用户名: 密码: 验证码:
CLC氯通道蛋白的结构与功能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ClC氯通道蛋白是一类重要的离子通道蛋白,它们广泛存在于原核细胞和真核细胞中,包括哺乳动物中。它具有重要的生理功能,当它的功能缺失时会引起许多疾病,如肌强直,不孕不育,耳聋等。它在细菌中的同源物的晶体结构在2002年被测得。在此之后一系列实验研究出现,但是实验只能得到通道的宏观性质,对于微观分子机制却很少涉及,因此从分子角度研究它的结构与功能的关系具有非常重要的意义。我们利用分子动力学,连续静电计算,建模等方法,研究了ClC氯通道的结构和功能特性,揭示其微观机制。
     1.提出ClC-0氯离子通道导电性质的三态多离子输运模型
     我们提出了一个三态多离子输运模型,它能很好地解释氯离子通道ClC-0的导电特性。将速率理论用于此模型,得到电流-电压和电导率-浓度的关系。模型中的五个可调参数,是通过拟合野生型ClC-0和它的变异体K519C的实验数据得到的。作为检验,将这个模型得到的数据与采用其他计算和模拟方法得到的数据进行比较。结果表明,从这个模型计算出的不同氯离子占据态之间的能量差与通过解泊松-玻尔兹曼方程得到的结合自由能是一致的。从此模型得到的平均导电离子数和离子通过速率与实验上的结果也是一致的。根据这个模型,由于残基K519变异成C519产生的电导率的下降能被归结为K519C变异对各个态之间转换速率常数的影响。这个工作有助于人们理解ClC-0的导电机制。
     2.研究ClC-ec1中残基变异对氯离子静电结合自由能的影响
     ClC通道蛋白的残基变异导致蛋白功能的改变,引发许多疾病。现已查明,ClC蛋白功能的实现与氯离子在通道中的结合能密切相关。因此研究残基变异对ClC-ec1功能的影响可以通过研究残基变异对氯离子在通道中的结合能的影响来体现。我们系统地研究了各种残基变异对氯离子在通道中的结合能的影响。通过使用全原子分子动力学模拟和静电计算,揭示出残基变异引起的电荷变化和残基与氯离子结合位点的距离是影响氯离子结合能的重要因素。这一工作在分子层次上使人们认识了ClC通道蛋白的残基变异对蛋白功能影响的实质。
C1C proteins are found in both prokaryotic and eukaryotic cells. These proteins complete many important functional tasks, including the maintenance of membrane potential, the regulation of transepithelial chloride transport, and control of intravesicular pH. The physiological importance of these proteins can best be illustrated by the existence of hereditary diseases caused by defective C1C proteins. Dutzler et al. solved the three-dimensional structure of C1C proteins by resolving bacterial C1C homologs. Soon after Dutzler et al. solved the X-ray structure, others showed that the bacterial C1C homolog is not an ion channel but rather a Cl-/H+ exchange transporter with stoichiometry 2:1. Despite extensive experimental data, the molecular mechanism remains unclear. This paper using molecular dynamics simulation, continuous electrostatic calculation, and present a simple model to investigate the properties of ion permeation and conduction for C1C chloride proteins.
     1. Present a three-state multi-ion kinetic model for conduction properties of C1C-0 chloride channel
     A three-state multi-ion kinetic model was proposed that has enabled the conduction properties of the mammalian channel C1C-0 to be well characterized. Using this rate theory-based model the current-voltage and conductance-concentration relations were obtained. The five parameters in the model were determined by fitting the data of conduction experiments of the wild-type C1C-0 and its K519C mutant. The model was tested against available calculation and simulation data. The energy differences between distinct chloride-occupancy states computed from the model agree with an independent calculation on the binding free energies solved by using the Poisson-Boltzmann equation. The average ion number of conduction and the ion passing duration calculated using the model closely resemble the values obtained from Brownian dynamics simulations. According to the model the decrease of conductance caused by mutating residue K519 to C519 can be attributed to the effect of K519C mutation on translocation rate constants. Our study sets up a theoretical model for ion permeation and conductance in C1C-0. It would help understand the conduction mechanism of C1C-0
     2. Investigate influence of residue mutation on binding free energy of chloride in EcC1C channel
     Mutation of residue of C1C channel proteins causes serious functional change, even diseases. C1C protein function is related to the binding free energy of chloride at the binding sites, so the influence of residue mutation on function of EcC1C channels can be investigated through the effect of residue mutation on the binding free energy of chloride in EcC1C channels. This paper made a comprehensive investigation on the influence of residue mutation upon the binding free energy of chloride in EcC1C channels by using an all-atom molecular dynamics calculation. It also revealed the law how the charge change caused by residue mutation and the distance between residue and chloride govern the variation of the binding free energy. This work can help us understand the effect of residue mutation on the function of C1C channel proteins and then the relation between diseases and residue mutation.
引文
[1]李泱,程芮.离子通道学,湖北科学技术出版社,2007
    [2]张勇,杨安钢,周士胜.氯离子通道家族研究进展.医学分子生物学杂志2004,1(4):245-248
    [3]郭晓强.CFTR型氯离子通道研究进展.生命科学,2007,19(2):189-193
    [4]S.G. Bompadre, Hwang TC. CFTR:a chloride channel gated by ATP binding and hydrolysis. Acta Physiologica Sinica.59 (4):431-442. (2007).
    [5]S.G. Bompadre, Sohma, Y., Li, M., and Hwang, T.-C.G551D and G1349D, two CF-associated mutations in the signature sequence of CFTR, exhibit distinct gating defects. J. Gen. Physiol.129,285-298. (2007).
    [6]S.G. Bompadre, Cho JH, Wang X, Zou X, Sohma Y, Li M, and Hwang TC.CFTR Gating Ⅱ:Effects of nucleotide binding on the stability of open states. J.Gen. Physiol. 125:377-394 (2005).
    [7]S.G. Bompadre, Ai T, Cho JH, Wang X, Sohma Y, Li M, and Hwang TC. CFTR Gating I:Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DR-CFTR). J.Gen. Physiol.125: 361-375 (2005).
    [8]M.-F. Tsai, M. Li, and T.-C. Hwang. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. J.Gen. Physiol.135:399-414
    [9]T.J. Jentsch, K. Steinmeyer, G. Schwarz, Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348 (1990)510-514
    [10]T.J. Jentsch, T. Friedrich, A. Schriever, H. Yamada, The CLC chloride channel family. Eur J Physiol (1999) 437:783-795
    [11]J.A. Mindell, M. Maduke, ClC chloride channels. Genome Biology (2001) 2(2):reviews3003.1-3003.6
    [12]T.J. Jentsch, V. Stein, W. Frank, A. A. Zdebik, Molecular Structure and Physiological Function of Chloride Channels. Physiol Rev 82(2002):503-568
    [13]R. Dutzler, E.B. Campbell, M. Cadene, B.T. Chait, R. MacKinnon, X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415(2002):287-294.
    [14]R. Dutzler, E. B. Campbell, R. MacKinnon, Gating the Selectivity filter in ClC chloride channels. Science 300(2003):108-112.
    [15]A. Accardi, C. Miller, Secondary active transporter mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427(2004):803-807.
    [16]A. Picollo, M. Pusch, Chloride/proton antiporter activity of mammalian ClC proteins ClC-4 and ClC-5. Nature 436(2005):420-423.
    [17]O. Scheel, A.A. Zdebik, S. Lourdel, T.J. Jentsch, Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436(2005):424-427.
    [18]B. Hille,2001. Ionic channels of excitable membranes. Sunderland, Sinauer; 3rd.
    [19]T.J. Jentsch, I. Neagoe, O. Scheel, CLC chloride channels and transporters. Current Opinion in Neurobiology 2005,15:319-325
    [20]A. Accordi, M. Walden, W. Ngitragool, H. Jayaram, C. Williams, C. Miller. Separate ion pathways in a Cl-/H+ exchanger. J Gen Physiol 126(2005):563-570.
    [21]W. Nguitragoola, C. Miller. Uncoupling of a CLC Cl-/H+ exchange transporter by polyatomic anions. J Mol Biol 362(2006):682-690.
    [22]A. Accardi, S. Lobet, C. Williams, C. Miller, R. Dutzler. Synergism between halide binding and proton transport in a ClC-type exchanger. JMol Biol 362(2006):691-699.
    [23]M. Walden, A. Accardi, F. Wu, C. Xu, C. Williams, C. Miller. Uncoupling and turnover in a Cl-/H+ exchange transporter. J Gen Physiol 129(2007):317-329.
    [24]W. Nguitragool, C. Miller. CLC Cl-/H+ transporters constrained by covalent cross-linking. Proc Natl Acad Sci 104(2007):20659-20665.
    [25]H. Jayaram, A. Accardi, F. Wu, C. Williams, C. Miller. Ion permeation through a Cl--selectivie channel designed from a CLC Cl-/H+ exchanger. Proc Natl Acad Sci 105(2008):11194-11199
    [26]C. Miller, Open-state substructure of single chloride channels from Torpedo Electroplax. Phil Trans R Soc B 299(1982):401-411.
    [27]Lobet, S., and R. Dutzler.2006. Ion-binding properties of the ClC chloride selectivity filter. Embo J 25:24-33.
    [28]T-Y Chen, C. Miller, Nonequilibrium Gating and Voltage Dependence of the ClC-0 C1- Channel. J. Gen. Physiol.108(1996):237-250
    [29]M.F. Chen, T. Y. Chen.2003. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J Gen Physil 122:133-145.
    [30]C. Miller, N. Wang, A provisional transport mechanism for a chloride channel-type Cl+/H- exchanger. Phil. Trans. R. Soc. B 364(2009):175-180
    [31]D.L. Bostick, M.L. Berkowitzy. Exterior site occupancy infers chloride-induced proton gating in a prokaryotic homolog of the ClC chloride channel. Biophys J 87(2004):1686-1696.
    [32]Bisset, D., B. Corry, and S. H. Chung.2005. The fast gating mechanism in ClC-0 channels. Biophys J 89:179-186.
    [33]Z-F Kuang, A-P Liu, T.L. Beck, Transpath:A computational method forlocating ion transit pathways through membrane proteins. Proteins:Structure, Function, and Bioinformatics 71(2008):1349-1359.
    [34]Yin, J., Z. F. Kuang, U. Mahankali, and T. L. Beck.2004. Ion transit pathways and gating in ClC chloride channels. Proteins 57:414-421.
    [35]Kuang, Z. F., U. Mahankali, and T. L. Beck.2007. Proton pathways and H+/Cl-stoichiometry in bacterial chloride transporters. Proteins 68:26-33.
    [36]Gervasio, F. L., M. Parrinello, M. Ceccarelli, and M. L. Klein.2006. Exploring the gating mechanism in the ClC chloride channel via metadynamics. J Mol Biol 361:390-398.
    [37]Miloshevsky, G. V., and P. C. Jordan.2004. Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl- pores:electrostatic effects of charged residues. BiophysJ86:825-835.
    [38]Cohen, J., and K. Schulten.2004. Mechanism of anion conduction across ClC. Biophys J 86:836-845.
    [39]Corry, B., M. O'Mara, and S. H. Chung.2004. Conduction mechanisms of chloride ions in CIC-type channels. Biophys J 86:846-860.
    [40]Mindell, J. A.2008. The chloride channel's appendix. Nat Struct Mol Biol 15:781-783.
    [41]Miller, C.2006. ClC chloride channels viewed through a transporter lens. Nature 440:484-489.
    [42]S. Traverso, Zifarelli G, Aiello R, Pusch M, Proton sensing of CLC-0 mutant E166D J Gen Physiol.2006 Jan;127(1):51-65..
    [43]Lisal, J., and M. Maduke.2008. The ClC-0 chloride channel is a'broken'Cl-/H+ antiporter. Nat Struct Mol Biol 15:805-810.
    [44]Richard EA, Miller C Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science.1990;247(4947):1208-10.
    [45]M.P. Allen. Computer simulation of liquids. Oxford University Press,1987
    [46]D. C. Rapaport. The Art of Molecular Dynamics Simulation Cambridge University Press 1995
    [47]分子模拟——从算法到应用,[荷]Frenkel & Smit著,汪文川等译,化学 工业出版社,2002
    [48]Molecular modelling:principles and applications, Andrew R leach Second edition, Harlow, Essex:Prentice Hall,2001.
    [49]计算固体物理学,邹宪武,金准智著:武汉大学出版社:1993
    [50]Pearlman, D. A., Case, D. A., Caldwell, J. C., Seibel, G. L., Singh, U. C., Weiner, P.,& Kollman, P. A., (1991) AMBER 4.0, University of California, San Francisco.
    [51]Weiner, P. K.,& Kollman, P. A., (1981) AMBER:Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions, J. Comp. Chem.2,287-303.
    [52]Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. (1983) CHARMM:A program for macromolecular energy, minmimization, and dynamics calculations. J. Comp. Chem.4,187-217.
    [53]Feller et al. (1997) Molecular Dynamics Simulation of Unsaturated Lipids at Low Hydration:Parameterization and Comparison with Diffraction Studies. Biophys. J.73,2269-2279
    [54]Lindahl, E., Hess, B., van der Spoel, D. Gromacs 3.0:A package for molecular simulation and trajectory analysis. J. Mol. Mod.7:306-317,2001.
    [55]van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J. C. GROMACS:Fast, Flexible and Free. J. Comp. Chem.26:1701-1718,2005.
    [56]Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M. Jr., Ferguson, D. M. Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc.117,5179-5197.
    [57]Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr., Weiner, P.K. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc.106,765-784.
    [58]Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A., (1986) "An All Atom Force Field for Simulations of Proteins and Nucleic Acids," J. Comp. Chem.7, 230-252.
    [59]A. D. MacKerell Jr., J. Wiorkiewicz-Kuczera, and M. Karplus (1995). An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids, J. Am. Chem. Soc.117,11946-11975.
    [60]A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, Ⅲ, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus (1998). All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. 102,3586-3616.
    [61]M. Schlenkrich, J. Brickmann, A. D. MacKerell Jr., and M. Karplus (1996). An Empirical Potential Energy Function for Phospholipids:Criteria for Parameter Optimization and Applications, in Biological Membranes:A Molecular Perspective from Computation and Experiment, K. M. Merz, Jr. and B. Roux, editors (Birkhauser), 31-81.
    [62]S.N. Ha, A. Giammona, M. Field, J.W. Brady, A revised potential-energy surface for molecular mechanics studies of carbohydrates, Carbohydr. Res. (1988),180(2), 207-221.
    [63]Hermans, J., Berendsen, H. J. C., van Gunsteren, W. F.,& Postma, J. P. M., (1984) "A Consistent Empirical Potential for Water-Protein Interactions," Biopolymers 23,1
    [64]Ott, K-H., B. Meyer (1996) "Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations," J Comp Chem 17,1068-1084
    [65]Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies:applications to the molecular systems and geometric objects. J. Comput. Chem.2002;23:128-137
    [66]Grant JA, Pickup BT, Nicholls A. A smooth permittivity function for Poisson-Boltzmann solvation methods. J. Comput. Chem.2001;22:608-640
    [67]Bashford D. An object-oriented programming suite for electrostatic effects in biological molecules. In:Ishikawa Y, Oldehoeft RR, Reynders JVW, editors. Scientific Computing in Object-Oriented Parallel Environments.1997. Springer, Berlin, Vol. 1343, pp.233-240.
    [68]Chin K, Sharp KA, Honig B, Pyle AM. Calculating the electrostatic properties of RNA provides new insights into molecular interactions and function. Nat. Struct. Biol. 1999;6:1055-1061
    [69]S Jo, M Vargyas, J Vasko-Szedlar, B. Roux, and W. Im. PBEQ-Solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res.2008 July 1;36:W270-W275
    [70]Tan, ZJ., Chen, SJ. (2005) Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. Journal of Chemical Physics 122,04490
    [71]Tan, ZJ., Chen, SJ. (2006) Nucleic acid helix stability:effects of salt concentration, cation valence and size, and chain length. Biophysical Journal 90: 1175-1190.
    [72]Tan, ZJ., Chen, SJ. (2006) Electrostatic free energy landscape for nucleic acid helix assembly. Nucleic Acids Research 34:6629-6639.
    [73]Tan, ZJ., Chen, SJ. (2007) RNA helix stability in mixed Na+/Mg2+ solution. Biophysical Journal 92:3615-3632.
    [74]Tan, ZJ., Chen, SJ. (2008) Electrostatic free energy landscapes for DNA helix bending. Biophysical Journal 94:3137-3149.
    [75]Chen, T. Y.2005. Structure and function of CLC channels. Annu. Rev. Physiol. 67:809-839.
    [76]Jentsch, T. J., M. Poet, J. C. Fuhrmann, and A. A. Zdebik.2005. Physiological function of CLC Cl- channels gleaned from human genetic disease and mouse model. Annu. Rev. Physiol.67:779-807.
    [77]Faraldo-Gomez, J. D., and B. Roux.2004. Electrostatics of ion stabilization in a ClC chloride channel homologue from Eccherichia coli. J Mol Biol 339:981-1000.
    [78]Moran, O., S. Traverso, L. Elia, and M. Pusch.2003. Molecular modeling of P-chlorophenoxyacetic acid binding to the ClC-0 channel. Biochemistry 42:5176-5185.
    [79]Suenegaa, A., J. Z. Yehb, M. Taijia, A. Toyamac, and H. Takeuchic.2006. Bead-like passage of chloride ions through ClC chloride channels. Biophys Chem 120:36-43.
    [80]Engh, A. M., J. D. Faraldo-Gomez, M. Maduke.2007. The role of a conserved lysine in chloride-and voltage-dependent ClC-0 fast gating. J Gen Physiol 130:351-363.
    [81]Cheng, M. H., A. B. Mamonov, J. W. Dukes, and R. D. Coalson.2007. Modeling the fast gating mechanism in the ClC-0 chloride channel. JPhys Chem B 111:5956-5965.
    [82]Lin, C. W., and T. Y. Chen.2000. Cysteine modification of a putative pore residue in ClC-0:implication for the pore stoichiometry of ClC chloride channels. J Gen Physiol 116:535-546.
    [83]Ludewig, U., M. Pusch, and T. J. Jentsch.1996. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383:340-343
    [84]Andersen, O. S.1999. Perspectives on ion permeation. J Gen Physiol 113:763-764.
    [85]Tolokh, I. S., S. Goldman, and C. G Gray.2006. Unified modeling of conductance kinetics for low- and high-conductance patassium ion channels. Phys Rev E 74:011902-011913.
    [86]Mafe, S., J. Pellicer, and J. Cervera.2005. Kinetic modeling of ion conduction in KcsA potassium channel. J Chem Phys 122:204712-204718.
    [87]Grabe, M., D. Bichet, X. Qian, Y. N. Jan, and L. Y. Jan.2006. K+ channel selectivity depends on kinetic as well as thermodynamics factors. Proc Natl Acad Sci 103:14361-14366.
    [88]PDB:Protein data bank, http://www.rcsb.org
    [89]Humphrey, W., A. Dalke, and K. Schulten.1996. VMD-Visual molecular dynamics. JMolec Graphics 14:33-38.
    [90]Mackerell, Jr. A. D., D. Bashford, M. Bellett, R. L. Dunbrack Jr. J. D. Evanseck, M. J. Field, and S. Fischer.1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. JPhys Chem B 102:3586-3616.
    [91]Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten.2005. Scalable molecular dynamics with NAMD. J Comput Chem 26:1781-1802.
    [92]Davis, M. E., and J. A. McCammon.1990. Electrostatics in biomolecular structure and dynamics. Chem Rev 94:7684-7692.
    [93]Honig, B., and A. Nicholls.1995. Classical electrostatics in biology and chemistry. Science 268:1144-1149.
    [94]Debye, P., and E. Huckel.1923. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physik Z 24:185-206.
    [95]Misra, V. K., K. A. Sharp, R. A. Friedman, and B. Honig.1994. Salt effects on ligand-DNA binding:minor groove binding antibiotics. J Mol Biol 238:245-263.
    [96]Baker, N. A., D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon.2001. Electrostatics of nanosystems:application to microtubules and the ribosome, Proc Natl Acad Sci 98:10037-10041.
    [97]Holst, M., and F. Saied.1993. Multigrid solution of the Poisson-Boltzmann equation. J Comput Chem 14:105-113.
    [98]Picollo A., M. Malvezzi, J. C. D. Houtman, and A. Accardi.2009. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat Struct Mol Biol 16:1294-1301.
    [99]Smart, O. S., J. M. Goodfellow, and B. A. Wallace.1993. The pore dimensions of gramicidin A. Biophys J 65:2455-2460.
    [100]DeLano W. The PyMOL Molecular Graphics System. San Carlos, CA:De Lano Scientific; 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700