用户名: 密码: 验证码:
食管鳞癌血管内皮生长因子C表达和基因沉默干预的临床与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:食管鳞癌组织中血管内皮生长因子C、D及其受体mRNA的表达及其临床意义
     目的研究血管内皮生长因子C(vascular endothelial growth factor-C,VEGF-C)、血管内皮生长因子D (vascular endothelial growth factor-D,VEGF-D)及其受体VEGFR-2 (vascular endothelial growth factor receptor-2)、VEGFR-3 (vascular endothelial growth factor receptor-3) mRNA在食管鳞癌组织中的表达。方法通过实时定量PCR (real-time PCR),检测24例正常食管组织样本和60例食管鳞癌(esophageal squamous cell carcinomas, ESCCs)组织标本中VEGF-C、VEGF-D、VEGFR2和VEGFR3的mRNA表达水平。结果与正常食管组织相比,人ESCC组织中,VEGF-C、VEGF-D、VEGFR2和VEGFR3的mRNA水平分别显著增强3.9倍、1.3倍、2.2倍和8.6倍。结论VEGF-C、VEGF-D及其受体mRNA在食管鳞癌组织中的表达明显高于正常组织,VEGF-C、VEGF-D及其受体mRNA可能与食管鳞癌发生、发展有关。
     第二部分:血管内皮生长因子C蛋白表达和食管鳞癌临床病理特征和预后的相关性研究
     目的研究VEGF-C在食管鳞癌中的表达,并分析其与临床病理特征、预后的关系。方法运用免疫组织化学法检测73例食管鳞癌组织中VEGF-C蛋白水平表达情况,统计学分析免疫组化细胞染色、临床病理参数和预后的关系。结果食管鳞癌组织中VEGF-C蛋白阳性表达率为53.4%,其蛋白水平的表达与病理分级(P=0.005)、肿瘤浸润深度(depth of tumor invasion, pT)(P=0.021)、淋巴结转移(lymph node metastasis, pN)(P=0.002)和淋巴浸润(P=0.008)有相关性,在对数秩检验的单变量系统分析中,病理分级、pN、分期、淋巴浸润和VEGF-C的P值分别为0.047,0.007,0.018,0.002和0.003 ,表明VEGF-C与上述病理特征存在相关性;多变量系统分析显示,VEGF-C(P=0.0451)和pN(P=0.0029)是影响预后的独立因素。结论VEGF-C蛋白表达与食管鳞癌病理分级、pT、pN和淋巴浸润有关,可能是影响食管鳞癌预后的一个重要指标。
     第三部分:血管内皮生长因子C基因过表达和基因沉默载体构建及其对基因表达的影响
     目的构建人VEGF-C基因过表达和基因沉默载体,为下一步研究VEGF-C对食管癌增殖的影响奠定基础。方法将包含人VEGF-C编码区的基因片段PCR扩增,插入pEGFP-N1载体,构建VEGF-C基因过表达载体;将抗VEGF-C mRNA形成的短发夹干扰RNA (short hairpin RNA, shRNA),插入pGPU6/GFP/Neo载体,构建VEGF-C基因沉默载体。将两种载体转染人食管癌TE-1细胞株,挑选稳定株,通过real-time PCR技术分析VEGF-C mRNA表达情况,通过免疫荧光染色和酶联免疫吸附试验分析VEGF-C蛋白表达情况。结果设计构建了过表达载体pEGFP-VEGF-C和两个基因沉默载体shRNA-1、shRNA-2,与阴性对照相比,稳定转染VEGF-C过表达载体的TE-1细胞中VEGF-C基因转录、翻译和蛋白分泌显著增强,稳定转染两种shRNA载体的细胞中VEGF-C基因转录、翻译和蛋白分泌水平均显著降低,其中shRNA-2比shRNA-1更能有效地抑制VEGF-C水平。结论VEGF-C过表达载体能增强VEGF-C基因转录、翻译和蛋白分泌,shRNA载体能减弱VEGF-C基因转录、翻译和蛋白分泌。
     第四部分:血管内皮生长因子C对食管癌细胞生长增殖影响的实验研究
     目的利用稳定转染VEGF-C过表达或基因沉默质粒的TE-1细胞株,分析VEGF-C在对食管癌细胞增殖、转移、癌灶形成和药物敏感性的影响,并建立裸鼠皮下荷瘤模型,分析VEGF-C在裸鼠体内对食管癌生长的影响。方法对于转染VEGF-C过表达和基因沉默质粒的TE-1细胞株,采用CCK-8试剂盒测定其细胞的生长率。各组细胞经顺铂处理后计算增殖率以评估VEGF-C对化学敏感性的影响。采用显微镜计数进行细胞迁移实验和克隆形成率分析,以确定VEGF-C在肿瘤细胞转移中的作用;以定量染色质免疫沉淀反应确定食管癌中VEGF-C的下游效应物CNTN-1。另将生长4周的雄性Balb/C小鼠分别注射稳定转染shRNA-NC、shRNA-2或pEGFP-VEGF-C载体的肿瘤细胞株,每隔三天用游标卡尺测量肿瘤直径,计算肿瘤体积,建立肿瘤生长曲线。结果pEGFP-VEGF-C转染的TE-1细胞增殖率增长1倍,上清液转移细胞增多70%,细胞对顺铂的敏感性未受影响,细胞集落数目增长了1.1倍,CNTN-1转录水平升高;而shRNA-2转染的TE-1细胞生长受到抑制,生长率为对照组的72%,上清液中转移细胞数量减少50%,细胞对顺铂的敏感性未受影响,细胞癌灶增值率低,CNTN-1转录水平降低。动物实验结果显示,在注射转染pEGFP-VEGF-C细胞的裸鼠肿瘤体积显著增长,而注射转染VEGF-C shRNA细胞的裸鼠肿瘤显著减小。结论在体外,VEGF-C过表达可促进食管癌细胞增殖、转移和癌灶形成,VEGF-C基因沉默可抑制食管癌细胞增殖、转移和癌灶形成,CNTN-1可能是食管癌中VEGF-C的下游效应物。基因沉默VEGF-C可明显抑制裸鼠皮下移植瘤生长,以VEGF-C为靶基因的RNA干扰技术可能是一个潜在的治疗人食管癌的方法。
Part one: Gene expression of vascular endothelial growth factor-C and -D and their receptors in esophageal squamous carcinoma tissues
     Objective To investigate the gene expression of vascular endothelial growth factor-C (VEGF-C), vascular endothelial growth factor-D (VEGF-D) and their receptors vascular endothelial growth factor receptor-2 (VEGFR-2), vascular endothelial growth factor receptor-3 (VEGFR-3) in esophageal squamous carcinoma. Methods The mRNA levels of VEGF-C, VEGF-D, VEGFR2 and VEGFR3 gene in 24 normal esophageal specimens and 60 esophageal squamous cell carcinomas (ESCCs) were determined by real-time PCR. Results The mRNA levels of VEGF-C, VEGF-D, VEGFR2 and VEGFR3 were significantly upregulated by 3.9-, 1.3-, 2.2- and 8.6-fold, respectively in human ESCC tissues compared with normal esophageal tissues. Conclusions Upregulation of VEGF-C, VEGF-D and their receptors maybe involved in esophageal tumor development and progression.
     Part two: Protein expression of vascular endothelial growth factor-C correlates with clinicopathological parameters and a poor prognosis of esophageal squamous cell carcinomas
     Objective: To specifically investigate the clinicopathological role of expression of VEGF-C as well as the correlation with clinical outcomes in ESCCs. Methods Seventy-three patients with ESCC resected in our institute were included in this study. Formalin-fixed paraffin-embedded specimens were stained for VEGF-C and the correlation between the staining, its clinicopathological parameters and its prognostic power were analyzed statistically. Results Of the 73 ESCC patients studied, 39 cases (53.4%) were strongly positive for VEGF-C. VEGF-C expression correlated with histological grade (P=0.005), depth of tumor invasion (pT) (P=0.021), lymphnode metastasis (pN) (P=0.002) and lymphatic invasion (P=0.008). In univariate analysis by log-rank test, histological grade, pN, stage, lymphatic invasion and VEGF-C were significant prognostic factors (P=0.047, 0.007, 0.018, 0.002 and 0.003, respectively). In multivariate analysis, high VEGF-C expression (P=0.0451) maintained its independent prognostic influence on overall survival, as well as pN status (P=0.0029). Conclusions Expression of VEGF-C is related to histological grade, pT, pN and lymphatic invasion, and is a prognostic indicator for ESCC.
     Part three: Construction of vascular endothelial growth factor-C overexpression and silencing vectors and their interference effects
     Objective: Vascular endothelial growth factor-C overexpression and silencing vectors were constructed to provide bases for research on influence of VEGF-C expression on esophageal cancer proliferation. Methods: For VEGF-C overexpression vector, a fragment containing human VEGF-C coding region was amplified by PCR, and then inserted into the pEGFP-N1 vector. For VEGF-C silencing vectors, pGPU6/GFP/Neo vectors containing short hairpin interfering RNA (shRNA) against VEGF-C mRNA were constructed. The human ESCC cell line TE-1 transfected with VEGF-C overexpression and silencing vectors was maintained to generate stable VEGF-C-overexpressing or silencing clones, and VEGF-C mRNA expression was analysed by real time PCR, while protein levels were determined by immunostaining and enzyme-linked immunosorbent assay. Results: The overexpression vector pEGFP-VEGF-C and two silencing vectors (shRNA-1 and shRNA-2) were constructed. VEGF-C transcription, translation and secretion were significantly increased in the VEGF-C-overexpressing TE-1 cells compared with cells transfected with shRNA negative control. Cells transfected both of the shRNA vectors showed reduced VEGF-C transcription, translation and secretion levels. By contrast, shRNA-2 has more potently suppressed VEGF-C level than shRNA-1. Conclusion: The overexpression vector of VEGF-C increased the transcription, translation and secretion of VEGF-C, which were decreased by the silencing vector.
     Part four: In vitro effects of vascular endothelial growth factor-C on esophageal cancer proliferation in stably transfected TE-1 cell lines and in vivo effects on esophageal tumor growth in nude mice
     Objective: To analysis in vitro effects of vascular endothelial growth factor-C on esophageal cancer proliferation using TE-1 cell lines stably transfected with VEGF-C overexpression or shRNA vectors. And to analysis in vitro effects of vascular endothelial growth factor-C on esophageal cancer tumor growth using nude mice bearing TE-1 cells xenografts as a model. Methods: In vitro growth was measured using CCK-8 kit. To evaluate the effect of VEGF-C on chemosensitivity, the proliferation index was calculated after cisplatin treatment. Migration assay and focus formation assay were conducted under a microscope. Quantitative chromatin immunoprecipitation was carried out to determine the downstream effector of VEGF-C/VEGFR-3 signaling. Male mice at 4 weeks of age were injeted with tumor cells transfected with siRNA-NC, shRNA-2 or pEGFP-VEGF-C vector, respectively. Tumor diameters were measured at regular intervals with digital calipers, the tumor volume was calculated and tumor growth curve was then constructed. Results: pEGFP-VEGF-C transfected TE-1 cells exhibited a 1-fold significant increase in cell proliferation rate, 70 percents increased migrated cells in supernatant, unchanged resistance to cisplatin, 1.1-fold increase colonies numbers and promoted CNTN-1 transcription. In contrast, shRNA-2 transfection inhibited TE-1 cell growth to 72 % of the control, decreased migrated cells in supernatant by 50 percents, did not change resistance to cisplatin, while reduced colonies numbers and CNTN-1 transcripts. A significant increased or decreased tumor size was observed in nude mice injected with pEGFP-VEGF-C-transfected or VEGF-C shRNA-transfected cells, respectively. Conclusion: In vitro, VEGF-C overexpression vector increased cell proliferation, migration and focus formation, which were decreased by VEGF-C silencing vectors. And in vivo, gene silencing could also decreased ploliferation of tumor in nude mice. Besides, CNTN-1 may be the potential downstream effector of VEGF-C.
引文
1.祝淑钗,史鸿云,李任.食管癌临床分期研究现状与进展[J].中华放射肿瘤学杂志,2005,14(5):2005 / 14 / 5.
    2.李林,柳硕岩,朱坤寿等.早期食管癌淋巴结转移规律与预后分析[J].中华肿瘤杂志.2009,31(3) : 226-229 .
    3. Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285: 1182–1186.
    4.段伦喜,钟德午,胡辅珍等,胃癌中VEGF, F1t1和P53的表达意义[J].中国现代医学杂志,2004; 14: 38-41.
    5. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress[J]. Endocr Rev, 2004, 25: 581–611.
    6. Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis[J]. Pharmacol Rev, 2004, 56: 549–580.
    7. Jussila L,Valtola R,Partanen TA,et a1.Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor–3[J]. Cancer Res, 1998, 58: 1599–1604.
    8. Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF–C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane[J]. Dev Biol, 1997, 188: 96–109.
    9. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D(VEGF–D) is a ligand for tyrosine kinases VEGF receotor 2 (Flk1) and VEGF receptor 3 (Flt4)[J]. Proc Natl Acad Sci USA, 1998, 95: 548–553.
    10. Pajusola K, Aprelikova O, Korhonen J, et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines[J]. Cancer Res, 1992, 52: 5738–5743.
    11.Galland F, Karamysheva A, Pebusque MJ, et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor[J]. Oncogene, 1993, 8: 1233–1240.
    12.Waltenberger J, Claessen WL, Siegbahn A, et al. Different signal transduction properties of KDR and Flt1 ,two receptors for vascular endothelial growth factor[J]. J Biol Chem, 1994, 269, 26988–26995.
    13.Fondevila C, Merges JP, Foster J, et a1. p53 and VEGF expression are independent predictors of tumour recurrence and survival following curative resection of gastric cancer[J]. Br J Cancer, 2004, 90: 206–215.
    14.Kimitoshi I, Yuichi O, Toshiyuki S, et al. Vasecular endothelial growth factor expression in primary esophageal squamous cell carcinoma[J]. Cancer, 1997, 79: 206.
    15.Shimamura T, Saito S, Mofita K, et a1. Detection of vascular endothelial growth factor and its receptor expression in human hepatecellular carcinoma biopsy specimens[J]. Gastroenteml Hepatol, 2000, 15: 640–646.
    16.Takahma M, Tsutsumi M, Tsujiuchi T, et al. Frequent expression of the vascular endothelial growth factor in human non–small–cell lung cancers[J]. Jpn J Clin Oncol 1998, 28: 176–181.
    17.Suh EY, Quan-yaang DUH, Dobhi SA, et al. Vascular endothelial growth factor expression is high in differentiaed. Thyroid cancer than in normal or benigh thyroid[J]. J Clin Endocrinol Metab, 1997, 82: 3741.
    18.Samoto K, Ikezaki K, Ono M, et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors[J]. Cancer Res, 1995, 55, 1189–1193.
    19.逢旭光,范虹,葛棣.HER4基因抑制对食管癌细胞Eca-109迁移和侵袭能力的影响[J],复旦学报(医学版),2008,35(4) :521-527.
    1. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis[J]. Nat Med, 2001, 7: 192–198.
    2. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis[J]. Semin Cancer Biol, 1999, 9: 211–220.
    3 Dias S, Choy M, Alitalo K, et al. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy[J]. Blood, 2002, 99: 2179–2184.
    4. Liu XE, Sun XD, Wu JM. Expression and significance of VEGF-C and FLT-4 in gastric cancer[J]. World J Gastroenterol, 2004, 10: 352–355.
    5. Li L, Liu Q, Dong P. The expression and role of VEGF-C and its receptor FLT-4 in laryngeal and hypopharyngeal squamous cell carcinoma metastasis[J]. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2005, 19: 845–849.
    6. Tanigaki Y, Nagashima Y, Kitamura Y, et al. The expression of vascular endothelial growth factor-A and -C, and receptors 1 and 3: correlation with lymph node metastasis and prognosis in tongue squamous cell carcinoma [J]. Int J Mol Med, 2004, 14: 389–395.
    7. Kishimoto K, Sasaki A, Yoshihama Y et al. Expression of vascular endothelial growth factor-C predicts regional lymph node metastasis in early oral squamous cell carcinoma [J]. Oral Oncol, 2003, 39: 391–396.
    8. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress[J]. Endocr Rev, 2004, 25: 581–611.
    9 Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis[J]. Pharmacol Rev, 2004, 56: 549–580.
    10 Paaconen K, Horelli–Kuitunen N, Chilov D, et al. Novel human cascular endothelial growth factor genes VEGF–B and VEGF–C localized to chromosomes 11q13 and 4q34, respectively[J]. Circulation, 1996, 93: 1079–1082.
    11 Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases[J]. EMBO J, 1996, 15: 290–298.
    12 Jussila L,Valtola R,Partanen TA,et a1.Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor–3[J]. Cancer Res, 1998, 58: 1599–1604.
    13 Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF–C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane[J]. Dev Biol, 1997, 188: 96–109.
    14. Rocchigiani M, Lestingi M, Luddi A, et al. Human FIGF: cloning, gene structure, and mapping to chromosome Xp22.1 between the PIGA and the GRPR genes[J]. Genomics, 1998, 47: 207–216.
    15 Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D(VEGF–D) is a ligand for tyrosine kinases VEGF receotor 2 (Flk1) and VEGF receptor 3 (Flt4)[J]. Proc Natl Acad Sci USA, 1998, 95: 548–553.
    16. Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy[J]. Blood 2002; 99: 2179-2184.
    17. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer[J]. Am JPathol 1999; 154: 1381-1390.
    18. Da MX, Wu XT, Wang J, Guo TK, Zhao ZG, Luo T, Zhang MM, Qian K. Expression of cyclooxygenase-2 and vascular endothelial growth factor-C correlateswith lymphangiogenesis and lymphatic invasion in human gastric cancer[J]. Arch Med Res 2008; 39: 92-99.
    19. Takizawa H, Kondo K, Fujino H, Kenzaki K,Miyoshi T, Sakiyama S, Tangoku A. The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer[J]. Br J Cancer 2006; 95: 75-79.
    20. Clarijs R, Schalkwijk L, Ruiter DJ, de Waal RM. Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma[J]. Invest Ophthalmol Vis Sci 2001; 42: 1422-1428.
    21. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Kustrzeba-Wojcicka I, Banas T. Serum midkine depends on lymph node involvement and correlates with circulating VEGF-C in oesophageal squamous cell carcinoma[J].Biomarkers 2007; 12: 403-413.
    22. Kitadai Y, Amioka T, Haruma K, et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas[J]. Int J Cancer, 2001, 93: 662–666.
    23. Shibuya M. Role of VEGF–FLT receptor system in normal and tumor angiogenesis[J]. Adv Cancer Res, 1995, 67: 281–316.
    24. de Vries C, Escobedo JA, Ueno H, et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor[J]. Science, 1992, 255: 989–991.
    25. Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth[J]. Proc Natl Acad Sci USA, 1993, 90: 8915–8919.
    26. Quinn TP, Peters KG, De Vries C,et al. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium[J]. Proc Natl Acad Sci USA, 1993, 90: 7533–7537.
    27. Pajusola K, Aprelikova O, Korhonen J, et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines[J]. Cancer Res, 1992, 52: 5738–5743. (Erratum in: Cancer Res, 1993, 53: 3845).
    28. Galland F, Karamysheva A, Pebusque MJ, et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor[J]. Oncogene, 1993, 8: 1233–1240.
    29. Damasio H. A computed tomographic guide to the identification of cerebral vascular territories[J]. Arch Neurol 1983; 40: 138-142
    30. Waltenberger J, Claessen WL, Siegbahn A, et al. Different signal transduction properties of KDR and Flt1 ,two receptors for vascular endothelial growth factor[J]. J Biol Chem, 1994, 269, 26988–26995.
    31. Goldman J, Rutkowsk JM, Shields JD. et a1. Coperative and redundant roles of VEGFR–2 and VEGFR–3 signaling in adult lymphangiogenesis[J]. FASEB J, 2007, 2l: 1003–1012.
    32. Danussi C, Spessotto P, Petrueco A, et a1. Emilin1 deficiency causes structural and functional defects of lymphatic asculature[J]. Mol Cell Biol, 2008, 28: 4026–4039.
    33. Valtola R, Salven P, Heikkila P, et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer[J]. Am J Pathol, 1999, 154: 1381–1390.
    34. Roberts N, Kloos B, Cassella M, et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2[J]. Cancer Res, 2006, 66: 2650–2657.
    1. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H,Brodeur GM, Himelstein BP. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas[J]. Clin Cancer Res,2000;6:1900-1908.
    2. O-charoenrat P, Rhys-Evans P, Eccles SA. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis[J]. Cancer 2001;92:556-568.
    3. Kajita T, Ohta Y, Kimura K, Tamura M, Tanaka Y, Tsunezuka Y, et al.The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer[J]. Br J Cancer,2001;85:255-260.
    4. Kinoshita J, Kitamura K, Kabashima A, Saeki H,Tanaka S, Sugimachi K. Clinical significance of vascular endothelialgrowth factor-C (VEGF-C) in breast cancer[J]. Breast Cancer Res Treat,2001;66:159-164.
    5. Ichikura T, Tomimatsu S, Ohkura E, Mochizuki H. Prognostic significance of the expression of vascular endothelial growth factor (VEGF) and VEGF-C in gastric carcinoma[J]. J Surg Oncol,2001;78:132-137.
    6. Witte D, Thomas A, Ali N, Carlson N, Younes M. Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma[J]. Anticancer Res,2002;22:1463-1466.
    7. Kitadai Y, Amioka T, Haruma K, Tanaka S, Yoshihara M, Sumii K, et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas[J]. Int J Cancer,2001;93:662-666.
    8. Kimura Y, Watanabe M, Ohga T, Saeki H, Kakeji Y, Baba H, et al. Vascular endothelial growth factor C expression correlates with lymphatic involvement and poor prognosis in patients with esophageal squamous cell carcinoma [J]. Oncol Rep,2003;1 0:1747-1751.
    9. Okazawa T, Yoshida T, Shirai Y, Shiraishi R, Harada T, Sakaida I, et al. Expression ofvascular endothelial growth factor C is a prognostic indicator in esophageal cancer[J]. Hepatogastroenterology 2008;55:1503-1508.
    10.杨杨,张国新,施瑞华,林艳,郝波,王晓勇,王宏娣,黄祖瑚.人宫颈癌基因蛋白在人肝细胞癌中的表达及其临床意义[J].中华肝脏病杂志2007; 15: 223-224.
    11. Hirai M, Nakagawara A, Oosaki T, et a1. Expression of vascular endothelial growth factors(VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma[J]. Gynecol Oncol, 2001, 80: 181–188.
    12. Fujisaki K, Mitsuyama K, Toyonaga A, et a1. Circulating vascular endothelial growth factor in patients with colorectal cancer[J]. Am J Gastroenterol, 1998, 93: 249.
    13. Jussila L,Valtola R,Partanen TA, et a1.Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor–3[J]. Cancer Res, 1998, 58: 1599–1604.
    14. Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF–C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane[J]. Dev Biol, 1997, 188: 96–109.
    15. Poon RT, Ng IO, Lau C, et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study[J]. Ann Surg, 2001, 233: 227–235.
    16. Fondevila C, Merges JP, Foster J, et a1. p53 and VEGF expression are independent predictors of tumour recurrence and survival following curative resection of gastric cancer[J]. Br J Cancer, 2004, 90: 206–215.
    17. Crew JP, O’Brien T, Bieknell R, et a1. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates[J]. J Urol, 1999, 161: 799–804.
    18. Hirai M, Nakagawara A, Oosaki T, et a1. Expression of vascular endothelial growth factors(VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma[J]. Gynecol Oncol, 2001, 80: 181–188.
    19. Mylona E, Alexandrou P, Mpakali A, et a1. Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and-D and VEGF receptor 3 in invasive breast carcinoma[J]. Eur J Surg Oncol, 2007, 33: 294–300.
    20.朱彧,吴骧,徐克. RNA干扰技术在肿瘤治疗中的应用[J],中国肺癌杂志,2009, 12(7) :811-815.
    21.逢旭光,范虹,葛棣. HER4基因抑制对食管癌细胞Eca-109迁移和侵袭能力的影响[J],复旦学报(医学版),2008,35(4):521-527.
    1 Hotz HG, Hines OJ, Masood R, et al. VEGF antisense therapy inhibits tumor growth and improves survival in experimental pancreatic cancer. Surgery[J], 2005, 137: l92–199.
    2 Goodsell DS. The molecular perspective: VEGF and angiogenesis[J]. Oruzologist, 2002, 7: 569–557.
    3 Su G, Kenneth JK, Par-1, a gene required for establishing polarity in C. elegans embryos, encode a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81: 611–620.
    4 Andrew F, Si QX, Mary K, et al. Potant and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391: 806–811.
    5 Sayda ME, Jens H, Winfried L, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411: 494–498.
    6 Carthew RW. Gene silencing by doublestranded RNA[J]. Curr Opin Biol, 2001, 13: 244–248.
    7 Shi H, Djikeng A, Mark T, et al. Genetic interference in trypanosome burcei bu heritable and inducible double standed RNA[J]. RNA, 2000, 6: 1069–1073.
    8 Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391: 806–811.
    9 Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems[J]. Proc Natl A cad Sci USA, 2001, 98: 9742–9747.
    10 Avolio TM, Lee Y, Feng N, et al. RNA interference targeting the R2 subunit of ribonucleotide reductase inhibits growth of tumor cells in vitro and in vivo[J]. Anticancer drugs, 2007, 18: 377–388.
    11 Leung RK, Whittaker PA. RNA interference: from gene silencing to gene specific therapeutics[J]. Pharmacol Ther, 2005, 107: 222–239.
    12 Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products[J]. RNA, 8: 1454–1460.
    1 Dias S, Choy M, Alitalo K, et al. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy[J]. Blood, 2002, 99: 2179–2184.
    2 Sun P, Gao J, Liu YL, et al. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances epirubicin sensitivity of breast cancer cells[J]. Mol Cell Biochem, 2008, 308: 161–168.
    3 Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells[J]. Cancer Cell, 2006, 9: 209–223.
    4 Dave RS, Pomerantz RJ. RNA interference: on the road to an alternate therapeutic strategy[J]. Rev Med Virol, 2003, 13: 373–385.
    5 Gartel AL, Kandel ES. RNA interference in cancer[J]. Biomol Eng, 2006, 23: 17–34.
    6 Mulkeen AL, Silva T, Yoo PS, et a1. Short interfering RNA-mediated gene silencing of vascular endothelial growth factor: efffects on cellular proliferation in colon cancer cells[J]. Arch Surg, 2006, 141: 367–374.
    7 Wannenes F, Ciafre SA, Niola F, et a1. Vector-based RNA interference against vascular endothelial growt h factor-A significantly limits vascularization and growth of prostate cancer in vivo[J]. Cancer Gene Ther, 2005, 12: 926–934.
    8 Murata M, Takanami T, Shimizu S, et a1. Inhibition of ocular angiogenesis by diced small interfering RNAs(siRNAs)specific to vascular endothelial growth factor(VEGF)[J]. Curr Eye Res, 2006, 31: 171–180.
    [1] Ferrara N. Vascular endothelial growth factor: basic science and clinical progress[J]. Endocr Rev, 2004, 25: 581–611.
    [2] Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis[J]. Pharmacol Rev, 2004, 56: 549–580.
    [3] Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications[J].Lancet Oncol, 2001, 2: 667–673.
    [4] Muller YA, Christinger HW, Keyt BA, et al. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding [J]. Structer, 1995, 5, 1325–1338.
    [5] Siemeister G, Marm D, Marting BG. The alpha-helical domain near the amino terminus is essential for dimerization of vascular endothelial growth factor[J]. J Biol Chem, 1998, 273, 1115–11120.
    [6] Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelia cells[J]. Biochem Biophys Res Commun, 1989, 161: 851–855.
    [7] Wei MH, Popescu NC, Lerman MI, et al. Localization of the human vascular endothelial growth factor gene, VEGF, at chromosome 6p12[J]. Hum Genet, 1996, 97: 794–797.
    [8] Ferrara N. VEGF-A: a critical regulator of blood vessel growth[J]. Eur Cytokine Netw,2009, 20:158–163.
    [9] Brown LF, Detmar M, Claffey K, et al. Vasclular permeability factor/ascular endothelial growth factor: A multifunctional angiogenic cytokine[J]. Exs, 1997, 79: 233–269.
    [10] Brekken RA, Thorpe PE. Vascular endothelial growth factor and vascular targeting of solid tumors[J]. Anticancer Res, 2001, 21: 4221–4229.
    [11] Poltorak Z, Cohen T, Sivan R, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix[J]. J Biol Chem, 1997, 272:7151–7158.
    [12] Paaconen K, Horelli–Kuitunen N, Chilov D, et al. Novel human cascular endothelial growth factor genes VEGF–B and VEGF–C localized to chromosomes 11q13 and 4q34, respectively[J]. Circulation, 1996, 93: 1079–1082.
    [13] Joukov V, Kaipeinen A, Jeltsch M, et al. Vascular endothelial growth factors VEGF–B and VEGF–C[J]. J Cell Physiol, 1997, 173: 211–215.
    [14] Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development[J]. Proc Natl Acad Sci USA, 1995, 92: 3566–3570.
    [15] Laitinen M, Ristim?ki A, Honkasalo M, et al. Differential hormonal regulation of vascular endothelial growth factors VEGF, VEGF–B, and VEGF–C messenger ribonucleic acid levels in cultured human granulosa–luteal cells[J]. Endocrinology, 1997, 138: 4748–4757.
    [16] Jussila L,Valtola R,Partanen TA, et a1.Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor–3[J]. Cancer Res, 1998, 58: 1599–1604.
    [17] Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF–C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane[J]. Dev Biol, 1997, 188: 96–109.
    [18] Rocchigiani M, Lestingi M, Luddi A, et al. Human FIGF: cloning, gene structure, and mapping to chromosome Xp22.1 between the PIGA and the GRPR genes. Genomics[J], 1998, 47: 207–216.
    [19] Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D(VEGF–D) is a ligand for tyrosine kinases VEGF receotor 2 (Flk1) and VEGF receptor 3 (Flt4)[J]. Proc Natl Acad Sci USA, 1998, 95: 548–553.
    [20] Meyer M, Clauss M, Lepple-Wienhues A, et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR–2 (KDR) but not VEGFR–1 (Flt–1) receptor tyrosine kinases[J]. EMBO J1999, 18: 363–374.
    [21] Brown LF, Detmar M, Claffey K, et al. Vasclular permeability factor/cascular endothelial growth factor: A multifunctional angiogenic cytokine[J]. Exs, 1997, 79: 233–269.
    [22] Mattei MG, Borg JP, Rosnet O, et al. Assignment of vascular endothelial growth facyor (VEGF) and placemta growth facyor (PLGF) genes to human chromosome 6p12–p21 and 14q24–q31 regions, respectively[J]. Genomics, 1996, 32: 168–169.
    [23] Cao Y, Ji WR, Qi P, et al. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing[J]. Biochem. Biophys. Res. Commun, 1997, 235: 493–498.
    [24] Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation[J]. TIBS, 1997, 22: 251–256.
    [25] Shibuya M. Role of VEGF–FLT receptor system in normal and tumor angiogenesis[J]. Adv Cancer Res, 1995, 67: 281–316.
    [26] de Vries C, Escobedo JA, Ueno H, et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor[J]. Science, 1992, 255: 989–991.
    [27] Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth[J]. Proc Natl Acad Sci USA, 1993, 90: 8915–8919.
    [28] Quinn TP, Peters KG, De Vries C,et al. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium[J]. Proc Natl Acad Sci USA, 1993, 90: 7533–7537.
    [29] Pajusola K, Aprelikova O, Korhonen J, et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines[J]. Cancer Res, 1992, 52: 5738–5743.
    [30] Galland F, Karamysheva A, Pebusque MJ, et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factorreceptor[J]. Oncogene, 1993, 8: 1233–1240.
    [31] Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor[J]. Cell, 1998, 92: 735–745.
    [32] Gluzman-Poltorak Z, Cohen T, Herzog Y et al. Neuropilin-2 and neuropilin-1 are receptors for 165-amino acid long form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145 amino acid form of VEGF[J]. J Biol Chem, 2000, 275: 18040–18045.
    [33] Waltenberger J, Claessen WL, Siegbahn A, et al. Different signal transduction properties of KDR and Flt1 ,two receptors for vascular endothelial growth factor[J]. J Biol Chem, 1994, 269, 26988–26995.
    [34] Korsisaari N, Kasman IM, Forrest WF, et a1. Inhibition of VEGF–A prevents the angiogenic switch and results in increased survival of Apc+/min mice[J]. Proc Natl Acad Sci USA, 2007, 104: 10625–10630.
    [35] Edirisinghe I, Yang SR, Yao HW, et a1. VEGFR–2 inhibition augments cigarette smoke–indraced oxidative stress and inflammatory responses leading to endothelial dysfunction[J]. FASEB J, 2008, 22: 2297–2310.
    [36] Goldman J, Rutkowsk JM, Shields JD. et a1. Coperative and redundant roles of VEGFR–2 and VEGFR–3 signaling in adult lymphangiogenesis[J]. FASEB J, 2007, 2l: 1003–1012.
    [37] Danussi C, Spessotto P, Petrueco A, et a1. Emilin1 deficiency causes structural and functional defects of lymphatic asculature[J]. Mol Cell Biol, 2008, 28: 4026–4039.
    [38] Inoue T, Kibata K. Identification of a vascular endothelial growth factor(VEGF) antagonist, SFlt21, from a human hematopoietic cell line NALM216[J]. FEBS Lett, 2000, 469: 14218.
    [39] Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid[J].Science, 1983, 219: 983–985.
    [40] Andrew P. Lew NS, Loscaho J, et al. Regulation of VEGF in cardiac myocytes[J].Circulation, 1995, 76: 758–760.
    [41] Qu–Hong, Nagy JA, Senger DR, et al. Ultrastructural localization of vascular permeability factor/vascular endothelial growth factor(VPF/VEGF) to the abluminal plasma membrane and vesiculovascuolar organelles of tumor microvacular endothelium[J]. J Hisochem Cytochem, 1995, 43: 381–389.
    [42] Connolly DJ, Heuvebnan VW, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis[J]. J Clin Invest, 1989, 84: 1470–1478.
    [43] Brock TA, Dvorak HF, Senger DR. Tumor–secreted vascular permeability factor increases cytosolic Ca2+and von Wilebrand factor release in human endothelial cells[J]. Am J Pathol, 1991, 138: 213–221.
    [44] Sasaki R. Microvessel count and vascular endothelial growth factor in renal cell carcinoma[J]. Nippon Hittyokika Gakkai Zasski, 1996, 87: 1032–1040.
    [45] Iwasaki T, Hamano T, Ogato A, et al. Clinical significance of vascular endothelial growth factor and hepatocyte growth factor in multip le myeloma[J]. Br J Haematol, 2002, 116: 796–802.
    [46] Iitaka M, iuras, Yamanaka K, et al. Increased serum vascular endothelial growth factor levels and intrathyroidal vascular area in patients with Graves disease and Hashimotos thyroidieis[J]. J Clin Endocrinol Metap, 1998, 83: 3908.
    [47] Mchamara DA , Harmey JH, Walsh TN, et al. Significance of angiogenesis in cancer therapy[J]. Br J Surg, 1998, 85: 1044.
    [48] Belletti B, Ferraro P, Arra C, et al. Modulation of in vivo growth of thyroid tumor derived cell lines by sense and catisense vascalar endothelial growth factor gene[J]. Oncogene, 1999, 26: 48601.
    [49]蒋扬富,杨治华,胡敬群,等.血管内皮生长因子与基质金属蛋白酶–9在原发性肝癌中的表达及其临床意义[J].癌症, 2000, 19: 17–l9.
    [50] Yamaguehi R, Yasuda S, Arii S, et a1. HexokinaseⅡand VEGF expression in Liver tumors: correlation with hypoxia–inducible factorlalpha and its significance[J].JHepatol, 2004, 40: 117–123.
    [51] Shimamura T, Saito S, Mofita K, et a1. Detection of vascular endothelial growth factor and its receptor expression in human hepatecellular carcinoma biopsy specimens[J]. Gastroenteml Hepatol, 2000, 15: 640–646.
    [52] Suzuki K, Hayashi N, Miyamoto Y, et al. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma[J].Cancer Res, 1996, 56: 3004–3009.
    [53]蒋道荣,姚登福,祝勇,等.肝癌组织血管内皮因子表达及其临床意义[J].中国医师杂志, 2004, 6: 158–160.
    [54]盂春城,陈孝平. VEGF、uPA、ICAM–1和PCNA蛋白质表达与肝癌转移复发的关系[J].中华外科杂志, 2002, 40: 673–675.
    [55] Li XM, Tang ZY, Qin LX, et al. Serum vascular endothelial growth factor is a predictor of incasion and metastasis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 1999, 18: 511–517.
    [56] Poon RT, Ng IO, Lau C, et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study[J]. Ann Surg, 2001, 233: 227–235.
    [57] Sheen IS, Jeng KS, Shih SC, et al. Clinical significance of the expression of isoform 165 vascular endothelial growth factor mRNA in noncancerous liver remnants of patients with hepatocellular carcinoma[J]. World J Gastroenteml, 2005, 11: 187–192.
    [58] Takahma M, Tsutsumi M, Tsujiuchi T, et al. Frequent expression of the vascular endothelial growth factor in human non–small–cell lung cancers[J]. Jpn J Clin Oncol 1998, 28: 176–181.
    [59] Shibusa T, Shijubo N, Abe S. Tumor angiogenesis and vascular endothelial growth factor expression in stage I lung adenocarcinoma[J]. Clin Cancer Res, 1998, 4: 1483–1487.
    [60]江小来,冯久贤,董强刚,等.女性肺癌的血管生成和血管内皮生长因子的表达研究[J].实用肿瘤杂志, 1999, 14: 148.
    [61] Fondevila C, Merges JP, Foster J, et a1. p53 and VEGF expression are independent predictors of tumour recurrence and survival following curative resection of gastric cancer[J]. Br J Cancer, 2004, 90: 206–215.
    [62]崔健,杨勇明. LYVE–1和VEGF–C在胃癌中的表达及与淋巴结转移的关系[J].浙江创伤外科, 2009, 14: 104–106.
    [63] K?sem M, Tuncer I, Kotan C, Significance of VEGF and microvascular density in gastric carcinoma[J]. Hepatogastroenterology, 2009,56:1236–40.
    [64] Aurello P, Rossi Del Monte S, D'Angelo F,Vascular endothelial growth factor C and microvessel density in gastric carcinoma: correlation with clinicopathological factors. Our experience and review of the literature[J]. Oncol Res, 2009,17:405–411.
    [65] Guan X, Zhao H, Niu J, The VEGF -634G>C promoter polymorphism is associated with risk of gastric cancer[J].BMC Gastroenterol, 2009,9:1–7.
    [66] Fujisaki K, Mitsuyama K, Toyonaga A, et a1. Circulating vascular endothelial growth factor in patients with colorectal cancer[J]. Am J Gastroenterol, 1998, 93: 249–252.
    [67] Cascinu S, Staccioli MP, Gasparini G, et al. Expression of vascular endothelial growth factor can predict event–free survival in stage II colon cancer[J]. Clin Cancer Res, 2000, 6: 2803–2807.
    [68] Suh EY, Quan-yaang DUH, Dobhi SA, et al. Vascular endothelial growth factor expression is high in differentiaed thyroid cancer than in normal or benigh thyroid[J]. J Clin Endocrinol Metab, 1997, 82: 3741–3747.
    [69] Katoh R , Miyagi ERI , Kawavi A, et al. Expression of vascular endothelial factor in human thyroid neoplasmo[J]. Hum Pathol, 1993, 30: 891–897.
    [70]王景霞,徐辉,邓文伟,等. VEGF-C及TNF-α在乳头状与滤泡状甲状腺癌中的表达及其意义[J].中国老年学杂志, 2009, 29: 1617–1619.
    [71] Iitata M. Graves disease (clinical aspects of Graves’disease)[J]. Nippon Rinsho 1999, 57: 1755–1758.
    [72] Iitaka M, iuras, Yamanaka K, et al. Increased serum vascalar endothelial growthfactor levels and intrathyroidal vascular area in patients with Graves disease and Hashimotos thyroidieis[J]. J Clin Endocrinol Metap 1998, 83: 3908–3912.
    [73] McNamara DA, Harmey JH, Walsh TN, et al . Significance of angiogenesis in cancer therapy[J]. Br J Surg, 1998, 85: 1044–1055.
    [74] Belletti B, Ferraro P , Arra C , et al . Modulation of in vivo growth of thyroid tumor derived cell lines by sense and catisense vascalar endothelial growth factor gene[J]. Oncogene, 1999, 18: 4860–4869.
    [75] Zetter BR. Angiogenesis and tumor metostasis[J]. Annu Rev Med, 1998, 49: 407–424.
    [76] Samoto K, Ikezaki K, Ono M, et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors[J]. Cancer Res, 1995, 55, 1189–1193.
    [77]步星耀,章翔,易声禹.儿童恶性胶质瘤VEGF表达与血管生成及细胞增殖的关系[J].中国肿瘤临床, 1999, 26: 264–266.
    [78] Crew JP, O’Brien T, Bieknell R, et a1. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates[J]. J Urol, 1999, 161: 799–804.
    [79] O’Brien T, Cranston D, Fuggle S, et a1. The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers[J]. Cancer Res, 1996, 56: 2515–2518.
    [80]石岐兴,李芳,刘同,等.血管内皮生长因子在膀胱移行细胞癌中的表达的意义[J].临床肿瘤学杂志, 1999, 4:14–16.
    [81] Charnock-Jones DS, Sharkey AM, Rajput-William J, et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines[J]. Biol Reprod, 1993, 48: 1120–1128.
    [82]白晓红,糜若然. VEGF、bFGF和ER在子宫内膜癌的表达[J].中华肿瘤杂志, 2001, 23: 211–213.
    [83] Yokoyama Y, Sato S, Futagami M, et a1. Prognostic significance of vascular endothelial growth factor and its receptors in endometrial carcinoma[J]. Gynecol Oncol, 2000, 77: 4l3–418.
    [84] Hirai M, Nakagawara A, Oosaki T, et a1. Expression of vascular endothelial growth factors(VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma[J]. Gynecol Oncol, 2001, 80: 181–188.
    [85] Mylona E, Alexandrou P, Mpakali A, et a1. Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and-D and VEGF receptor 3 in invasive breast carcinoma[J]. Eur J Surg Oncol, 2007, 33: 294–300.
    [86]张红.子宫内膜癌中VEGF-C及其受体mRNA的表达及临床意义[J].滨州医学院学报, 2006, 29: 403–404.
    [87]王苏荣,孙菊秀,辛桂香.血管内皮生长因子在宫颈癌组织中的表达及其临床意义[J].临床肿瘤学杂志, 2001, 6: 206–207.
    [88] ToKumo K, Koduma J, Seci N, et al. Different angiogenic pathways in human cervical cancers[J]. Gynecol, 1998, 68: 38–44.
    [89] Yamamoto S, Konishi I, Mandai M, et al. Expression of vascular endothelial growth (VEGF) in epithelial ovarian neoplasms: correlation with clinicopatnology and patient survival , and analgsis of serum VEGF levels[J]. Br J Cancer 1997, 76: 1221–1227.
    [90] Samtin Ad, Hermonat PL, Ravaggi A, et al . Secrtion of vascular endothlial growth factor in ovavian cancer[J]. Eur J Gynaecd Oncol, 1999, 20: 177–181.
    [91] Kimitoshi I, Yuichi O, Toshiyuki S, et al. Vasecular endothelial growth factor expression in primary esophageal squamous cell carcinoma[J]. Cancer, 1997, 79: 206–213.
    [92] Li SL, Gao DL, Zhao ZH et,al. Correlation of matrix metalloproteinase suppressor genes RECK, VEGF, and CD105 with angiogenesis and biological behavior in esophageal squamous cell carcinoma[J].World J Gastroenterol, 2007,7:6076–6081.
    [93] Han U, Can OI, Han S,et,al.Expressions of p53, VEGF C, p21: could they be used in preoperative evaluation of lymph node metastasis of esophageal squamous cellcarcinoma? [J].Dis Esophagus, 2007,20:379–385.
    [94] Masood R, Cai J, Zheng T, et al. Vascular endothelia growth factor/ vascular permeability factor is an autocrine growth factor for AIDS Kaposi sarcoma [J]. Proc Natl Acad Sci USA, 1997, 94: 979–984.
    [95] Kang MA, Kim KY, Seol JY, et a1. The growth inhibition of hematoma by gene transfer of antisense endothelial growth fator[J]. J Gene Med, 2000, 2: 289–296.
    [96] Bruns CJ, Shrader M, Harbison MT, et a1. Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice[J]. Int J Cancer, 2002, 102: 101–108.
    [97]陈汝福,孙宏武,童宜欣,等.反义核苷酸抑制胆管癌细胞血管内皮生长因子基轩表达的效应[J].中华实验外科杂志, 2000, 17: 14–16.
    [98]刘吉奎,韩立本,王玉芝.血管内皮生长因子反义核酸对肝癌生长的抑制作用[J].中华实验外科杂志, 1999, 16: 498–499.
    [99] Asano M, Yukita A, Suzuki H. Wide spectrum of antitumor activity of a neutralizing monoclonal antibody to human vascular endothelia growth factor[J]. Jpn J Cancer Res, 1999, 90: 93–100.
    [100]王丰,田毓华,李凌,等.阻断VEGF旁分泌通路抑制乳腺癌血管生成与肿瘤生长[J].生物化学与生物物理学报(英文版), 2000, 34: 165–170.
    [101] Kim KT, Chae HS, Kim JS, et al. Thalidomide effect in endothelial cell of acute radiation p roctitis[J]. World J Gastroenterol, 2008, 14: 4779–4783.
    [102] La Rocca RV, CooperMR, Stein CA, et al. A pilot study of suramin in the treatment of progressive refractory follicular Lymphomas[J]. Ann Oncol, 1992, 3: 571–573.
    [103] Evans JD, Stark A, Johnson CD, et al. A phase II trial of marimastat in advanced pancreatic cancer [J]. Br J Cancer, 2001, 85: 1865–1870.
    [104]吴晓娟,杨向红. TNP-470对肺癌细胞诱导的血管内皮细胞增殖的抑制作用[J].中国医科大学学报, 2004, 33: 405–407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700