用户名: 密码: 验证码:
神经管畸形与正常胚胎脑组织miRNAs差异表达分析及其靶mRNA的功能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经管畸形(neural tube defects,NTDs)是由于在胚胎发育过程中,神经管闭合不全所引起的一类先天畸形。NTDs属多因素疾病,该病的发生主要是遗传因素和环境因素及两者相互作用的结果。这种畸形起因于神经管闭合的失败,所以影响神经管发育的因素都可能促使其形成。MicroRNAs (miRNAs)是一类长约22个核苷酸的内源性单链非编码RNA,通过与靶mRNA完全或不完全互补配对,导致靶mRNA降解或抑制其翻译,从而在基因的表达调控中发挥着重要作用。目前研究表明miRNAs在神经干细胞分化和哺乳动物脑发育过程中起重要作用,提示miRNAs可能参与神经管畸形的发生。但以往研究检测的miRNA数量有限,并且国内外尚无miRNA在胚胎脑组织中功能研究的报告。因此有必要深入开展miRNA在NTDs胚胎脑组织中的表达和功能研究,为深入了解NTDs的发病机理提供新的线索。本课题通过对于miRNAs在NTDs与正常胚胎脑组织的差异表达分析和特定miRNAs作用机制的阐释,有助于我们进一步提高对于NTDs发生发展的分子机制的认识。
     目的:
     建立神经管畸形与正常胚胎脑组织miRNAs的差异表达谱,利用生物信息学手段,预测差异表达显著的miRNAs的靶基因,并进一步分析靶基因的生物学功能及在神经管畸形发生中的作用。为进一步探讨miRNAs在神经管畸形发生机制中的作用提供依据。
     方法:
     利用1niRCURYTM LNA miRNA表达谱芯片分析无脑畸形残余脑组织和正常胎儿脑组织miRNAs差异表达。利用NCodeTM qRT-PCR kit试剂盒,以U6 snRNA作为内标,对差异表达显著的miRNAs进行验证。利用mirGEN v3数据库预测差异表达显著的9个miRNAs的靶基因,利用Human Protein Reference Database (HPRD)分析靶蛋白的相互作用,建立相互作用网。利用GeneCodis 2.0分析相互作用网所含蛋白质的生物学功能,并以此推断miRNAs在NTDs发生发展中的作用。
     结果:
     1. miRNA芯片检测发现:实验组与对照相比,有213个miRNAs表达差异显著(两组差异>2倍)。niRNAs表达上调2倍以上116个(其中包含1niRPLUS 9个),miRNAs表达下调2倍以上97个(其中包含miRPLUS 2个)
     2.依据表达差异显著性和在脑组织中表达的特异性,选择9个miRNAs进行real-time RT-PCR验证。miR-9、miR-212、miR-451、miR-198、miR-126、miR-124和miR-138检测结果与miRNA芯片一致,miR-103/miR-107与miRNA芯片结果相反。表达上调:miR-451、miR-198和miR-126,表达下调:miR-9、miR-212、miR-103、miR-107、miR-124和miR-138。这9个miRNAs在NTDs和正常对照中的表达差异均具有统计学意义(p<0.05)
     3.经过mirGEN v3数据库分析,881个基因被预测为这9个1niRNAs的靶基因。其中79个基因包含在蛋白质相互作用网中。
     4.经GeneCodis 2.0分析,这些蛋白参与基因转录、信号转导、细胞周期、细胞生长、死亡和细胞间信号转导这些重要的生物学过程;发挥蛋白结合、转录因子活化、受体结合及活化、核酸结合、DNA结合和转移酶活化等生物学功能;并且它们涉及肌动蛋白、Jak-STAT和MAPK等与神经发育相关的信号通路。
     结论:
     miRNAs在无脑畸形和正常对照胎儿脑组织中表达谱存在差异,可能参与了无脑畸形发生的分子机制。同时,本研究绘制了靶基因的蛋白质相互作用网,并分析了这些靶蛋白的生物学功能,为深入研究这些miRNAs的调控机制及在NTDs发生发展中的作用提供了基础。
Neural tube defects (NTDs) are a group of severe congenital malformations characterized by a failure of neural tube closure during early embryonic development. NTDs are complex birth defects with a multi-factorial pattern of inheritance, requiring both genetic and environmental factors to contribute to their etiology.NTDs are caused by the failure of the neural tube to close. Therefore, factors that impact the development of the neural tube are likely to be involved in the pathogenesis of NTDs. MicroRNAs (miRNAs) are small, single-stranded, and non-coding RNA molecules that possess about 22 nucleotides. The function of miRNAs in mammalian cells is to repress the translation or cleavage of target gene messenger RNA (mRNA) by base-pairing with the 3'-untranslated regions (UTRs) of target mRNAs.A number of miRNA profiling studies have shown that the expression of miRNAs changes during neural stem cell differentiation and during the morphological development of the mammalian brain. These researches suggest that miRNAs may be important players in these processes. However, neither the expression nor the role of miRNAs in NTDs has been characterized. Thus, it is necessary to unravel the expression and function of the miRNAs in NTDs. Our study may provide a further understand the etiology of NTDs.
     Objective:
     To investigate the expression of miRNAs in tissues from fetuses with the most severe NTDs, anencephaly and normal control, and discuss the roles of miRNAs in the pathogenesis of NTDs. To predict the target genes of miRNAs which the expression change was confirmed and analysis the function of target genes.
     Methods:
     The profiling of miRNAs from area cerebrovasculosa of fetuses with anencephaly and normal brains was performed using an LNA mercuryTM microarray. Real-time RT-PCR analysis was carried out using an NCodeTM miRNA First-Strand cDNA Synthesis and a qRT-PCR kit. Relative expression was calculated using the AACT method and normalizing to the expression of U6 snRNA.The target gene sets for miRNAs were determined using miRGen v3. The human protein interaction data set was obtained from the Human Protein Reference Database (HPRD).Using these data, we constructed a protein interaction network of the predicted miRNA target genes. GeneCodis 2.0 was used to search for biological features of the interacting proteins involved in the network.
     Results:
     1. Compared to healthy human fetal brain tissue, tissue from fetuses with anencephaly has a specific miRNA expression profile. In anencephaly, there were 97 downregulated miRNAs and 116 upregulated miRNAs. These miRNAs include two downregulated miRPlus and nine upregulated miRPlus.
     2. The microarray findings were extended using real-time qRT-PCR for nine miRNAs. Of these nine miRNAs validated, miR-126, miR-198, and miR-451 were upregulated, whereas miR-9, miR-212, miR-124, miR-138, and miR-103/107 were downregulated in the tissues from fetuses with anencephaly.
     3. Bioinformatic analysis shows 881 potential target genes that are regulated by the validated miRNAs. Of these potential genes,79 genes are involved in a protein interaction network.
     4. There are six co-occurrence annotations (transcription, signal transduction, cell cycle, cell growth, cell death, and cell-cell signaling) within the GOSlim Process. There are seven co-occurrence annotations (protein binding, transcription factor activity, receptor activity, Nucleotide binding, DNA binding, receptor binding, and transferase activity) within the GOSlim Function found by Genecodis2. And there are thirty-five co-occurrence annotations (such as focal adhesion,actin cytoskeleton and Jak-STAT signaling pathway et al.) within the KEGG pathway found by Genecodis2.
     Conclusion:
     This study confirms that anencephaly has a specific miRNA expression profile compared to gestational age-matched normal fetal brain tissue. The results show that different miRNAs are deregulated in NTDs, suggesting the involvement of these miRNAs in the pathogenesis of NTDs. We also provide a target gene map of miRNAs that are predicted to contribute to future investigations of the regulatory mechanisms of miRNA in human anencephaly.
引文
[1]Botto LD, Moore CA, Khoury MJ and Erickson JD. Neural-tube defects. N Eng. J Med.1999;341(20),1509-19.
    [2]Zhang C. Novel functions for small RNA molecules.Curr Opin Mol Ther. 2009;11(6):641-51.
    [3]Zhao Y, Srivastava D. A developmental view of microRNA function.Trends Biochem Sci.2007;32(4):189-97.
    [4]Gabbianelli M, Testa U, Morsilli O, Pelosi E, Saulle E, Petrucci E, Castelli G, Giovinazzi S, Mariani G, Fiori ME, Bonanno G, Massa A, Croce CM, Fontana L, Peschle C. Mechanism of human Hb switching:a possible role of the kit receptor/miR 221-222 complex.Haematologica.2010 Mar 19. [Epub ahead of print]. doi:10.3324/haematol.2009.018259.
    [5]Gordeladze JO, Djouad F, Brondello JM, Noel D, Duroux-Richard I, Apparailly F, Jorgensen C. Concerted stimuli regulating osteo-chondral differentiation from stem cells:phenotype acquisition regulated by microRNAs.Acta Pharmacol Sin. 2009;30(10):1369-84.
    [6]O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system.Nat Rev Immunol. 2010;10(2):111-22.
    [7]Copp AJ, Greene ND and Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet.2003;4(10),784-793.
    [8]Rampersaud E, Bassuk AG, Enterline DS, George TM, Siegel DG, Melvin EC, Aben J, Allen J, Aylsworth A, Brei T, Bodurtha J,J Med Genet, et al.Whole genomewide linkage screen for neural tube defects reveals regions of interest on chromosomes 7 and 10.2005;42(12):940-6.
    [9]Stamm DS, Rampersaud E, Slifer SH, Mehltretter L, Siegel DG, Xie J, Hu-Lince D, Craig DW, Stephan DA, George TM, et al.High-density single nucleotide polymorphism screen in a large multiplex neural tube defect family refines linkage to loci at 7p21.1-pter and 2q33.1-q35.Birth Defects Res A Clin Mol Teratol.2006;76(6):499-505.
    [10]Stamm DS, Siegel DG, Mehltretter L, Connelly JJ, Trott A, Ellis N, Zismann V, Stephan DA, George TM, Vekemans M, et al.Refinement of 2q and 7p loci in a large multiplex NTD family. Birth Defects Res A Clin Mol Teratol. 2008;82(6):441-52.
    [11]Boyles AL, Billups AV, Deak KL, Siegel DG, Mehltretter L, Slifer SH, Bassuk AG, Kessler JA, Reed MC, Nijhout HF, at el.Neural tube defects and folate pathway genes:family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect.2006;114(10):1547-52.
    [12]Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects.Hum Mol Genet.2009;18(R2):R113-29.
    [13]Chen CP.Chromosomal abnormalities associated with neural tube defects (II): partial aneuploidy. Taiwan J Obstet Gynecol.2007;46(4):336-51.
    [14]Chen CP.Chromosomal abnormalities associated with neural tube defects (I): full aneuploidy. Taiwan J Obstet Gynecol.2007;46(4):325-35.
    [15]Seller MJ. Recurrence risks for neural tube defects in a genetic counseling clinic population. J Med Genet.1981;18(4):245-8.
    [16]Nevin NC, Johnston WP. Risk of recurrence after two children with central nervous system malformations in an area of high incidence.J Med Genet. 1980;17(2):87-92.
    [17]Deak KL, Siegel DG, George TM, Gregory S, Ashley-Koch A, Speer MC; NTD Collaborative Group.Further evidence for a maternal genetic effect and a sex-influenced effect contributing to risk for human neural tube defects. Birth Defects Res A Clin Mol Teratol.2008;82(10):662-9.
    [18]Bol KA, Collins JS, Kirby RS; National Birth Defects Prevention Network. Survival of infants with neural tube defects in the presence of folic acid fortification.Pediatrics.2006;117(3):803-13.
    [19]Ray JG and Blom HJ. Vitamin B12 insufficiency and the risk of fetal neural tube defects.QJM.2003; 96(4):289-95.
    [20]Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM.Periconceptional Dietary Intake of Choline and Betaine and Neural Tube Defects in Offspring.Am J Epidemiol.2004; 160(2):102-9.
    [21]Ulman C, Taneli F, Oksel F, Hakerlerler H. Zinc-deficient sprouting bhght potatoes and their possible reintion with neural tube defects. Cell Bioehen Funct.2005;23(1):69-72.
    [22]Warrell MJ, Tobin JO, Wald NJ.Examination for influenza IgA and IgM antibodies in pregnancies associated with fetal neural-tube defects. J Med Microbiol.1981 Feb;14(1):159-62.
    [23]宋丽,路爱芝,朱庆义。神经管畸形的病因探讨及预防[J]。中国优生与遗传杂志。2001,9(2):88-9。
    [24]Milunsky A, Ulcickas M, Rothman KJ, Willett W, Jick SS, Jick H. Maternal heat exposure and neural tube defects.JAMA.1992;268(7):882-5.
    [25]Thulstrup AM, Bonde JP. Maternal occupational exposure and risk of specific birth defects. Occup Med (Lond).2006;56(8):532-43.
    [26]Brender JD, Felkner M, Suarez L, Canfield MA, Henry JP. Maternal pesticide exposure and neural tube defects in Mexican Americans.Ann Epidemiol.2010 Jan;20(1):16-22.
    [27]Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT. Chapter 5 maternal fumonisin exposure as a risk factor for neural tube defects. Adv Food Nutr Res.2009;56:145-81.
    [28]Naufal Z, Zhiwen L, Zhu L, Zhou GD, McDonald T, He LY, Mitchell L, Ren A, Zhu H, Finnell R, Donnelly KC. Biomarkers of exposure to combustion by-products in a human population in Shanxi, China.J Expo Sci Environ Epidemiol.2009 Mar 11. [Epub ahead of print] doi:10.1038/jes.2009.19.
    [29]Brender JD, Suarez L, Felkner M, Gilani Z, Stinchcomb D, Moody K, Henry J, Hendricks K. Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring.Environ Res.2006;101(1):132-9.
    [30]Scott M. Nelson, Phillippa Matthews, Lucilla Poston.Maternal metabolism and obesity:modifiable determinants of pregnancy outcome.Hum. Reprod. Update, May 2010; 16(3):255-75.
    [31]Kaneko S, Battino D, Andermann E, Wada K, Kan R, Takeda A, Nakane Y, Ogawa Y, Avanzini G, Fumarola C, et al.Congenital malformations due to antiepileptic drugs. Epilepsy Res.1999;33(2-3):145-58.
    [32]Schmidt RJ, Romitti PA, Burns TL, Browne ML, Druschel CM, Olney RS; National Birth Defects Prevention Study. Maternal caffeine consumption and risk of neural tube defects. Birth Defects Res A Clin Mol Teratol. 2009;85(11):879-89.
    [33]Li ZW, Liu JM, Ren AG, Zhang L, Guo ZY, Li Z. Maternal passive smoking and the risk of neural tube defects:a case-control study in Shanxi province, ChinaZhonghua Liu Xing Bing Xue Za Zhi.2008;29(5):417-20.
    [34]Stover PJ. Influence of human genetic variation on nutritional requirements. Am J Clin Nutr.2006;83(2):436S-442S.
    [35]Burren KA, Savery D, Massa V, Kok RM, Scott JM, Blom HJ, Copp AJ, Greene ND. Gene-environment interactions in the causation of neural tube defects:folate deficiency increases susceptibility conferred by loss of Pax3 function.Hum Mol Genet.2008;17(23):3675-85.
    [36]Volcik KA, Shaw GM, Lammer EJ, Zhu H, Finnell RH.(2003) Evaluation of infant methylenetetrahydrofolate reductasegenotype, maternal vitamin use, and risk of high versus low level spina bifida defects. Birth Defects Res A Clin Mol Teratol.2003;67(3):154-7.
    [37]Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R.A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999;67(4):317-23.
    [38]Toepoel M, Steegers-Theunissen RP, Ouborg NJ, Franke B, Gonzalez-Zuloeta Ladd AM, Joosten PH, van Zoelen EJ. Interaction of PDGFRA promoter haplotypes and maternal environmental exposures in the risk of spina bifida.Birth Defects Res A Clin Mol Teratol.2009;85(7):629-36.
    [39]Meister G, Tuschl T.Mechanisms of gene silencing by double-stranded RNA. Nature.2004 Sep 16;431(7006):343-9.
    [40]Bartel DP.MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281-97.
    [41]Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W. Transcriptional control of gene expression by microRNAs. Cell. 2010;140(1):111-22.
    [42]Lewis BP, Burge CB, Bartel DP.Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.2005;120(1):15-20.
    [43]Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development,2005;132(21):4653-62.
    [44]Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol.2009; 10(2):126-39.
    [45]Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. Rna. 2005;11(3):241-247.
    [46]Kim YK, Kim VN. Processing of intronic microRNAs. Embo J. 2007;26(3):775-83.
    [47]Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902-10.
    [48]Kim VN.MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol.2005;6(5):376-85.
    [49]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature.2003 Sep 25;425(6956):415-9.
    [50]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U.Nuclear export of microRNA precursors. Science.2004;303(5654):95-8.
    [51]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science.2002;297(5589):2056-60.
    [52]Ross JS,Carlson JA,Brock G. miRNA:the new gene silencer. Am J Clin Pathol. 2007;128(5):830-6.
    [53]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.2006;6(4):259-69.
    [54]Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature.2004;432(7014):226-30.
    [55]Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al.miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005;102(39):13944-9.
    [56]Llave C, Xie Z, Kasschau KD, Carrington JC.Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002;297(5589):2053-6.
    [57]Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D.Control of leaf morphogenesis by microRNAs. Nature. 2003;425(6955):257-63.
    [58]Tang G, Reinhart BJ, Bartel DP, Zamore PD.A biochemical framework for RNA silencing in plants. Genes Dev.2003;17(1):49-63.
    [59]Yekta S, Shih IH, Bartel DP.MicroRNA-directed cleavage of HOXB8 mRNA. Science.2004 Apr 23;304(5670):594-6.
    [60]Eshed Y, Bowman JL. MicroRNAs guide asymmetric DNA modifications guiding asymmetric organs. Dev Cell.2004;7(5):629-30.
    [61]Wu L, Belasco JG.Mol Cell. Let me count the ways:mechanisms of gene regulation by miRNAs and siRNAs.2008;29(1):1-7.
    [62]Steitz JA, Vasudevan S. miRNPs:versatile regulators of gene expression in vertebrate cells.Biochem Soc Trans.2009;37(Pt 5):931-5.
    [63]Karres JS, Hilgers V, Carrera I, Treisman J, The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cohen SM. Cell.2007;131(1):136-45.
    [64]Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K.MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb.Cell.2007;131(1):146-59.
    [65]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-54.
    [66]Ambros V.MicroRNA pathways in flies and woms:Growth, death,fat, stress,and timing. Cell.2003;113(6):673-6.
    [67]Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease:a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res.2009;37(Database issue):D98-104.
    [68]Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell.2003;5(2):351-8.
    [69]Conaco C, Otto S, Han JJ, Mandel GReciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A. 2006;103(7):2422-7.
    [70]Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell.2006;11(4):441-50.
    [71]Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol.2009;16(4):365-71.
    [72]Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L.MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci.2008;11(6):641-8.
    [73]Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans.Nature.2003;426(6968):845-9.
    [74]Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision.Proc Natl Acad Sci U S A.2005;102(35):12449-54.
    [75]Yekta S, Shih IH, Bartel DP.MicroRNA-directed cleavage of HOXB8 mRNA. Science.2004;304(5670):594-6.
    [76]Visvanathan J, Lee S, Lee B, Lee JW, Lee SK.The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev.2007;21(7):744-9.
    [77]Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience. 2009;12(4):399-408.
    [78]Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A.2005;102(45):16426-31.
    [79]Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S,et al. microRNA modulation of circadian-clock period and entrainment. Neuron.2007;54(5):813-29.
    [80]Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A. A MicroRNA feedback circuit in midbrain dopamine neurons.Science.2007;317(5842):1220-4.
    [81]Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature.2006;439(7074):283-9.
    [82]Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A.2010;107(5):1876-81.
    [83]Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010;65(3):373-84.
    [84]Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH.MicroRNA expression in zebrafish embryonic development. Science.2005;309(5732):310-1.
    [85]Martello G, Zacchigna L, Inui M, Montagner M, Adorno M, Mamidi A, Morsut L, Soligo S, Tran U, Dupont S, MicroRNA control of Nodal signalling. Nature. 2007;449(7159):183-8.
    [86]Xia W, Cao G, Shao N. Progress in miRNA target prediction and identification.Sci China C Life Sci.2009;52(12):1123-30.
    [87]Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH, Huang HD. miRNAMap 2.0:genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res.2008;36(Database issue):D165-9.
    [88]Nam S, Kim B, Shin S, Lee S. miRGator:an integrated system for functional annotation of microRNAs. Nucleic Acids Res.2008;36(Database issue):D159-64.
    [89]Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M, Grosse I, Sellis T, Hatzigeorgiou AG. miRGen 2.0:a database of microRNA genomic information and regulation. Nucleic Acids Res.2010;38(Database issue):D137-41.
    [90]余鑫煜,许正平。蛋白质相互作用数据库及其应用。中国生物化学与分子生物学报。2008,24(3):189-96。
    [91]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8.
    [92]Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AGmiRGen:a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res.2007 Jan;35(Database issue):D149-55.
    [93]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al.Human Protein Reference Database-2009 update.Nucleic Acids Res. 2009;37(Database issue):D767-72.
    [94]Nogales-Cadenas R, Carmona-Saez P, Vazquez M, Vicente C, Yang X, Tirado F, Carazo JM, Pascual-Montano A. et al.GeneCodis:interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res.2009;37(Web Server issue):W317-22.
    [95]Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A.GENECODIS:a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol.2007;8(1):R3.
    [96]Krichevsky AM, Sonntag KC, Isacson O, Kosik KS.Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells. 2006;24(4):857-64.
    [97]Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR.Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol.2004;5(9):R68.
    [98]Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU. miChip:an array-based method for microRNA expres-sion profiling using locked nucleic acid capture probes. Nat Protoc.2008;3(2):321-9.
    [99]Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, John-son JM. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA.2005;11(11):1737-44.
    [100]Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques.2005;39(4):519-25.
    [101]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al. Real-time quantifi-cation of microRNAs by stem-loop RT-PCR. Nucleic Ac-ids Res.2005;33(20):e179.
    [102]Cao H, Yang CS, Rana TM.Evolutionary emergence of microRNAs in human embryonic stem cells. PLoS One.2008;3(7):e2820.
    [103]Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA.2003;9(10):1274-81.
    [104]Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific MicroRNAs from mouse. Curr Biol. 2002;12(9):735-9.
    [105]Singh SK. miRNAs:from neurogeneration to neurodegeneration. Pharmacogenomics.2007;8(8):971-8.
    [106]Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K.Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19(4):489-501.
    [107]Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ. Dicer is essential for mouse development. Nat Genet.2003 Nov;35(3):215-7.
    [108]Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF.MicroRNAs regulate brain morphogenesis in zebrafish. Science.2005;308(5723):833-8.
    [109]Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci.2006;29:77-103.
    [110]Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.2004;5(3):R13.
    [111]Bartel DP, Chen CZ. Micromanagers of gene expression:The potentially widespread influence of metazoan microRNAs. Nat Rev Genet.2004;5(5):396-400.
    [112]Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube.Genes Dev.2007;21(5):531-6.
    [113]Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A, Schumacher S, Nitsch R.Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 2007;21(2):415-26.
    [114]Yu JY, Chung KH, Deo M, Thompson RC, Turner DL.MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res. 2008;314(14):2618-33.
    [115]Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT.The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008;28(5):1213-23.
    [116]Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I, Hall H, et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One.2007 Sep 12;2(9):e873.
    [117]Yang GH, Wang F, Yu J, Wang XS, Yuan JY, Zhang JW. MicroRNAs are involved in erythroid differentiation control. J Cell Biochem. 2009;107(3):548-56.
    [118]Fish JE, Srivastava D. MicroRNAs:opening a new vein in angiogenesis research. Sci Signal.2009;2(52):pel.
    [119]Liu SP, Fu RH, Yu HH, Li KW, Tsai CH, Shyu WC, Lin SZ. MicroRNAs Regulation Modulated Self-Renewal and Lineage Differentiation of Stem Cells. Cell Transplant.2009;18(9):1039-45.
    [120]Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D. microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA.2008;105(46):17830-5.
    [121]Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun.2007;364(3):509-14.
    [122]Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG. The database of experimentally supported targets:a functional update of TarBase. Nucleic Acids Res.2009;37(Database issue):D155-8.
    [123]Kim VN, Nam JW. Genomics of microRNA.Trends Genet.2006;22(3):165-73. Epub 2006 Jan 30.
    [124]Velu CS, Baktula AM, Grimes HL. Gfil regulates miR-21 and miR-196b to control myelopoiesis. Blood.2009;113(9):4720-8.
    [125]Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.Nature.2009;458(7239):762-5.
    [126]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al.Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99(24):15524-9.
    [127]Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L, San Jose-Eneriz E, Abizanda G, Rodriguez-Otero P, Fortes P,et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia.Cancer Res.2009 May 15;69(10):4443-53.
    [128]Grant-Downton RT, Dickinson HG. Epigenetics and its implications for plant biology 2. The'epigenetic epiphany':epigenetics, evolution and beyond. Ann Bot.2006;97(1):11-27.
    [129]Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stress. Cancer Res.2006;66(22):10843-8.
    [130]Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F, Garcia-Foncillas J. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer.2009; 125(11):2737-43.
    [131]Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.BMC Med.2008;6:14.
    1 Levine M, Tjian R. Transcription regulation and animal diversity. Nature,2003,424: 147-151.
    2 Zamore PD, Haley B. Ribo-gnome:The big world of small RNAs. Science,2005,309: 1519-1524.
    3 Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development,2005,132:4653-4662.
    4 Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J,2002,21:4663-4670.
    5 Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003,425:415-419.
    6 Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004, 303:95-98.
    7 Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297:2056-2060.
    8 Dostie J, Mourelatos Z, Yang M, et al. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA,2003,9:180-186.
    9 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005,120:15-20.
    10 Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004,303:2022-2025.
    11 Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature, 2003,425:257-263.
    12 Krek A, Griin D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet, 2005,37:495-500.
    13 Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005,433:769-773.
    14 Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell,2005,122:6-7.
    15 Chen L, Daley GQ. Molecular basis of pluripotency. Hum Mol Genet,2008,17:R23-27.
    16 Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific MicroRNAs from mouse. Curr Biol,2002,12:735-739.
    17 Miska EA, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol,.2004;5(9):R68.
    18 Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science,2005,310:1817-1821.
    19 Stark A, Brennecke J, Bushati N, et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3_UTR evolution. Cell,2005,123:1133-1146.
    20 Sempere LF, Sokol NS, Dubrovsky EB, et al.Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad-Complex gene activity. Dev Biol,2003,259:9-18.
    21 Hong Cao, Chao-shun Yang, Tariq M. Evolutionary Emergence of microRNAs in Human Embryonic Stem Cells. PLoS ONE,2008,3:e2820
    22 Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol,2004,5:R13
    23 Wheeler G, Ntounia-Fousara S, Granda B, et al.. Identification of new central nervous system specific mouse microRNA. FEBS Lett,2006,580:2195-2200.
    24 Hua YJ, Tang ZY, Tu K, et al. Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics,2009,10:214
    25 Krichevsky AM., Kevin S, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA,2003,9:1274-1281.
    26 Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell, 2003,5:351-8.
    27 Conaco C, Otto S, Han JJ, et al. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A.2006,103:2422-2427.
    28 Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell,2006,11:441-450.
    29 Wulczyn FG, Smirnova L, Rybak A, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J,2007,21:415-426.
    30 Krichevsky AM, Sonntag KC, Isacson O, et al. Specific microRNAs modulate embryonic stem cellderived neurogenesis. Stem Cells,2006,24:857-864.
    31 Cohen SM, Brennecke J, Stark A. Denoising feedback loops by thresholding-a new role for microRNAs. Genes Dev,2006,20:2769-2772.
    32 Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev,2005,19:489-501.
    33 Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet,2003,35:215-217.
    34 Antonio J. Giraldez, Ryan M. et al. MicroRNAs regulate Brain Morphogenesis in Zebrafish. Science,2005,308:833-838
    35 Leucht C, Stigloher C, Wizenmann A, et al. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci,2008,11:641-8.
    36 Xinwei Cao, Samuel L. Pfaff, et al. A functional study of miR-124 in the developing neural tube. Genes Dev,2007,21:531-536.
    37 Wulczyn FG, Smirnova L, Rybak A, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J,2007,21:415-426
    38 Visvanathan J, Lee S, Lee B et al. The microRNA miR-124 antagonizes the anti-neural EST/SCP1 pathway during embryonic CNS development. Genes Dev,2007,21:744-749
    39 Yu JY, Chung KH, Deo M. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res,2008,314:2618-33.
    40 Martello G, Zacchigna L, Inui M, et al. MicroRNA control of Nodal signalling. Nature,2007, 449:183-188.
    1. Abee L. Boyles, Ashley V, at el. Neural Tube Defects and Folate Pathway Genes: Family-Based Association Tests of Gene-Gene and Gene-Environment Interactions. Environ Health Perspect.2006; 114(10):1547-52.
    2. Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects.Hum Mol Genet. 2009;18(R2):R113-29.
    3. Chen CP.Chromosomal abnormalities associated with neural tube defects (Ⅱ):partial aneuploidy. Taiwan J Obstet Gynecol.2007;46(4):336-51.
    4. Chen CP.Chromosomal abnormalities associated with neural tube defects (Ⅰ):full aneuploidy. Taiwan J Obstet Gynecol.2007;46(4):325-35.
    5. De Marco P, Merello E, Mascelli S,et al. Current perspectives on the genetic causes of neural tube defects.Neurogenetics.2006;7(4):201-21.
    6.叶中德,吴畏。非洲爪蟾早期胚胎发育中的Wnt信号。生命科学。2007,19(4):359-363。
    7.李泽桂。神经管发生中的形态学事件和分子机制。第三军医大学学报。1999,21(8):613-616。
    8. van der Put NM, van Straaten HW, Trijbels FJ, et al. Homocysteine and Neural Tube Defects:An Overview. Exp Biol Med (Maywood).2001;226(4):243-70
    9. Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet.2007;71(4):295-310.
    10. Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev.2001;11(5):547-53.
    11.张平。Wnt信号转导及其生物效应。中国生物化学与分子生物学报。2001,17(4):415-419。
    12. Veeman MT,Axelrod JD,Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell.2003;5 (3):367-77.
    13. Willert K, Brown JD, Danenberg E. et al.Wnt Proteins are lipid-modified and can act as stem cell growth factors.Nature.2003;277(4):423-45
    14. Zeng L, Fagotto F, Zhang T, et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell.1997; 90(1):181-92.
    15. Satoh K, Kasai M, Ishidao T, et al. Anteriorization of neural fate by inhibitor of b-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling. Proc Natl Acad Sci USA 2004;101(21):8017-21.
    16. Hamblet NS, Lijam N, Ruiz-Lozano P, et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development.2002; 129(24):5827-38.
    17. Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell. 1998;93(3):361-72.
    18. Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci.2006;26(8):21-2156.
    19. Carter M, Chen X, Slowinska B, et al. Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci USA.2005;102(36):12843-8.
    20. Sabapathy K, Jochum W, Hochedlinger K, et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev.1999; 89(1-2):115-24.
    21. Zhu HP, Lu W, Laurent C, et al. Genes encoding catalytic subunits of protein kinase A and risk of spina bifida. Birth Defects Res A Clin Mol Teratol.2005;73(9):591-6.
    22. Sah VP, Attardi LD, Mulligan GJ, et al. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet.1995;10(2):175-80.
    23. Greco TL, Takada S, Newhouse MM, et al. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev. 1996;10(3):313-24.
    24. Keller R, Sh im J, Sater A. The cellular basis of the convergence and extension of the xenopus neural p late. Dev Dyn.1992;193(3):199-217.
    25. Sausedo RA, Sm ith JL, Schoenwo If GC. Role of nonrandomly oriented cell division in shaping and bending of the neural plate. J Comp Neurol.1997;381(4):473-88.
    26. Torban E, Kor C, Gros P,et al.. Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates. Trends Genet.2004;20(11):570-7.
    27. Ueno N, Greene ND. Planar Cell Polarity Genes and Neural Tube Closure. Birth Defects Res C Embryo Today.2003;69(4):318-24.
    28. Winter CG, Wang B, Ballew A, et al. Drosophila Rho-associated kinase(Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton.Cell. 2001;105(1):81-91.
    29. Wansleeben C, Feitsma H, Montcouquiol M, et al. Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b. Development. 2010; 137(7):1067-73.
    30. Murdoch JN, Henderson DJ, Doudney K, et al. Disruption of scribble (Scrbl) causes severe neural tube defects in the circletail mouse. Hum. Mol. Genet.2003;12(2):87-98.
    31. Curtin JA, Quint E, Tsipouri V, et al. Mutation of Celsrl disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol.2003;13(13):1129-33.
    32. Lu X, Borchers AG, Jolicoeur C, et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature.2004;430(6995):93-8.
    33. Wang J, Hamblet NS, Mark S, et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development. 2006;133(9):1767-78.
    34. Etheridge SL, Ray S, Li S, et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet.2008;4(11):e1000259.
    35. Narimatsu M, Bose R, Pye M, et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell.2009;137(2):295-307.
    36. Jessen JR, Topczewski J, Bingham S, et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol.2002;4(8):610-5.
    37. Veeman MT, Slusarski DC, Kaykas A,et al. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol.2003;13(8):680-5.
    38. Takeuchi M, Nakabayashi J, Sakaguchi T, et al. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol.2003;13(8):674-9.
    39. Wallingford JB, Harland RM. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development.2002;129(24):5815-25.
    40. Brian Ciruna, Andreas Jenny, Diana Lee,et al. Planar cell polarity signalling couples cell division and morphogenesis during neurulation.Nature.2006; 439(7073):220-4.
    41. Nybakken K, Perrimon N.Hedgehog signal transduction:recent findings. Curr Opin Genet Dev.2002;12(5):503-11.
    42. Lu X, Borchers AG, Jolicoeur C, et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature.2004;430(6995):93-8.
    43.白戈,唐珂,景乃禾。Wnt与其他信号通路在胚胎发育过程中的crosstalk。生命的化学。2002,22(4):304-8。
    44. Klootwijk R, Groenen P, Schijvenaars M, Hol F, et al. Genetic variants in ZIC1, ZIC2 and ZIC3 are not major risk factors for neural tube defects in humans. Am J Med Genet 2004;124A(1):40-7.
    45. Ybot-Gonzalez P, Cogram P, Gerrelli D, et al. Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development.2002;129(10):2507-17.
    46. Sasaki H, Hui C, Nakafuku M, et al. A binding site for Gli proteins is essential for HNF-3b floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development. 1997;124(7):1313-22.
    47. Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse sonic hedgehog signalling pathway. Nature.2001;412(6834):194-198.
    48. Harris MJ.Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants. Birth Defects Res A Clin Mol Teratol.2009;85(4):331-9.
    49. Stamataki D, Ulloa F, Tsoni SV, et al. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube.Genes Dev.2005;19(5):626-41.
    50. Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature.1996;383(6599):407-13.
    51. Zhu H, Barber R, Shaw GM, et al. Is Sonic hedgehog (SHH) a candidate gene for spina bifida? A pilot study. Am J Med Genet A.2003;117(1):87-8.
    52. Zhu H, Lu W, Laurent C, et al. Genes encoding catalytic subunits of protein kinase A and risk of spina bifida. Birth Defects Res A Clin Mol Teratol.2005;73(9):591-6.
    53. Ybot-Gonzalez P, Gaston-Massuet C, Girdler G, et al. Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development. 2007;134(17):3203-11.
    54. Linker C, Stern CD. Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists.Development.2004;131(22):5671-81.
    55. Felder B, Stegmann K, Schultealbert A et al. Evaluation of BMP4 and its specific inhibitor NOG as candidates in human neural tube defects(NTDs). Eur J Hum Genet.2002;10(11): 753-756.
    56. Saxton TM, Pawson T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc Natl Acad Sci USA.1999; 96(7):3790-5.
    57. Lee DH, Phi JH, Chung YN,et al. Expression of neuronal antigens and related ventral and dorsal proteins in the normal spinal cord and a surgically induced open neural tube defect of the spine in chick embryos:an immunohistochemical study.Childs Nerv Syst. 2010;26(5):627-36.
    58. Trovato M, D'Armiento M, Lavra L,et al. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.Virchows Arch.2007 Feb;450(2):203-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700