用户名: 密码: 验证码:
脊髓损伤所致膀胱尿道功能障碍的动物实验与临床分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤(spinal cord injury, SCI)是由于各种原因引起的脊髓结构、功能损害后损伤水平以下脊髓功能的障碍。脊髓损伤(SCI)后病人全身的并发症较多,涉及到泌尿、呼吸、循环、内分泌、心理等多个方面。膀胱尿道功能障碍造成肾脏损害可最终引发肾功能衰竭,这是SCI病人晚期死亡的主要原因。从根本上看,SCI导致的膀胱尿道功能障碍的原因仍在于脊髓损伤,积极探讨脊髓损伤膀胱尿道功能障碍的发病机制,有着重要的临床意义和良好的发展和应用前景。
     本研究从基础与临床研究两个方面开展了相关的工作。研究内容包括以下5个部分:
     第一部分制备标准化脊髓损伤动物模型实验装置的研发
     目的:
     研制一种用于制备标准化脊髓损伤动物模型的实验装置。
     产品说明:
     该实验装置,包括一个实验台,若干个固定在实验台上由垂直滑杆和水平滑杆构成的支撑杆。在其中二个支撑杆上设置挂钩,一个支撑杆上安装有由中空的垂直冲击通道和冲击杆组成的垂直冲击装置,另一个支撑杆上安装有由水平冲击板、前摆杆、分度板和水平冲击杆共同构成并依靠冲击开关控制的侧击打装置,在侧击打装置上还附属有一个由升降提钩和砝码盘组成的垂直提升装置。
     结论:
     本装置可以制备脊髓前方(腹侧)、后方(背侧)及两侧不同角度的多种单一部位的脊髓损伤以及各种方位联合的复合脊髓损伤的标准化动物模型。
     第二部分标准化脊髓损伤动物模型的制备与验证
     目的:
     验证自行研制的标准化脊髓损伤动物模型实验装置制备大鼠腹侧、背侧脊髓损伤模型的可调控性和可重复性。
     方法:
     清洁级SD雌性大鼠74只,随机分成三大组10小组:(1)正常对照组6只,(2)背侧损伤6组(分为6.25g/2cm、6.25g/4cm、6.25g/10cm、17g/2cm、17g/4cm和17g/10cm共6个小组,每组6-10只)。(3)腹侧损伤3组(分为15g、30g、50g共3个小组,每组6-8只)。各组动物分别在伤后24h和96h进行行为学评估。术后第5天,每组随机选择2只大鼠,行4%多聚甲醛左心灌注后,取损伤脊髓节段制备病理标本,观察脊髓损伤情况。
     结果:
     造模的脊髓背侧和腹侧损伤大鼠与对照组大鼠的运动功能评价结果比较均有显著性差异(P<0.05)。同等质量冲击杆,随着冲击杆落下高度的增加,大鼠的双下肢改良Tarlov分级评分法评分逐渐下降,大鼠Ashworth肌张力评分呈增高趋势,大鼠斜板实验临界角逐渐下降,BBB评分呈降低趋势;冲击杆落下高度相同时,随着冲击杆质量的增加,亦表现出大鼠的双下肢改良Tarlov分级评分法评分逐渐下降,大鼠Ashworth肌张力评分呈增高趋势,大鼠斜板实验临界角逐渐下降,BBB评分呈降低趋势;增加冲击杆落下高度和冲击杆质量,模型大鼠的脊髓损伤程度加重,其运动功能评价也随之发生相应变化。脊髓腹侧损伤大鼠随着砝码质量的增加,造模大鼠受到的腹侧向上提拉的力量增大,造模大鼠双下肢改良Tarlov分级评分法评分逐渐下降,大鼠斜板实验临界角逐渐下降,BBB评分呈降低趋势,但是Ashworth肌张力评分只有左下肢比较有统计学意义。
     同等质量冲击杆,冲击杆落下高度也相同时,脊髓背侧损伤模型大鼠的脊髓结构破坏程度基本相同;同等质量冲击杆,随着冲击杆落下高度的增加,模型大鼠脊髓结构破坏程度加重;冲击杆落下高度相同时,随着冲击杆质量的增加,模型大鼠脊髓结构破坏程度加重;增加冲击杆落下高度和冲击杆质量,模型大鼠脊髓结构破坏程度加重。相同砝码质量的脊髓腹侧损伤大鼠模型,其脊髓结构破坏程度基本相同;增加砝码质量,模型大鼠脊髓结构破坏程度加重。
     结论:
     应用我们自行设计的实验装置来制备标准化脊髓损伤模型是成功的。本研究中建立的大鼠脊髓背侧和腹侧损伤模型均可以是脊髓分级损伤的模型,整个操作技术简便,重复性较好。可根据实际需要调节打击高度、冲击杆重量、提升装置的下压砝码来控制脊髓损伤的程度,使之达到客观量化的目的。对于分析脊髓分级损伤的组织形态学变化、病理机制以及探讨相应的治疗措施和观察治疗效果都有十分重要的意义。
     第三部分脊髓损伤大鼠膀胱功能改变的尿动力学评估
     目的:
     了解大鼠胸腰段、骶髓脊髓背侧损伤后膀胱功能改变的情况,为临床诊断和治疗提供参考依据。
     方法:
     健康雌性SD大鼠30只,分为三组,①组:胸腰段脊髓损伤12只,②组:骶髓损伤12只,③组:对照组6只。造模后记录其每次手法挤压排尿的量,术后第14天行尿流动力学检查,测定其最大膀胱容量,残余尿量和膀胱顺应性。
     结果:
     在麻醉及脊髓休克期,胸腰段脊髓损伤组和骶髓损伤组动物有尿潴留情况;在脊髓休克恢复期,胸腰段脊髓损伤大鼠表现为低顺应性膀胱,骶髓损伤组表现为高顺应性膀胱。最大膀胱容量增高和残余尿增多的情况在骶髓损伤中更为常见。
     结论:
     不同部位脊髓损伤后存在膀胱顺应性变化的差异。这可能与部位不同损伤的神经通路差异有关。
     第四部分脊髓损伤患者排尿功能障碍的尿动力学分析
     目的:
     通过分析脊髓损伤患者在脊髓休克期后尿动力学检测结果,了解骶髓损伤和胸腰段脊髓损伤后膀胱尿道功能障碍是否存在明显差异,为临床尿动力分析提供客观资料和依据。
     方法:
     回顾性分析30例脊髓损伤患者的尿动力学检测结果,根据患者的影像学资料将其分为骶髓损伤组和胸腰段脊髓损伤组,收集患者的一般临床资料,行自由尿流率测定、完全膀胱测压并同时记录肌电图。选择的尿动力学参数包括:最大自由尿流率、2秒时自由尿流率、平均自由尿流率、自主排尿量、残余尿量、完全测压时测得的最大尿流率、完全测压时测得的平均尿流率、完全测压时的排尿量、完全测压时排尿后2秒的尿流率、排尿期最大尿流率时的逼尿肌压力、排尿期逼尿肌最大压力时的尿流率、排尿期逼尿肌最大压力、排尿期平均压力、膀胱尿道协同性、膀胱顺应性、膀胱感觉。将两组的尿动力检查结果进行比较。
     结果:
     研究表明除了自主排尿量、残余尿量、完全测压时的排尿量、膀胱顺应性两组间存在差异外,其余尿动力学检查指标间比较无显著性差异,并且自主排尿量和完全测压时的排尿量在两组间尚存在矛盾结论。骶髓损伤和胸腰段损伤的患者膀胱尿道功能改变的差异,主要在于膀胱顺应性和膀胱收缩能力的改变。
     结论:
     骶髓损伤和胸腰段脊髓损伤患者区别主要在于膀胱顺应性的差异和膀胱逼尿肌收缩能力的改变。但是尚不能单纯根据脊椎损伤的部位来臆断排尿功能异常的类型,对该类患者的排尿功能准确评价,取决于及时和动态的尿动力学检查,准确评价膀胱功能状态,是确定相关治疗的前提。
     第五部分脊髓损伤患者发生肾积水概率预测模型的构建
     目的:
     建立脊髓损伤发生肾积水概率预测Logistic回归模型,为临床干预提供预测手段。
     方法:
     回顾性分析30例胸腰段和骶部脊髓损伤患者的病例资料,将其一般病例情况和尿动力学检查所得得出的尿动力学参数的变量进行多重共线性分析,并通过将尿动力学参数的变量用主成分分析得到主成分,根据统计分析得出的主成分作为新的变量进行单因素分析,通过logistic的单因素筛选后,取其中有统计学意义的变量作Logistic回归分析,建立Logistic回归方程。
     结果:
     选择病例资料中的14个数值型指标进行多重共线性分析,将容忍度小于0.1的因子做主成分分析。剩余的12个数值型指标进行主成分分析后得出4个主成分,将这些主成分进行单因素分析,并将病例资料中其他拟定的主成分进行logistic的单因素筛选,结果只有膀胱顺应性的指标对胸腰段和骶部脊髓损伤后肾积水的影响差别有统计学意义,将顺应性指标行Logistic回归分析,获得胸腰段和骶部脊髓损伤致肾积水的Logistic回归概率预测模型。
     结论:
     膀胱顺应性对脊髓后肾积水存在较大影响,通过本研究获得的Logistic回归概率预测模型,可以由尿动力学检查获悉的膀胱顺应性情况,预测脊髓损伤患者发生肾积水的风险度。当预测肾积水发生可能性较大时,及时采取干预措施将取得较好的效果。
Spinal cord injury (SCI) is the spinal cord function obstacle below the level of post-injury ,that due to various causes of spinal cord structure and function damage. The systemic complications of spinal cord injury (SCI) patients are more related to urinary, respiratory, circulatory, endocrine, psychological and other aspects. The renal failure caused by urinary bladder dysfunction' kidney damage is the leading cause of death on late SCI patients. We should have a very good development and application prospects in the urodynamic study of bladder and urethra dysfunction Caused By spinal cord injury.
     In this study involved in both clinical and basic research. The study includes the following five sections:
     PartⅠResearch and produce the experimental device on preparation of standardized animal model of spinal cord injury
     Objective:
     To Design and produce a kind of experimental device which can make standardized animal model of spinal cord injury. Product Description:
     The experimental devic including a bench, four rod, one vertical impact device, one sideswipe fighting unit and one vertical lifting device. The rod which composed of vertical and horizontal slider fixed in the experimental bench. The vertical impact device,the sideswipe fighting unit and the vertical lifting device were fixed on the rod respectively.
     Conclusion:
     The device can make single site injury in front of the spinal cord (ventral), posterior (dorsal), and a variety of different angles on both sides of the animal spinal cord,as well as make a variety of composite damage model.
     PartⅡPrepare and Validate the Standardized animal model of spinal cord injury
     Objective:
     To certify ourself-designed experimental devices can prepared the standardized ventral and dorsal spinal cord injury animal model.
     Methods:
     Female SD rats of clean grade 74, 10 groups were randomly divided into three groups:(1) normal control group, 6 rats, (2) dorsal injury groups (divided into 6.25g/2cm, 6.25g/4cm, 6.25g/10cm,17g/2cm,17g/4cm and 17g/10cm total of six groups, each group 6-10 rats). (3) the ventral injury group (divided into 15g,30g,50g total of three groups, each group 6-8 rats). Animals in each group at 24h and 96h after injury to conduct behavioral assessments. The 5 days after injury, rats in each group randomly selected 2 rats, the injured spinal cord had been prepared the pathological section to observe the situation of spinal cord injuries.
     Results:
     When the drop height and the weight of crash bar is same ,the spinal cord injury rats with the basically same motor function and spinal cord dorsal structure damage;The impact of the same weight rod, if the drop height increases the spinal cord injury rats'motor function make worse and spinal cord dorsal structure damage aslo worse; The impact of the same drop height, if the rod weight increases the spinal cord injury rats'motor function make worse and spinal cord dorsal structure damage aslo worse also; when the drop height and the rod weight increases together spinal cord injury rats'motor function and spinal cord dorsal structure damage become worse too.During the course of prepare ventral spinal cord injury model,if the weight is same ,the rats has basically same motor function and spinal cord dorsal structure damage;if we increase the weight,the motor function and the spinal cord structural damage become worse.
     Conclusion:
     Our self-designed experimental device to prepare the standardized rat model of spinal cord dorsal and ventral spinal cord injury was successful.
     PartⅢUrodynamic assessment of Bladder function after spinal cord injury in rats
     Objective:
     To observe the rats' bladder function changes while they have been injuried in the site on thoracolumbar or sacral dorsal spinal cord.
     Method:
     30 healthy female SD rats were divided into three groups, Group1:thoracolumbar spinal cord injury, 12 rats; Group2:sacral spinal cord injury 12 rats; groups3:control group, 6 rats. After they had been prepared to the spinal cord injury model,records the amount of urine when we squeeze the rats' abdomen.14 days later, all rats have urodynamic examination, and record the maximum bladder capacity, residual urine volume and bladder compliance.
     Results:
     During the anesthesia and spinal shock stage, the rats of thoracolumbar spinal cord injury group and the sacral spinal cord injury group all were urinary retention; while recovery from spinal shock, the bladder compliance of the thoracolumbar spinal cord injury rats become decreasing. The bladder changes of the sacral spinal cord injury rats is high compliance. The cases of maximum bladder capacity and residual urine volume increased in sacral spinal cord injury rat is more common than thoracolumbar spinal cord injury rat.
     Conclusion:
     There are difference changes in bladder compliance between the different sites of the spinal cord injury.The reason is that the different injury site cause the neural pathways damage is not same.
     Part IV The Urodynamic Analysis on spinal cord injury patients with urinary voiding dysfunction
     Objective:
     To analyze the urodynamic test results of patients with spinal cord injury after the spinal cord shock period and find the differences of the bladder and urethra dysfunction between the sacral spinal cord injury and Thoracolumbar spinal cord injury.
     Method:
     Retrospective analysis the urodynamic test results of 30 cases spinal cord injury patients after spinal shock stage. According to patient imaging data ,they had been divided into sacral spinal cord injury group and thoracolumbar spinal cord injury group, we collected the clinical data of patients in general and the Urodynamic parameters. Comparing the results of these two groups.
     Results:
     The study found the urine volume by self-voided, residual urine volume, urine volume during cystometry, bladder compliance, there are differences between the two groups. The other urodynamic indicators are no significant differences between the two groups.we also find that the urine volume by self-voided and urine volume during cystometry between the two groups have a conflict conclusion. The difference of bladder and urethra functional changes between Sacral spinal cord injury and thoracolumbar spinal cord injuries are bladder compliance and bladder contractility changes.
     Conclusion:
     The urodynamics' difference between the sacral spinal cord injury group and thoracolumbar spinal cord injury group is bladder compliance and bladder detrusor contractility changes. But we can not assumpt the type of voiding dysfunction according to the injury site of spinal cord only. An accurate assessment of urinary bladder dysfunction of SCI patients need the urodynamics. And the premise of how to determine the relevant treatment is accurate assessment of bladder function status.
     PartⅤConstruction of the urodynamic probability prediction model of the hydronephrosis in the spinal cord injury patients
     Objective:
     To establish Logistic regression model to predict the probability of occurrence on the hydronephrosis in the spinal cord injury patients, and find the prediction tool for clinical interventions.
     Methods:
     Retrospective study the 30 cases clinical data of thoracolumbar and sacral spinal cord injury patients. The clinical date in general case and urodynamic urodynamic parameters had been collect. We had analyzed these parameters variable by the statistical principal component analysis then constructed the Logistic regression equation.
     Results:
     There are 4 principal components in the 12 index of the urodynamics numeric type parameters. By the single-factor logistic screening, found that only indicators of bladder compliance is the suitable indicator. We use the method of Logistic regression analysis, and get the logistic regression equation that predict the probability of occurrence on the hydronephrosis in the thoracolumbar and sacral spinal cord injury patients.
     Conclusions:
     Our study constructe the logistic regerssion model can predict the occurrence of hydronephrosis in the spinal cord injury patients.
引文
[1]DeVivo MJ.Causes and costs of spinal cord injury in the United States[J].Spinal Cord,1997 35(12):809-813.
    [2]侯树勋主编.现代创伤骨科学[M].北京:人民军医出版社,2002:1006.
    [3]韦标方,葛祥花,宋祥平等主编.外科常见病诊疗常规[M].长春:吉林科学技术出版社,2007:106.
    [4]仇保兴主编.灾区重建规划汇编[M].中国建筑工业出版社,2009:9.
    [5]Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column [J]. A preliminary report, JAMA,1911,57:878~880.
    [6]Hiruma S, Otsuka K, Satou T, et al. Simple and reproducible model of rat spinal cord injury induced by a controlled cortical impact device[J]. Neurol Res.1999 Apr,21(3):313-23.
    [7]Bilgen M. A new device for experimental modeling of central nervous system injuries [J]. Neurorehabil Neural Repair.2005,19(3):219-226.
    [8]Scheff SW, Rabchevsky AG, Fugaccia I, et al. Experimental modeling of spinal cord injury: characterization of a force-defined injury device[M]. J Neurotrauma.2003,20(2):179-193.
    [9]张秋林,赵定麟,邱广义,等.大鼠脊髓腹侧压迫损伤模型的研制[J],中国矫形外科杂志,1999,11(6):833~835.
    [1]Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column,A preliminary report [J]. JAMA,1911,57:878~880.
    [2]张秋林,赵定麟,邱广义,等.大鼠脊髓腹侧压迫损伤模型的研制[J],中国矫形外科杂志,1999,11(6):833~835.
    [3]Tarlov IM,Klinger H.Spinal cord compression studies. Ⅱ. Time limits for recovery after acute compression in dogs[J]. Arch Neurol Psychiatry,1954,71(3):271-290.
    [4]Tarlov IM,Klinger H,Vitale S.Spinal cord compression studies. Ⅰ. Experimental techniques to produce acute and gradual compression[J]. AMA Arch Neurol Psychiatry,1953,70(6): 813-819.
    [5]Smith PF.New approaches in the management of spasticity in multiple sclerosis patients: role of cannabinoids[J].Ther Clin Risk Manag,2010,6(3):59-63.
    [6]Rivlin AS, Tator CH.Objective clinical assessment of motor function after experimental spinal cord injury in the rat[J].J Neurosurg.1977,47(4):577-581.
    [7]胡蕴玉主编.现代骨科基础与临床[M].人民卫生出版社,2006:275-276.
    [8]Martinez M, Brezun JM, Bonnier L,et al. A new rating scale for open-field evaluation of behavioral recovery after cervical spinal cord injury in rats[J].J Neurotrauma,2009,26 (7): 1043-1053.
    [9]Rahimi-Movaghar V, Yazdi A, Karimi M, et al. Effect of decompression on complete spinal cord injury in rats[J].Int J Neurosci,2008,118(10):1359-1373.
    [10]Wise Young. Spinal cord contusion models [J]. Progress in Brain Research.2002.137: 231-255.
    [11]卢吴鹏,权正学,刘渤.实验动物脊髓的损伤模型[J].中国骨与关节损伤杂志,2008,23(2):175-176.
    [12]Basso DM, Oeattie MS. Bresnahan C. Graded histological and locomotor outcomes after spinal card contusion using the NYU weight-drop device vemus transection[J]. Exp Neurel,1996,139(2):244-256.
    [1]Nygaard IE, Kreder KJ. Spine update:urological management in patients with spinal cord injuries. Spine.1996;21:128-132
    [2]Selzman AA, Hampel N. Urologic complications of spinal cord injury[J]. Urol Clin North Am,1993,20 (3):453-464.
    [3]Frankel HL, Coll JR, Charlifue SW, et al.Long-term survival in spinal cord injury:a fifty year investigation[J].Spinal Cord,1998,36(4):266-274.
    [4]刘满合.唐山地震25年截瘫病人死亡原因调查与分析[J].伤残医学杂志,2001,9(4):50-51.
    [5]郭友仁.唐山大地震截瘫15年康复工作回顾[J].伤残医学杂志,1994,2(4):282-284.
    [6]Donnelly J, Hackler RH, Bunts RC. Present uro logic status of the World War II paraplegic: 25-year followup Camparison with status of the 20-year Korean War paraplegic and 5-year Vietnam paraplegic[J].J Urol,1972,108(4):558-562.
    [7]Borges PM, Hackler RH. The urologic status of the Vietnam war paraplegic:a 15-year prospective followup[J]. J Urol,1982,127(4):710-711.
    [8]李建军,周红俊,刘根林,等.唐山地震26年后幸存脊髓损伤患者的社会调查[J].中国康复理论与实践,2005,11(2):110-112.
    [9]龚宇,宋波,金锡御,等.糖尿病膀胱顺应性及逼尿肌舒缩功能的实验研究[J].中华外科杂志,2000,38(11):865~867.
    [10]Malmgren A, Sjogren C, Uvelus B, et al. Cystometrical evaluation of bladder instability in rat with intravesical outflow obestraction[J]. The Journal of Urology. 1987. 173:1291~1294.
    [11]Loewy AD, Saper CB, Baker PP. Descending projections from the pontine micturition center[J]. Brain Res,1979,172:533-538.
    [12]金锡御,宋波.临床尿动力学.第一版.北京:人民卫生出版社.2002:269—285.
    [13]Drake MJ, Fowler CJ, Griffiths D, et al. Neural control of the lower urinary and gastrointestinal tracts:supraspinal CNS mechanisms[J].Neurourol Urodyn.2010, 29(1):119-127.
    [14]金锡御,吴雄飞.尿道外科学(第二版)[M].北京:人民卫生出版社,2004;395—414.
    [15]Fam B A, Sarkarati M, Yalla S V. Spinal cord injury. In:Neurourology and Urodynamics. Eds Yalla S V, McGuire J E, Elbadawi A et al. New York: Macmillan Publishing Company.1988:291-302
    [16]de Groat W C. Mechanisms underlying the recovery of lower urinary tract fimction following spinal cord injury[J]. Paraplegia.1995,33:493—505
    [17]Chancellor M B, Blaivas J G. Spinal cord injury. In:Practical Neuro—Urology: Genitourinary Complications of Neurologic Disease[M]. Eds, M. B. Chancellor, Blaivas JG. Butterworth—Heinemann, Newton.1996; 99—118
    [18]de Groat W C, Kruse M N, Vizzard M A, et al. Modication of urinary ladder function after spinal cord injury. In:Advances in Neurology, Neuronal Regeneration, Reorganization, and Repair[M]. Ed, F. L. Seil. Lippincott. Raven Publishers. Philadelphia. 1997; 72:347—364
    [19]Birder L, de Groat W, Mills I, Morrison J, Thor K, Drake M.Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol Urodyn.2010;29(1):128-139.
    [20]Wyndaele JJ.Investigating afferent nerve activity from the lower urinary tract: highlighting some basic research techniques and clinical evaluation methods. Neurourol Urodyn. 2010;29(1):56-62.
    [21]刘根林.李建军.脊髓损伤继发肾积水的病理生理与治疗.中国康复理论与实践,2006,12:1026-1028.
    [22]张玉海.膀胱排尿功能障碍.第一版.北京:人民卫生出舨社.2000:1-25.
    [23]金锡御,宋波.临床尿动力学.第一版.北京:人民卫生出版社.2002:1—69.
    [1]Cardenas DD. Neurogenic bladder evaluation and management[J]. Phys Med Rehabil Clin North Am,1992,3:751-763.
    [2]郭应禄,杨勇.尿失禁(第一版)[M].济南:山东科学技术出版社.2003:272—277.
    [3]Paul Abrams.Urodynamics [M].Springer-Verlag London limited.1997:61.
    [4]Elbadawi A.Functional anatomy of the organs of micturition [J]. Urol Clin North Am, 1996,23:177-210
    [5]Blok B F M, Willenxsen A T M, Holstege Q A.PET studyonbralncontrol of micturition in humans[J]. Brain,1997,120:111-121.
    [6]Nygaard I E, Kreder K J. Spine update:urological management in patients with spinal cord injuries[J]. Spine.1996,21:128-132.
    [7]任竹英,双卫兵,吕彦敏等.尿动力学检查的临床操作体会[J].护理研究.2003,17(sup1):123.
    [8]Paul Abrams.Urodynamics [M].Springer-Verlag London limited.1997:1
    [9]陈忠,崔喆,双卫兵.神经源性膀胱[M].北京:人民卫生出版社,2009:173.
    [10]Wyndaele JJ. Investigating afferent nerve activity from the lower urinary tract:highlighting some basic research techniques and clinical evaluation methods[J]. Neurourol Urodyn, 2010,29(1):56-62.
    [11]de Groat WC. Anatomy and physiology of the lower urinary tract [J].Urol Clin Nort h Am, 1993,20:383.
    [1]李建军,周红俊,刘根林,等.唐山地震26年后幸存脊髓损伤患者的社会调查[J].中国康复理论与实践,2005,11(2):110-112.
    [2]郭友仁,张树朝,孙淑敏.外伤性截瘫晚期死亡原因分析[J].中国康复医学杂志,1990,5(5):227.
    [3]李建军,周红俊,洪毅,等.2002年北京市脊髓损伤发病率调查[J].中国康复理论与实践,2004,10(7):32-33.
    [4]廖利民,李建军.努力提高我国神经泌尿学的基础研究与临床诊疗水平[J].中国康复理论与实践,2005,11(11):873-874.
    [5]郭应禄,沈绍基.现代泌尿外科诊疗手册[M].北京:北京医科大学中国协和医科大学联合出版社,1998:83-84.
    [6]郁士娟,张贵平,李雪梅,等.超声对脊髓损伤患者泌尿系统合并症的应用与评价[J].中国康复研究中心学刊,1993,4(1):2
    [7]滕若冰,梁月有,梁卫洁.基于尿动力学客观指标的神经原性膀胱概率预测模型构建[J].中国组织工程研究与临床康复,2007,11(22):4344—4348.
    [8]Paul Abrams.Urodynamics [M]. Springer-Verlag London limited.1997,61.
    [9]王纯正,徐智章.超声诊断学[M].第2版.北京:人民卫生出版社,2001.304-305.
    [10]Seher AT. Changes in the upper urinary tract as demonstrated on intravenous pyelography and micturating cysto—urethrography in patients with spinal cord injury[J]. Paraplegia, 1975,13(3):157-161.
    [11]Hackler RH, Hall MK, Zampieri TA. Bladder hypocomplianee in the spinal cord injury population[J]. J Urol,1989,141(6):1390-1393.
    [12]鞠彦合,廖利民,李东,等.脊髓损伤后并发肾积水患者的影像尿动力学特点与处理[J].中国脊柱脊髓杂志,2009,19(9):646-649.
    [13]张玉海.膀胱排尿功能障碍[M]北京:人民卫生出版社,2000:6-7,21-25.。
    [14]陈忠,崔拮,双卫兵.神经源性膀胱[M].北京:人民卫生出版社,2009:213-219.
    [15]刘根林,李建军,周红俊,等.58例脊髓损伤合并轻中度肾积水的临床分析[J].中国康 复理论与实践,2006,12(7):571-573.
    [16]郭应禄,沈绍基.现代泌尿外科诊疗手册[M].北京:北京医科大学中国协和医科大学联合出版社,1998:83-84.
    [17]刘根林,汪家琮,周红俊,等.46例脊髓损伤患者并发肾积水的疗效分析[J].中国康复理论与实践,2001,7(2):64-67.
    [18]Siddall PJ.Management of neuropathic pain following spinal cord injury: now and in the future[J].Spinal Cord.2009,47(5):352-359.
    [19]Olby N.Current concepts in the management of acute spinal cord injury.J Vet Intern Med. 1999,13(5):399-407.
    [20]Jorgensen B, Olsen LH, Jorgensen TM. Natural fill urodynamics and conventional cystometrogram in infants with neurogenic bladder[J]. J Urol.2009,181(4):1862-1868.
    [21]Jamil F, Williamson M, Ahmed YS, et al. Natural-fill urodynamics in chronically catheterized patients with spinal-cord injury[J]. BJU Int.1999,83(4):396-399.
    [22]谭红专.现代流行病学(第1版)[M].北京:人民卫生出版社,2000:220—439.
    [23]李立明.流行病学(第5版)[M].北京:人民卫生出版社,2001:82—99.
    [24]张文彤.主成分分析与因子分析.见:张文彤,主编.SPSS统计分析高级教程(第1版)[M].北京:高等教育出版社,2004:213--214.
    [1]David S, Aguayo AJ. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats[J].Science,1981,214:931-933.
    [2]Golden KL, Pearse DD, Blits B, et al.Transduced Schwann cells promote axon growth and myelination after spinal cord injury[J]. Exp Neurol.2007,207(2):203-217.
    [3]Pearse DD, Sanchez AR, Pereira FC, et al. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord:Survival, migration, axon association, and functional recovery[J]. Glia,2007,55(9):976-1000.
    [4]Pearse DD, Bunge MB. Designing cell-and gene-based regeneration strategies to repair the injured spinal cord[J]. J Neurotrauma,2006,23(3-4):438-452.
    [5]Moon L, Bunge MB. From animal models to humans:strategies for promoting CNS axon regeneration and recovery of limb function after spinal cord injury[J]. J Neurol Phys Ther, 2005,29(2):55-69.
    [6]Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells[J]. Science,1997,277:2000-2002.
    [7]Bregman BS, Kunkel-Bagden E, Schnell L, et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors [J]. Nature,1995,378:498-501.
    [8]Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cord injury[J]. Paraplegia,1994,2(5):300-307.
    [9]Xiao CG, De Groat WC, Godec CJ, et al. "Skin-CNS-bladder" reflex pathway for micturition after spinal cord injury and its underlying mechanisms[J]. J Urol,1999,162(3 Pt 1):936-942.
    [10]Wang HZ, Li SR, Wen C, et al. Morphological changes of cholinergic nerve fibers in the urinary bladder after establishment of artificial somatic-autonomic reflex arc in rats[J]. Neurosci Bulletin,2007,23 (5):277-281.
    [11]Xiao CG, Du MX, Dai C, et al. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury:preliminary results in 15patients[J].JUrol,2003,170(4Pt1):1237-1241.
    [12]海波,刘宇,陈朝晖,等.大鼠体神经-内脏神经吻合再生后脊髓前角异体神经元的分离和凝集素的表达变化及作用[J].解剖学报,2007,38(5):515-519.
    [13]程时刚,肖传国.大鼠体神经-内脏神经吻合后脑源性神经营养因子及其受体的表达变 化[J].神经解剖学杂志,2007,23(4):415-418.
    [1]Wise Young. Spinal cord contusion models[J]. Progress in Brain Research,2002,137: 231-255.
    [2]DeVivo MJ. Causes, costs of spinal cord injury in the United States[J]. Spinal Cord,1997, 35:809-813.
    [3]Marshall LF. Epidemiology, cost of central nervous system injury[J]. Clin Neurosurg 2000, 46:105-112.
    [4]Tuszynski M, Edgerton R, Dobkin B. Recovery of locomotion after experimental spinal cord injury:Axonal regeneration or modulation of intrinsic spinal cord walking circuitry[J]? J Spinal Cord Med,1999,22:143.
    [5]Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features[J]. J Spinal Cord Med,1999,22:119-124.
    [6]Dobkin BH. Functional rewiring of brain and spinal cord after injury: The three Rs of neural repair and neurological rehabilitation[J]. Curr Opin Neurol,2000,13:655-659.
    [7]Blackmore C, Emerson SS, Mann FA, et al. Cervical spine imaging in patients with trauma: Determination of fracture risk to optimize use[J]. Radiology 1999,211:759-765.
    [8]American College of Surgeons. Advanced Trauma Life Support (5th ed) [M]. Chicago:American College of Surgeons,1995.
    [9]Cohn SM, Lyle WG, Linden CH, et al. Exclusion of cervical spine injury: A prospective study[J].J Trauma,1991,31:570-574.
    [10]]Gehweiler JA Jr, Clark WM, Schaaf RE, et al. Cervical spine trauma: The common combined conditions [J]. Radiology 1979,130:77-86.
    [11]MacDonald RL, Schwartz ML, Mirich D, et al. Diagnosis of cervical spine injury in motor vehicle crash victims:How many X-rays are enough [J]? J Trauma,1990,30:392-397.
    [12]Ross SE, Schwab CW, David ET, et al. Clearing the cervical spine:Initial radiologic evaluation[J]. J Trauma,1987,27:1055-1060.
    [13]Scher AT. Cervical spinal cord injury without evidence of fracture or dislocation: An assessment of the radiological features[J]. S Afr Med J,1976,50:962-965.
    [14]Scher AT. Unilateral locked facet in cervical spine injuries[J]. Am J Roentgenol,1977, 129:45-48.
    [15]White AA 3rd, Panjabi MM. Update on the evaluation of instability of the lower cervical spine[J]. Instr Course Lect,1987,36:513-520.
    [16]Woodring JH, Goldstein SJ. Fractures of the articular processes of the cervical spine[J]. Am J Roentgenol,1982,139:341-344.
    [17]Berne JD, Velmahos GC, El-Tawil Q, et al. Value of complete cervical helical computed
    tomographic scanning in identifying cervical spine injury in the unevaluable blunt trauma patient with multiple injuries:A prospective study[J]. J Trauma,1999,47:896-903.
    [18]Bicknell JM, Fielder K. Unrecognized incomplete cervical spinal cord injury: Review of nine new and 28 previously reported cases[J]. Am J Emerg Med,1992,10:336-343.
    [19]Fehlings MG, Rao SC, Tator CH, et al. The optimal radiologic method for assessing spinal canal compromise, cord compression in patients with cervical spinal cord injury[J]. Spine, 1999,24:605-613.
    [20]Giacobetti FB, Vaccaro AR, Bos-Giacobetti MA, et al. Vertebral artery occlusion associated with cervical spine trauma:A prospective analysis[J]. Spine,1997,22:188-192.
    [21]王亦璁.骨与关节损伤[M].北京:人民卫生出版社,2007:1066-1070.
    [22]胥少汀,葛宝丰,徐印坎.实用骨科学[M].北京:人民军医出版社,2007:582-596.
    [23]谭明生.胸腰椎骨折的分类与治疗选择[J].中国骨伤,2008,21(1):1-3.
    [24]Pang D, Wilberger JE. Spinal cord injury without radiographic abnormalities in children[J]. J Neurosurg,1982,57:114-129.
    [25]Faden AI. Experimental neurobiology of central nervous system trauma[J]. Crit Rev Neurobiol,1993,7:175-186.
    [26]Nockels R, Young W. Pharmacologic strategies in the treatment of experimental spinal cord injury[J]. J Neurotrauma,1992,9(suppl 1):211-217.
    [27]Osterholm JL.The pathophysiological response to spinal cord injury. The current status of related research[J.J Neurosurg 1974,40(1):5-33.
    [28]Hall ED. Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats[J].J Neurosurg,1988,68:462-465.
    [29]Hall ED. Inhibition of lipid peroxidation in central nervous system trauma and ischemia[J]. J Neurol Sci,1995,134(suppl):79-83.
    [30]Braughler JM, Hall ED. Involvement of lipid peroxidation in CNS injury [J]. J Neurotrauma, 1992,9(suppl 1):1-7.
    [31]Lu J, Ashwell KW, Waite P. Advances in secondary spinal cord injury:Role of apoptosis[J]. Spine,2000,25:1859-1866.
    [32]Yoo KY, Jeong SW, Kim SJ, et al.Cardiovascular responses to endotracheal intubation in patients with acute and chronic spinal cord injuries[J]. Anesth Analg,2003, 97(4):1162-1167.
    [33]Winslow C, Rozovsky J.Effect of spinal cord injury on the respiratory system[J].Am J Phys Med Rehabil,2003,82(10):803-814.
    [34]Gondim FA, de Oliveira GR, Thomas FP. Upper gastrointestinal motility changes following spinal cord injury[J].Neurogastroenterol Motil,2010,22(1):2-6.
    [35]Kjaer M, Dela F, Sφrensen FB,et al.Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans[J].Am J Physiol Regul Integr Comp Physiol,2001,281(5):1492-1498.
    [36]Garstang SV, Miller-Smith SA.Autonomic nervous system dysfunction after spinal cord injury[J]. Phys Med Rehabil Clin N Am,2007,18(2):275-296.
    [37]Price MJ.Thermoregulation during exercise in individuals with spinal cord injuries[J].Sports Med,2006,36(10):863-879.
    [38]Garrett A, Martins F, Teixeira Z.Sexual activity after spinal cord injury--therapeutic help[J].Acta Med Port,2009,22(6):821-826.
    [39]谭明生.胸腰椎骨折的分类与治疗选择[J].中国骨伤杂志,2008,21(1):1-3.
    [40]Vaccaro AR,Lehman RA Jr,Hurlbert RJ,et al.A new classification of thoracolumbar injuries: the importance of injury morphology,the integrity of the posterior ligamentous complex,and neurologic status[J]. Spine,2005,30 (20):2325-2333.
    [41]Hsieh CT,Chen GJ,Wu CC,et al.Complete fracture-dislocation of the thoracolumbar spine without paraplegia[J].Am J Emerg Med,2008,26(5):635-637.
    [42]Jackson AB, Groomes TE. Incidence of respiratory complications following spinal cord injury[J]. Arch Phys Med Rehabil,1994,75:270-275.
    [43]张之虎.脊髓损伤的诊断治疗和康复[M].北京:工人出版社,1986.3:123.
    [44]American College of Surgeons. Advanced Trauma Life Support, 5th ed [M]. Chicago: American College of Surgeons,1995.
    [45]Lam A. Spinal cord injury:Management[J]. Curr Opin Anesth,1992,5:632-639.
    [46]Lam AM. Acute spinal cord injury:Monitoring and anaesthetic implications[J].Can J Anaesth,1991,38(4 Pt 2):60-73.
    [47]Walleck CA. Neurologic considerations in the critical care phase [J]. Crit Care Nurs Clin North Am,1990,2:357-361.
    [48]Schwenker D. Cardiovascular considerations in the critical care phase[J]. Crit Care Nurs Clin North Am,1990,2:363-367.
    [49]Zipnick RI, Scalea TM, Trooskin SZ, et al. Hemodynamic responses to penetrating spinal cord injuries[J].J Trauma,1993,35:578-583.
    [50]Leis AA, Kronenberg MF, Stetkarova I, et al. Spinal motoneuron excitability after acute spinal cord injury in humans[J]. Neurology,1996,47:231-237.
    [51]Stauffer ES. Neurologic recovery following injuries to the cervical spinal cord and nerve roots[J]. Spine,1984,9:532-534.
    [52]Ko HY, Ditunno JF Jr, Graziani V, et al. The pattern of reflex recovery during spinal shock[J]. Spinal Cord,1999,37:402-409.
    [53]Hall ED, Braughler JM. Free radicals in CNS injury[J]. Res Publ Assoc Res Nerv Ment Dis, 1993,71:81-105.
    [54]Young W. Secondary injury mechanisms in acute spinal cord injury [J]. J Emerg Med,1993, 11(suppl 1):13-22.
    [55]Herzenberg JE, Hensinger RN, Dedrick DK, et al. Emergency transport and positioning of young children who have an injury of the cervical spine:The standard backboard may be hazardous[J].J Bone Joint Surg Am,1989,71:15-22.
    [56]Bracken MB, Shephard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury:Results of the Second National Acute Spinal Cord Injury Study[J]. N Engl J Med,1990,322:1405-1411.
    [57]Bracken MB, Shephard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury: Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study[J]. JAMA 1997,277:1597-604.
    [58]Bracken MB, Shephard MJ, Holford TR, et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury:1-year follow up. Results of the Third National Acute Spinal Cord Injury randomized controlled trial[J]. J Neurosurg,1998,89:699-706.
    [59]Heary RF, Vaccaro AR, Mesa JJ, et al. Steroids and gunshot wounds to the spine[J]. Neurosurgery,1997,41:576-584.
    [60]Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury: A randomized, placebo-controlled trial with GM-1 ganglioside[J]. N Engl J Med,1991, 324:1829-1838.
    [61]Nesathurai S. Steroids, spinal cord injury:Revisiting the NASCIS 2 and NASCIS 3 trials[J]. J Trauma,1998,45:1088-1093.
    [62]Bracken MB, Aldrich EF, Herr DL, et al. Clinical measurement, statistical analysis, and risk-benefit: Controversies from trials of spinal injury [J]. J Trauma,2000,48:558-561.
    [63]Brunette DD, Rockswold GL. Neurologic recovery following rapid spinal realignment for complete cervical spinal cord injury[J].J Trauma,1987,27:445-447.
    [64]Grant GA, Mirza SK, Chapman JR, et al. Risk of early closed reduction in cervical spine subluxation injuries[J]. J Neurosurg,1999,90 (suppl):13-18.
    [65]Herzenberg JE, Hensinger RN, Dedrick DK, et al. Emergency transport and positioning of young children who have an injury of the cervical spine:The standard backboard may be hazardous[J]. J Bone Joint Surg Am,1989,71:15-22.
    [66]Delamarter RB, Sherman JE, Carr JB. Volvo Award in experimental studies. Cauda equina syndrome:Neurologic recovery following immediate, early, or late decompression[J].
    Spine,1991,16:1022-1029.
    [67]Delamarter RB, Sherman J, Carr JB. Pathophysiology of spinal cord injury: Recovery after immediate and delayed decompression[J]. J Bone Joint Surg Am,1995,77:1042-1049.
    [68]Grant GA, Mirza SK, Chapman JR, et al. Risk of early closed reduction in cervical spine subluxation injuries[J]. J Neurosurg,1999,90 (suppl):13-18.
    [69]Murphy MJ, Ogden JA, Southwick WO. Spinal stabilization in acute spinal injuries[J]. Surg Clin North Am,1980,60:1035-1047.
    [70]Pratt ES, Green DA, Spengler DM. Herniated intervertebral discs associated with unstable spinal injuries[J]. Spine,1990,15:662-666.
    [71]Robertson PA, Ryan MD. Neurological deterioration after reduction of cervicalsubluxation: Mechanical compression by disc tissue[J]. J Bone Joint Surg Br,1992,74:224-227.
    [72]Eismont FJ, Arena MJ, Green BA. Extrusion of an intervertebral disc associated with traumatic subluxation or dislocation of cervical facets: Case report[J]. J Bone Joint Surg Am,1991,73:1555-1560.
    [73]Vaccaro AR, Falatyn SP, Flanders AE, et al. Magnetic resonance evaluation of the intervertebral disc, spinal ligaments, and spinal cord before and after closed traction reduction of cervical spine dislocations[J]. Spine,1999,24:1210-1217.
    [74]Ching RP, Watson NA, Carter JW, et al. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model[J]. Spine,1997,22:1710-1715.
    [75]Halm MA. Elimination concerns with acute spinal cord trauma: Assessment and nursing interventions[J]. Crit Care Nurs Clin North Am,1990,2:385-398.
    [76]Blissitt PA. Nutrition in acute spinal cord injury [J]. Crit Care Nurs Clin North Am,1990, 2:375-384.
    [77]Rodriguez DJ, Benzel EC, Clevenger FW. The metabolic response to spinal cord injury[J]. Spinal Cord,1997,35:599-604.
    [78]Green D. Prevention of thromboembolism after spinal cord injury [J]. Semin Thromb Hemost,1991,17:347-350.
    [79]Kulkarni JR, Burt AA, Tromans AT, et al. Prophylactic low dose heparin anticoagulant therapy in patients with spinal cord injuries:A retrospective study [J]. Paraplegia,1992, 30:169-172.
    [80]Merli GJ. Management of deep vein thrombosis in spinal cord injury [J]. Chest,1992, 102(suppl 6):652-657.
    [81]Mawson AR, Biundo JJ Jr, Neville P, et al. Risk factors for early occurring pressure ulcers following spinal cord injury[J]. Am J Phys Med Rehabil,1988,67:123-127.
    [82]Mawson AR, Siddiqui FH, Biundo JJ. Enhancing host resistance to pressure ulcers: A new approach to prevention[J]. Prev Med,1993,22:433-450.
    [83]Bates-Jensen BM, Guihan M, Garber SL, Chin AS, Burns SP.Characteristics of recurrent pressure ulcers in veterans with spinal cord injury. J Spinal Cord Med.2009;32(1):34-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700