:583-9.
    47. Jayaprakasam B, Vareed SK, Olson LK, Nair MG. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 2005; 53:28-31.
    48. Bottino R, Balamurugan AN, Bertera S, Pietropaolo M, Trucco M, Piganelli JD. Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes 2002; 51:2561-7.
    49. Meghana K, Sanjeev G, Ramesh B. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals:a prophylactic and protective role. Eur J Pharmacol 2007; 577:183-91.
    50. Kim EK, Kwon KB. Han MJ, Song MY, Lee JH, Lv N, Ka SO, Yeom SR, Kwon YD, Ryu DG, Kim KS, Park JW, Park R, Park BH. Coptidis rhizoma extract protects against cytokine-induced death of pancreatic beta-cells through suppression of NF-kappaB activation. Exp Mol Med 2007; 39:149-59.
    51. Gireesh G, Thomas SK, Joseph B, Paulose CS. Antihyperglycemic and insulin secretory activity of Costus pictus leaf extract in streptozotocin induced diabetic rats and in in vitro pancreatic islet culture. J Ethnopharmacol 2009; 123:470-4.
    52. Jakubowski W, Bartosz G.2,7-dichlorofluorescin oxidation and reactive oxygen species:what does it measure? Cell Biol Int 2000; 24:757-60.
    53. Green DR. Reed JC. Mitochondria and apoptosis. Science 1998:281:1309-12.
    54. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277:370-2.
    55. Scarlatti F, Granata R, Meijer AJ, Codogno P. Does autophagy have a license to kill mammalian cells? Cell Death Differ 2009; 16:12-20.
    56. Stipanuk MH. Macroautophagy and its role in nutrient homeostasis. Nutr Rev 2009; 67:677-89.
    57. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell 2002; 1:11-21.
    58. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2008; 15:171-82.
    59. Kunchithapautham K, Rohrer B. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 2007; 3:433-41.
    60. Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 2008.
    61. Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res 2009; 104:150-8.
    62. Rouschop KM, Wouters BG. Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med 2009; 9:417-24.
    63. Hartley T, Brumell J, Volchuk A. Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2009; 296:E1-10.
    64. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451:1069-75.
    65. Kroemer G, Levine B. Autophagic cell death:the story of a misnomer. Nat Rev Mol Cell Biol 2008; 9:1004-10.
    66. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G. To die or not to die:that is the autophagic question. Curr Mol Med 2008; 8:78-91.
    67. Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16:1040-52.
    68. Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, Sun L. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 2009; 110:376-88.
    69. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26:1749-60.
    70. Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 2007; 56:930-9.
    71. Merani S, Toso C, Emamaullee J, Shapiro AM. Optimal implantation site for pancreatic islet transplantation. Br J Surg 2008; 95:1449-61.
    72. Carlsson PO, Palm F, Andersson A, Liss P. Chronically decreased oxygen tension in rat pancreatic islets transplanted under the kidney capsule. Transplantation 2000; 69:761-6.
    73. Evgenov NV, Medarova Z, Pratt J, Pantazopoulos P, Leyting S, Bonner-Weir S, Moore A. In vivo imaging of immune rejection in transplanted pancreatic islets. Diabetes 2006; 55:2419-28.
    74. Jung HS, Chung KW, Won Kim J, Kim J. Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008; 8:318-24.
    75. Jung HS, Lee MS. Macroautophagy in homeostasis of pancreatic beta-cell. Autophagy 2009; 5:241-3.
    76. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8:325-32.
    77. Choi SE, Lee SM, Lee YJ, Li LJ, Lee SJ, Lee JH, Kim Y, Jun HS, Lee KW, Kang Y. Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology 2009; 150:126-34.
    78. Fujimoto K, Hanson PT, Tran H, Ford EL, Han Z, Johnson JD, Schmidt RE, Green KG, Wice BM, Polonsky KS. Autophagy regulates pancreatic beta cell death in response to Pdxl deficiency and nutrient deprivation. J Biol Chem 2009.
    79. Grasso D, Sacchetti ML, Bruno L, Lo Re A, Iovanna JL, Gonzalez CD, Vaccaro MI. Autophagy and VMP1 expression are early cellular events in experimental diabetes. Pancreatology 2009; 9:81-8.
    80. Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P, Marchetti P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009; 52:1083-6.
    81. Suzuki C, Isaka Y, Takabatake Y, Tanaka H, Koike M, Shibata M, Uchiyama Y, Takahara S, Imai E. Participation of autophagy in renal ischemia/reperfusion injury. Biochem Biophys Res Commun 2008:368:100-6.
    82. Gotoh K, Lu Z, Morita M, Shibata M. Koike M, Waguri S, Dono K, Doki Y, Kominami E, Sugioka A, Monden M, Uchiyama Y. Participation of autophagy in the initiation of graft dysfunction after rat liver transplantation. Autophagy 2009; 5:351-60.
    83. Zhang Q, Pi J, Woods CG, Andersen ME. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol; 244:84-97.
    84. Conde de la Rosa L, Vrenken TE, Hannivoort RA, Buist-Homan M, Havinga R, Slebos DJ, Kauffman HF, Faber KN, Jansen PL, Moshage H. Carbon monoxide blocks oxidative stress-induced hepatocyte apoptosis via inhibition of the p54 JNK isoform. Free Radic Biol Med 2008; 44:1323-33.
    85. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol; 50:323-54.
    86. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide:from metabolism to molecular therapy. Am J Respir Cell Mol Biol 2009; 41:251-60.
    87. True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N, Xu X, Lynn EG, Sack MN, Munson PJ, Gladwin MT, Nabel EG. Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res 2007; 101:893-901.
    88. Jin Y, Kim HP, Chi M, Ifedigbo E, Ryter SW, Choi AM. Deletion of caveolin-1 protects against oxidative lung injury via up-regulation of heme oxygenase-1. Am J Respir Cell Mol Biol 2008; 39:171-9.
    89. Dennery PA, Visner G, Weng YH, Nguyen X, Lu F, Zander D, Yang G. Resistance to hyperoxia with heme oxygenase-1 disruption:role of iron. Free Radic Biol Med 2003; 34:124-33.
    90. Zabalgoitia M, Colston JT, Reddy SV, Holt JW, Regan RF, Stec DE, Rimoldi JM, Valente AJ, Chandrasekar B. Carbon monoxide donors or heme oxygenase-1 (HO-1) overexpression blocks interleukin-18-mediated NF-kappaB-PTEN-dependent human cardiac endothelial cell death. Free Radic Biol Med 2008; 44:284-98.
    91. Kim JW, Li MH, Jang JH, Na HK, Song NY, Lee C, Johnson JA, Surh YJ. 15-Deoxy-Delta(12,14)-prostaglandin J(2) rescues PC 12 cells from H2O2-induced apoptosis through Nrf2-mediated upregulation of heme oxygenase-1:potential roles of Akt and ERK1/2. Biochem Pharmacol 2008; 76:1577-89.
    92. Katori M, Anselmo DM, Busuttil RW, Kupiec-Weglinski JW. A novel strategy against ischemia and 3reperfusion injury:cytoprotection with heme oxygenase system. Transpl Immunol 2002; 9:227-33.
    93. Bach FH. Heme oxygenase-1 and transplantation tolerance. Hum Immunol 2006; 67:430-2.
    94. Yeh CH, Chen TP, Wang YC, Lin YM, Lin PJ. HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J Surg Res 2009; 155:147-56.
    95. Kotsch K, Martins PN, Klemz R, Janssen U, Gerstmayer B, Dernier A, Reutzel-Selke A, Kuckelkorn U, Tullius SG, Volk HD. Heme oxygenase-1 ameliorates ischemia/reperfusion injury by targeting dendritic cell maturation and migration. Antioxid Redox Signal 2007; 9:2049-63.
    96. Laumonier T, Yang S, Konig S, Chauveau C, Anegon I, Hoffmeyer P, Menetrey J. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Mol Ther 2008; 16:404-10.
    97. Tobiasch E, Gunther L, Bach FH. Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli. J Investig Med 2001; 49:566-71.
    98. Pileggi A, Molano RD, Berney T, Cattan P, Vizzardelli C, Oliver R, Fraker C, Ricordi C, Pastori RL, Bach FH, Inverardi L. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 2001; 50:1983-91.
    99. Pileggi A, Molano RD, Berney T. Ichii H, San Jose S, Zahr E, Poggioli R, Linetsky E, Ricordi C, Inverardi L. Prolonged allogeneic islet graft survival by protoporphyrins. Cell Transplant 2005; 14:85-96.
    100. Li Y, Li G, Dong W, Chen J, Lu D, Tan J. Transplantation of rat islets transduced with human heme oxygenase-1 gene using adenovirus vector. Pancreas 2006; 33:280-6.
    101. Lee SS, Gao W, Mazzola S, Thomas MN, Csizmadia E, Otterbein LE, Bach FH, Wang H. Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. FASEB J 2007; 21:3450-7.
    102. Kim HP, Wang X, Chen ZH, Lee SJ, Huang MH, Wang Y, Ryter SW, Choi AM. Autophagic proteins regulate cigarette smoke-induced apoptosis:protective role of heme oxygenase-1. Autophagy 2008; 4:887-95.
    103. Ferrandiz ML, Devesa I. Inducers of heme oxygenase-1. Curr Pharm Des 2008; 14:473-86.
    104. Prawan A, Kundu JK, Surh YJ. Molecular basis of heme oxygenase-1 induction:implications for chemoprevention and chemoprotection. Antioxid Redox Signal 2005; 7:1688-703.
    105. Elbirt KK, Bonkovsky HL. Heme oxygenase:recent advances in understanding its regulation and role. Proc Assoc Am Physicians 1999; 111:438-47.
    106. Kivela AM, Kansanen E, Jyrkkanen HK, Nurmi T, Yla-Herttuala S, Levonen AL. Enterolactone induces heme oxygenase-1 expression through nuclear factor-E2-related factor 2 activation in endothelial cells. J Nutr 2008; 138:1263-8.
    107. Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007; 47:253-61.
    108. Velmurugan K, Alam J, McCord JM, Pugazhenthi S. Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim. Free Radic Biol Med 2009; 46:430-40.
    109. Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 2008; 75:2214-23.
    110. Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage:activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008; 591:66-72.
    1. The World Health Organization. Global health situation and trends 1955-2025 In the world health report 1998:life in the 21st century:a vision for all. WHO 1998.
    2. Sutherland D. International Pancreas Transplant Registry (IPTR),2003. Annual Report 2003.
    3. Gruessner RW, Sutherland DE, Gruessner AC. Mortality assessment for pancreas transplants. Am J Transplant 2004; 4:2018-26.
    4. Sutherland DE, Gruessner RW, Dunn DL, Matas AJ, Humar A, Kandaswamy R, Mauer SM, Kennedy WR, Goetz FC, Robertson RP. Gruessner AC, Najarian JS. Lessons learned from more than 1.000 pancreas transplants at a single institution. Ann Surg 2001; 233:463-501.
    5. Sutherland DE. Current status of beta-cell replacement therapy (pancreas and islet transplantation) for treatment of diabetes mellitus. Transplant Proc 2003; 35:1625-7.
    6. Fontaine MJ, Fan W. Islet cell transplantation as a cure for insulin dependent diabetes:current improvements in preserving islet cell mass and function. Hepatobiliary Pancreat Dis Int 2003; 2:170-9.
    7. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343:230-8.
    8. Fiorina P, Secchi A. Pancreatic islet cell transplant for treatment of diabetes. Endocrinol Metab Clin North Am 2007; 36:999-1013; ix.
    9. Liu EH, Herold KC. Transplantation of the islets of Langerhans:new hope for treatment of type 1 diabetes mellitus. Trends Endocrinol Metab 2000; 11:379-82.
    10. Balamurugan AN, Bottino R. Giannoukakis N, Smetanka C. Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas 2006; 32:231-43.
    11. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, Cagliero E, Alejandro R, Ryan EA, DiMercurio B, Morel P, Polonsky KS, Reems JA, Bretzel RG, Bertuzzi F, Froud T, Kandaswamy R, Sutherland DE, Eisenbarth G, Segal M, Preiksaitis J, Korbutt GS, Barton FB, Viviano L, Seyfert-Margolis V, Bluestone J, Lakey JR. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006; 355:1318-30.
    12. Contreras JL, Eckstein C, Smyth CA, Sellers MT, Vilatoba M, Bilbao G, Rahemtulla FG, Young CJ, Thompson JA, Chaudry IH, Eckhoff DE. Brain death significantly reduces isolated pancreatic islet yields and functionality in vitro and in vivo after transplantation in rats. Diabetes 2003; 52:2935-42.
    13. Sollinger HW, Vernon WB, D'Alessandro AM, Kalayoglu M, Stratta RJ, Belzer FO. Combined liver and pancreas procurement with Belzer-UW solution. Surgery 1989; 106:685-90; discussion 90-1.
    14. Lakey JR, Kneteman NM, Rajotte RV, Wu DC, Bigam D, Shapiro AM. Effect of core pancreas temperature during cadaveric procurement on human islet isolation and functional viability. Transplantation 2002; 73:1106-10.
    15. Lakey JR, Burridge PW, Shapiro AM. Technical aspects of islet preparation and transplantation. Transpl Int2003; 16:613-32.
    16. Wolters GH, Vos-Scheperkeuter GH, van Deijnen JH, van Schilfgaarde R. An analysis of the role of collagenase and protease in the enzymatic dissociation of the rat pancreas for islet isolation. Diabetologia 1992; 35:735-42.
    17. Vargas F, Vives-Pi M, Somoza N, Armengol P, Alcalde L, Marti M, Costa M, Serradell L, Dominguez O, Fernandez-Llamazares J, Julian JF, Sanmarti A, Pujol-Borrell R. Endotoxin contamination may be responsible for the unexplained failure of human pancreatic islet transplantation. Transplantation 1998; 65:722-7.
    18. Jahr H, Pfeiffer G, Hering BJ, Federlin K, Bretzel RG. Endotoxin-mediated activation of cytokine production in human PBMCs by collagenase and Ficoll. J Mol Med 1999; 77:118-20.
    19. Balamurugan AN, He J, Guo F, Stolz DB, Bertera S, Geng X, Ge X, Trucco M, Bottino R. Harmful delayed effects of exogenous isolation enzymes on isolated human islets:relevance to clinical transplantation. Am J Transplant 2005; 5:2671-81.
    20. Lakey JR, Helms LM, Kin T, Korbutt GS, Rajotte RV, Shapiro AM, Warnock GL. Serine-protease inhibition during islet isolation increases islet yield from human pancreases with prolonged ischemia. Transplantation 2001; 72:565-70.
    21. Balamurugan AN, Chang Y, Fung JJ, Trucco M, Bottino R. Flexible management of enzymatic digestion improves human islet isolation outcome from sub-optimal donor pancreata. Am J Transplant 2003; 3:1135-42.
    22. Nanji SA, Shapiro AM. Advances in pancreatic islet transplantation in humans. Diabetes Obes Metab 2006; 8:15-25.
    23. Dionne KE, Colton CK, Yarmush ML. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 1993; 42:12-21.
    24. Mohseni Salehi Monfared SS, Larijani B, Abdollahi M. Islet transplantation and antioxidant management:a comprehensive review. World J Gastroenterol 2009; 15:1153-61.
    25. Tsujimura T, Kuroda Y, Avila JG, Kin T, Oberholzer J, Shapiro AM, Lakey JR. Influence of pancreas preservation on human islet isolation outcomes:impact of the two-layer method. Transplantation 2004; 78:96-100.
    26. Bottino R, Balamurugan AN, Tse H, Thirunavukkarasu C, Ge X. Profozich J, Milton M, Ziegenfuss A, Trucco M, Piganelli JD. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes 2004; 53:2559-68.
    27. Paraskevas S, Maysinger D, Wang R, Duguid TP, Rosenberg L. Cell loss in isolated human islets occurs by apoptosis. Pancreas 2000; 20:270-6.
    28. Kin T. Islet isolation for clinical transplantation. Adv Exp Med Biol; 654:683-710.
    29. Merani S, Toso C, Emamaullee J, Shapiro AM. Optimal implantation site for pancreatic islet transplantation. Br J Surg 2008; 95:1449-61.
    30. Carlsson PO, Palm F, Andersson A, Liss P. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 2001; 50:489-95.
    31. Carlsson PO, Liss P, Andersson A, Jansson L. Measurements of oxygen tension in native and transplanted rat pancreatic islets. Diabetes 1998; 47:1027-32.
    32. Bretzel R B, Hering B. International Islet Transplant Registry,Newsletter#9.2001; 8:1.
    33. Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, Ostraat O, Salmela K, Tibell A, Tufveson G, Elgue G, Nilsson Ekdahl K, Korsgren O, Nilsson B. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 2002; 360:2039-45.
    34. Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A, Felldin M, Kallen R, Salmela K, Tibell A, Tufveson G, Ekdahl KN, Elgue G, Korsgren O, Nilsson B. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 2005; 54:1755-62.
    35. Rafael E, Ryan EA, Paty BW, Oberholzer J, Imes S, Senior P, McDonald C, Lakey JR, Shapiro AM. Changes in liver enzymes after clinical islet transplantation. Transplantation 2003; 76:1280-4.
    36. Makhlouf L, Kishimoto K, Smith RN, Abdi R, Koulmanda M, Winn HJ, Auchincloss H, Jr., Sayegh MH. The role of autoimmunity in islet allograft destruction:major histocompatibility complex class II matching is necessary for autoimmune destruction of allogeneic islet transplants after T-cell costimulatory blockade. Diabetes 2002; 51:3202-10.
    37. Emamaullee JA, Shapiro AM. Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant 2007; 16:1-8.
    38. Maki T, Ichikawa T, Blanco R, Porter J. Long-term abrogation of autoimmune diabetes in nonobese diabetic mice by immunotherapy with anti-lymphocyte serum. Proc Natl Acad Sci U S A 1992; 89:3434-8.
    39. Pearson T, Markees TG, Serreze DV, Pierce MA, Marron MP, Wicker LS, Peterson LB, Shultz LD, Mordes JP, Rossini AA, Greiner DL. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J Immunol 2003; 171:185-95.
    40. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5:415-8.
    41. Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 2004; 1011:168-76.
    42. Quan N, Ho E, La W, Tsai YH, Bray T. Administration of NF-kappaB decoy inhibits pancreatic activation of NF-kappaB and prevents diabetogenesis by alloxan in mice. FASEB J 2001; 15:1616-8.
    43. Bertera S, Crawford ML, Alexander AM, Papworth GD, Watkins SC, Robbins PD, Trucco M. Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes 2003; 52:387-93.
    44. Matsuoka T, Kajimoto Y, Watada H. Kaneto H, Kishimoto M, Umayahara Y, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 1997; 99:144-50.
    45. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994; 371:606-9.
    46. Kawamori D, Kajimoto Y, Kaneto H, Umayahara Y, Fujitani Y, Miyatsuka T, Watada H, Leibiger IB, Yamasaki Y, Hori M. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes 2003; 52:2896-904.
    47. Kaneto H, Kawamori D, Matsuoka TA, Kajimoto Y, Yamasaki Y. Oxidative stress and pancreatic beta-cell dysfunction. Am J Ther 2005; 12:529-33.
    48. Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y. Oxidative stress and the JNK pathway in diabetes. Curr Diabetes Rev 2005; 1:65-72.
    49. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 2002; 277:30010-8.
    50. Kanitkar M, Bhonde RR. Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1. during cryopreservation. Life Sci 2008; 82:182-9.
    51. Amoli MM, Mousavizadeh R, Sorouri R, Rahmani M, Larijani B. Curcumin inhibits in vitro MCP-1 release from mouse pancreatic islets. Transplant Proc 2006; 38:3035-8.
    52. Balamurugan AN, Akhov L, Selvaraj G, Pugazhenthi S. Induction of antioxidant enzymes by curcumin and its analogues in human islets:implications in transplantation. Pancreas 2009; 38:454-60.
    53. Xiong FL, Sun XH, Gan L, Yang XL, Xu HB. Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur J Pharmacol 2006:529:1-7.
    54. Hara Y, Fujino M, Takeuchi M, Li XK. Green-tea polyphenol (-)-epigallocatechin-3-gallate provides resistance to apoptosis in isolated islets. J Hepatobiliary Pancreat Surg 2007; 14:493-7.
    55. Nataraju A, Saini D, Ramachandran S, Benshoff N, Liu W, Chapman W, Mohanakumar T. Oleanolic Acid, a plant triterpenoid, significantly improves survival and function of islet allograft. Transplantation 2009; 88:987-94.
    56. Li XL, Xu G, Chen T, Wong YS, Zhao HL, Fan RR, Gu XM, Tong PC, Chan JC. Phycocyanin protects INS-IE pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int J Biochem Cell Biol 2009; 41:1526-35.
    57. Marzorati S, Antonioli B, Nano R, Maffi P, Piemonti L, Giliola C, Secchi A, Lakey JR, Bertuzzi F. Culture medium modulates proinflammatory conditions of human pancreatic islets before transplantation. Am J Transplant 2006; 6:2791-5.
    58. Avila J, Barbaro B, Gangemi A, Romagnoli T, Kuechle J, Hansen M, Shapiro J, Testa G, Sankary H, Benedetti E, Lakey J, Oberholzer J. Intra-ductal glutamine administration reduces oxidative injury during human pancreatic islet isolation. Am J Transplant 2005; 5:2830-7.
    59. Brandhorst H, Duan Y, Iken M, Bretzel RG, Brandhorst D. Effect of stable glutamine compounds on porcine islet culture. Transplant Proc 2005; 37:3519-20.
    60. Nakamura T, Ogasawara M, Koyama I, Nemoto M, Yoshida T. The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol Pharm Bull 1993; 16:970-2.
    61. Hardikar AA, Risbud MV, Remacle C, Reusens B, Hoet JJ, Bhonde RR. Islet cryopreservation: improved recovery following taurine pretreatment. Cell Transplant 2001; 10:247-53.
    62. Lin GJ, Huang SH, Chen YW, Hueng DY, Chien MW, Chia WT, Chang DM, Sytwu HK. Melatonin prolongs islet graft survival in diabetic NOD mice. J Pineal Res 2009; 47:284-92.
    63. Luca G, Nastruzzi C, Basta G, Brozzetti A, Saturni A, Mughetti D, Ricci M, Rossi C, Brunetti P, Calafiore R. Effects of anti-oxidizing vitamins on in vitro cultured porcine neonatal pancreatic islet cells. Diabetes Nutr Metab 2000; 13:301-7.
    64. Tajiri Y, Grill VE. Interactions between vitamin E and glucose on B-cell functions in the rat:an in vivo and in vitro study. Pancreas 1999; 18:274-81.
    65. Gembal M, Druzynska J, Andrzejewska S, Arendarczyk W, Wojcikowski C. Protective effect of allopurinol, alpha-tocopherol and chlorpromazine on rat pancreatic islets stored prior to transplantation. Endokrynol Pol 1993; 44:147-50.
    66. Brown ML, Braun M, Cicalese L, Rastellini C. Effect of perioperative antioxidant therapy on suboptimal islet transplantation in rats. Transplant Proc 2005; 37:217-9.
    67. Winter DT, Eich T, Jahr H, Brendel MD, Bretzel RG. Influence of antioxidant therapy on islet graft survival. Transplant Proc 2002; 34:2366-8.
    68. Riachy R, Vandewalle B, Belaich S, Kerr-Conte J, Gmyr V, Zerimech F, d'Herbomez M, Lefebvre J, Pattou F. Beneficial effect of 1,25 dihydroxyvitamin D3 on cytokine-treated human pancreatic islets. JEndocrinol 2001; 169:161-8.
    69. Cobianchi L, Fornoni A, Pileggi A, Molano RD, Sanabria NY, Gonzalez-Quintana J, Bocca N, Marzorati S, Zahr E, Hogan AR, Ricordi C, Inverardi L. Riboflavin inhibits IL-6 expression and p38 activation in islet cells. Cell Transplant 2008; 17:559-66.
    70. Beckett GJ, Arthur JR. Selenium and endocrine systems. J Endocrinol 2005; 184:455-65.
    71. Campbell SC, Aldibbiat A, Marriott CE, Landy C, Ali T, Ferris WF, Butler CS, Shaw JA, Macfarlane WM. Selenium stimulates pancreatic beta-cell gene expression and enhances islet function. FEBS Lett 2008; 582:2333-7.
    72. Fraga DW, Sabek O, Hathaway DK, Gaber AO. A comparison of media supplement methods for the extended culture of human islet tissue. Transplantation 1998; 65:1060-6.
    73. Jindal RM, Taylor RP, Morris PJ, Gray DW. The role of zinc in solutions used for cold preservation of pancreatic islets. Pancreas 1996:12:340-4.
    74. Giovagnoli S, Luca G, Casaburi I, Blasi P, Macchiarulo G, Ricci M, Calvitti M, Basta G, Calafiore R, Rossi C. Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres:in vitro effects on isolated neonatal porcine pancreatic cell clusters. J Control Release 2005; 107:65-77.
    75. Moriscot C, Candel S, Sauret V, Kerr-Conte J, Richard MJ, Favrot MC, Benhamou PY. MnTMPyP, a metalloporphyrin-based superoxide dismutase/catalase mimetic, protects INS-1 cells and human pancreatic islets from an in vitro oxidative challenge. Diabetes Metab 2007; 33:44-53.
    76. Okado-Matsumoto A, Batinic-Haberle I, Fridovich I. Complementation of SOD-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Radic Biol Med 2004; 37:401-10.
    77. Thomas DA, Stauffer C, Zhao K, Yang H, Sharma VK, Szeto HH, Suthanthiran M. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J Am Soc Nephrol 2007; 18:213-22.
    78. Rao P, Maeda H, Yutong X, Yamamoto M, Hirose N, Sasaguri S. Protective effect of a radical scavenger, MCI-186 on islet cell damages induced by oxidative stress. Transplant Proc 2005; 37:3457-8.
    79. Crim WS, Wu R, Carter JD. Cole BK, Trace AP, Mirmira RG, Kunsch C, Nadler JL, Nunemaker CS. AGI-1067, a novel antioxidant and anti-inflammatory agent, enhances insulin release and protects mouse islets. Mol Cell Endocrinol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700