用户名: 密码: 验证码:
RNA干扰治疗视网膜色素变性的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.本实验通过基因打靶技术构建携带人突变RHO基因的视网膜变性小鼠。对构建成功的不同鼠龄小鼠视网膜进行组织病理变化研究,明确其病理改变特点。
     2.制备靶向RHO基因的LV-GFP-shRNA。通过显微注射器将慢病毒载体注射入小鼠视网膜下腔内。研究注射后不同时间hRHO的mRNA和蛋白表达变化;不同时间视网膜转染率和视网膜形态学变化。从而评估RNA干扰技术治疗效果,为临床应用提供实验依据。
     方法
     1.构建mRHOp-hRHO-SV40A-PBS质粒,进行小鼠原核受精卵注射,繁育出转基因小鼠。RT-PCR及western-blot方法鉴定转基因小鼠。
     2.18只RP小鼠随机分成4组。在小鼠出生后15天、30天、60天各处死6只。5只健康小鼠进行对照。过量戊巴比妥钠腹腔注射处死小鼠后迅速完整摘取小鼠眼球,沿视神经做3mm厚度的切片。分别行HE染色、原位细胞凋亡检测和电镜超微检测。比较不同时间视网膜外核层厚度的变化、感光细胞凋亡阳性率及光感受器细胞超微结构的改变。结果采用组间T检验,spss13.0统计软件进行统计学分析。
     3.利用前期实验证实体外转染基因沉默效率为79.14%的靶向hRHO的siRNA序列,构建pGCL-GFP-shRNA慢病毒穿梭质粒,并制备LV-GFP-shRNA。
     4.80只15天鼠龄RP小鼠,左眼作为对照组,不做任何处理;右眼视网膜下腔注射LV-GFP-shRNA。分别在注射后15天、30天、45天、60天随机各处死20只RP小鼠。应用半定量RT-PCR及western-blot方法检测治疗后不同时间RP小鼠视网膜hRHO mRNA及蛋白表达变化。视网膜铺片观察治疗后不同时间视网膜转染率,视网膜色素细胞荧光染色的范围用0到3级评估。(0:没有发现荧光细胞;1:散在的阳性细胞;2:部分阳性细胞连在一起;3:连续的阳性细胞)。行免疫荧光染色观察视网膜RHO表达,行HE染色观察视网膜外核层厚度变化。
     结果
     1. mRHOp-hRHO-SV40-PBS质粒经各种酶切鉴定位置正确后鉴定测序。质粒线性化位点为NotI和Pvul,双酶切后可切成3037bp(回收)和1679bp、1043bp,回收3037bp用于显微注射。小鼠受精卵注射后成功繁育出表达hRHO突变基因的RP小鼠。
     2.RP小鼠出生后15天,视网膜外核层及内核层已经可以分出层次。正常对照组视网膜外核层在各个时间点没有明显的变化(9.30±0.37),而RP小鼠出生15天外核层开始变薄(7.05±0.25),30天明显变薄(5.29±0.24),60天外核层减至单层(2.04±0.28)。TUNEL染色正常对照组为阴性,RP小鼠15天出现散在阳性颗粒,60天出现大片阳性颗粒。提示光感受器细胞出现大量坏死及凋亡。透射电镜显示:早期视网膜视杆细胞外节正常、外界膜连续,30天开始视杆细胞外节缩短,外界膜开始变细,不连续。盘膜出现空泡状改变,内节线粒体、内质网均有不同程度变性,溶解;细胞核出现核浓缩,发生凋亡。
     3.成功构建靶向hRHO的pGCL-GFP-shRNA'慢病毒穿梭质粒,并制备出滴度为1.0×1010ifu/ml的LV-GFP-shRNA。
     4.RP小鼠在进行右眼LV-GFP-shRNA注射后30天时RHO mRNA表达开始下降,到60天时明显下降。组内比较:在45天、60天mRNA表达水平LV-GFP-shRNA组较阴性对照组有明显下降(P<0.05)。在蛋白表达水平上,LV-GFP-shRNA组在30天时较对照组表达开始下降,45天时进一步下降,60天时又趋于平稳。组内比较:在45天、60天蛋白表达水平LV-GFP-shRNA组较阴性对照组有明显下降(P<0.05)。视网膜ONL层数改变LV-GFP-shRNA组较阴性对照组在15天、30天、45天均没有明显差异,到60天时出现LV-GFP-shRNA组较阴性对照组ONL层数增厚(P<0.05)。
     结论
     1.利用转基因技术成功构建出表达hRHO突变基因的视网膜变性小鼠。为后续研究治疗提供可靠的动物模型。
     2.本实验构建出的RP小鼠模型中视网膜组织病理学改变与人类RHO基因突变引起的视网膜色素变性的病理改变类似,为下一步行基因治疗疗效判定提供形态学依据。
     3.成功构建靶向hRHO的pGCL-GFP-shRNA慢病毒穿梭质粒,并制备出滴度为1.0×1010ifu/ml的LV-GFP-shRNA。
     4. LV-GFP-shRNA视网膜下腔注射后短期可以明显下调RHO蛋白表达。为RNA干扰技术治疗人类视网膜色素变性提供可靠的动物实验依据。
Objective
     1. To design a mouse model of autosomal dominant retinitis pigmentosa who carry by human mutant RHO through gene targeting. To identify pathological character in different age.
     2. To construct the LV-GFP virus which could express the specific siRNA targeted to hRHO and evaluate its inhibitory effect in vivo. Mice treat with LV-GFP-shRNA were injected subretinally. To investigate the hRHO degeneration effect by using hRHO RNAi.
     Methods
     1. To construct mRHOp-hRHO-SV40A-PBS, targeting inject in ertilized egg. To identify RP mice by using RT-PCR and western-blot.
     2. Eighteen RP mice were sacrificed at different time namely postnatal days 15 and 30,60. The eyeball were immediately enuleated and fixed in 10% formaldehyde or 2.5% glutaral solution.Routine pathologic procedure were performed and sections were stained by hematoxylin and eosin(HE) and terminal deoxytransferase-mediated dUTP nicked labeling(TUNEL).The eyeball fixed with glutaral solution were examined by electron-microscopy.
     3. In our prophase study, we had successfully inhibited the expression of mutant hRHO genes effectively in cultured rat rod cells by applying chemical synthetic siRNA, and sieved out one high-performance RNA interference chisequence which gene silencing efficiency is 79.14%. To construct the LV-GFP virus which could express the specific siRNA targeted to mutant hRHO.
     4. Eighty RP mice were used in this research (postnatal day 15). LV-GFP-shRNA was injected on in the right eyes, and left eyes were neither injected with saline or with control virus as blank control. Mice were euthanized by pentobarbital sodium after injection day15,30,45,60,and then eyes were removed. To investigate the hRHO degeneration effect by using hRHO RNAi. To confirm the transfection efficiency after injected subretinally in different time. To evaluate the range of transfection efficiency through 3 point (0:none; 1: sporadic masccline; 2:part of masccline connected; 3:consecutive masccline).To observe the layer number of outer nuclear layer by immunofluorescence.
     Results
     1. We had constructed the mRHOp-hRHO-SV40-PBS and made the amplification and depuration of it. mRHOp-hRHO-SV40-PBS were microinjected in amphicytula, and breed RP mice who carry by human mutant RHO successfully.
     2. The layer number of retinal outer nuclear layer cells was gradually decreased from day 15 (7.05±0.25) to day 60 (2.04±0.28). At the day 30, (5.29±0.24) layer were observed. Compared with RP mice, the layer number of retinal outer nuclear layer cells in wild type mice were observed (9.30±0.37) stable in all the time. The apoptosis of outer layer cells were seen on day 15 and increased deeply in the day 60. External limiting membrane were discontinuation on day 30, vacuole occurred in the outer segmen disk. Degeneration in bioblast and endocytoplasmic reticulum were altered and the apoptosis of outer layer cells were seen by the electro-microscopy in RP mice.
     3. We had constructed the LV-GFP for expressing siRNA and made the amplification and depuration of it. The tite of LV-GFP-shRNA was 1.0×1010 particles per ml.
     4. Our in vivo test showed 15 and 60 days after LV-GFP-shRNA injected subretinally, the GFP could be detected in retina sections,which meant that LV-GFP-shRNA had successfully transduced into rod cells and the shRNA being expressed. RT-PCR test showed the recombinant virus vector could efficiently inhibited the RHO mRNA in rod cells after injected 45 days (P<0.05).Western blot test also showed the recombinant virus vector could efficiently inhibited the RHO protein in rod cells after injected 45 days (P< 0.05) compared with control.
     Conclutions
     1.We created a mouse model of autosomal dominant retinitis pigmentosa who carry by human mutant RHO through gene targeting successfully and provide RP animal model for the further research.
     2. We found the process of histopathology in the RP model were similar with human who suffered from RP.
     3. We had constructed the LV-GFP for expressing si RNA and made the amplification and depuration of it. The tite of LV-GFP-shRNA was 1.0×1010 particles per ml.
     4. After injected subretinally, LV-GFP-shRNA could depress of the expression of RHO either mRNA or protein in short period.
引文
[1]Dryja TP, Hahn LB, Kajiwara K, et al. Dominant and digenic mutations in the peripherin/RDS and ROM genes in Retinitis Pigmentosa.Invest Ophthalmol Vis Sci,1997;38:1972-1982.
    [2]Mansergh FC,Millington-Ward S,Kennan A,et al.Retinitis pigmentosa and progressive senorineural hearing loss caused by a C12258A mutation in the mitochondrial MT TS2 gene.Am J Hum Genet,1999;64:971-985.
    [3]Larkin DF, Alexander RA, Cree IA. Infiltrating inflammatory cell phenotypes and apoptosis in rejected human corneal allografts. Eye,1997;11(1):68-74.
    [4]Zhang XY, Bok D. Transplatation of retinal pigment epithelial cells and immune response in the subretinal space. Invest-Ophthalmol-Vis-Sci,1998;39(6):1021.
    [5]Sagdullaev BT, Aramant RB, Seiler MJ, et al. Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa. Invest-Ophthalmol-Vis-Sci,2003; 44(4):1686-1695.
    [6]Radtke ND, Seiler MJ, Aramant RB, et al. Transplantation of intact sheets of fetal neural retina with its retinal pigment epithelium in retinitis pigmentosa patients. Am-J-Ophthalmol,2002;133(4):544-550.
    [7]Humayun MS, de-Juan E Jr, del-Cerro M, et al. Human neural retinal transplantation. Invest-Ophthalmol-Vis-Sci,2000;41 (10):3100-3106.
    [8]Li T, Sandberg MA, Pawlyk BS, et al. Effect of vitamin A supplementation on rhodopsin mutants threonine-17→ methionine and proline-347→ serine in transgenic mice and in cell cultures. Proc-Natl-Acad-Sci-U-S-A,1998; 95(20):11933-11938.
    [9]Frasson M, Picaud S, Leveillard T, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest-Ophthalmol-Vis-Sci, 1999; 40(11):2724-2734.
    [10]Takano Y, Ohguro H, Dezawa M, et al. Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem-Biophys-Res-Commun,2004; 313(4):1015-1022.
    [11]Wheaton DH, Hoffman DR, Locke KG, et al. Biological safety assessment of docosahexaenoic acid supplementation in a randomized clinical trial for X-linked retinitis pigmentosa. Arch-Ophthalmol, 2003;121(9):1269-1278.
    [12]Sato M, Ohguro H, Ohguro I, et al. Study of pharmacological effects of nilvadipine on RCS rat retinal degeneration by microarray analysis. Biochem-Biophys-Res-Commun,2003;306(4):826-831.
    [13]Pawlyk BS, Li T, Scimeca MS, et al. Absence of photoreceptor rescue with D-cis-diltiazem in the rd mouse. Invest-Ophthalmol-Vis-Sci,2002;43(6):1912-1915.
    [14]Tschernutter M, Schlichtenbrede FC, Howe S, et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther.2005 Jan 20.
    [15]Sarra GM, Stephens C, Schlichtenbrede FC, et al. Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vision-Res,2002; 42(4): 541-549.
    [16]Guru T. A silence that speaks volumes. Nature,2000; 404:804-808.
    [17]Guo S, Kempheus KJ. Par-1. a gene required for establish-hing polarity in C-elegans embryos-encodes a putativeSer/Thr kinase that is asymmetrically distributed. Cell,1995; 81(4): 611-620.
    [18]Fire A, Xu S, Mello CC, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature,1998; 391:806-811.
    [19]Hammond S, Bernstein E, Hannon G, et al. An RNA-directed nuclease mediates post-transcriptional gene sileneing in drosophila cells. Nature,2000; 404(6775):293-298.
    [20]Elbashir SM, Lendeckel W, Tuschl T.RNA interference is mediated by 21 and 22nucleotide RNAs. Genes Dev,2001; 15(2):188-200.
    [1]Bourne MC, Campbell DA, Tansley K. Hereditary degeneration of rat retina. Br J Ophthalmol,1938, 22:613-623.
    [2]Carter DLD, LaVail MM, Sidman RL. Differential efect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci,1978,17:489-498.
    [3]Cayouette M,Behn D,Sendtner M.Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. Neurosci,1998,18(22):9282-9293.
    [4]Nafstrom K. Hereditary progressive retinal atrophy in the Abyssinian cat. J Heredity,1983,74: 273-276.
    [5]Rah H, Maggs DJ, Blankenship TN, et al. Early-onset. Autosomal recessive progressive retinal atrophy in Persian cats. Invest Ophthalmol Vis Sci,2005,46:1742-1747.
    [6]Aguirre GD, Acland GM, Maude MB, et al. Diets enriched in docosahexaenoic acid fail to correct progressive rod-cone degeneration (prcd) phenotype. Invest Ophthalmol Vis Sci,1997,38:2387-2407.
    [7]Andres V, Sven EGN, Kristina N. Retinal dystrophy of Swedish Briard/Briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics,1999,57:57-61.
    [8]Zhu L, Jang GF, Jastrsebska B, et al. A naturally occurring mutation of the opsin gene(T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor. J Biol Chem,2004,279: 53828-53839.
    [9]Pak-w L. Drosophila in vision research. The Friedenwaid lecture. Invest Ophthalmol Vis Sci,1995, 33:1599-1609.
    [10]Brockerhof SE, Hurley JB, Janssen-Bienhold U, et al. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA,1995,92:10545-0549.
    [11]Semple-Rowland SL, Lee NR. Avian models of inherited retinal disease. Method Enzymol,2000, 316:526-536.
    [12]Lem J, Krasnoperova Nv, Calvert PD, et al. Morp Ogical physiological and biochemical changes in rhodopsin knockout mice. Pruc Natl Acad Sci U S A,1999,96(2):736-741.
    [13]Humphries MM, Rancourt D, Farrar GJ. Retinopathy induced in mice by targeted. disruption of the rhodopsin gene. Nat Genet,1997,15(2):216-219.
    [14]Steinberg RH, Flannery JG, Naash M, et al. Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes. Invest Ophthalmol Vis Sci,1996,37:$698.
    [15]Petters RM, Alexander CA, Wells KD. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol,1997,15(10): 965-970.
    [16]Naash MI, Hollyfield JG, Al-Ubaidi MR, et al. Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc Natl Acad Sci USA,1993, 90:5499-5504.
    [17]Hong DH, Pawlyk BS, Shang J, et al. A retinitis pigmentosa GTPase regulator (RPGR)-deftcient mouse model for X-linked retinitis pigmentosa(RP-3). Proc Natl Acad Sci USA,2000,10:329-333.
    [18]Lue CL. Rod cell activity in retinal degenerative rats. J Formos Med Assoc,1994,93:605-610.
    [19]Neuhardt TH, May CA, W ilsch C. Morphological changes of retinal pigment epithelium and choroids in rd-mice. Exp Eye Res,1999,68:75-83.
    [20]LaVail MM, Sidman RL, Ge rhardt CO. Congenic strains of RCS rats with inherited retinal dystrophy. J Hered,1975,66(4):242-244.
    [21]Mullen RJ, Lavail MM, Inherited retinal dystrophy:primary defect in pigment epithelium determined with experimental rat chimeras. Science,1976,192:799-801.
    [22]Strauss O, Stumpf F, Mergler S. The royal college of surgeons rat:an animal model for inerited retinal degeneration with a still unknown genetic defect. Acta Anat,1998,162:101-111.
    [23]Cruz PM, Yasumura D, Weir J. Mutation of the receptor tyrosine kinase Meek in the retinal dystrophic RCS rat. Hum Mol Genet,2000,9:645-651.
    [24]Girman SV, Wang S, Lund RD. Cortical visual functions can be preserved by subretinal RPE cell grafting in RCS rats. Vision Res,2003,43(17):1817-1827.
    [25]Wojciechowski AB, Englund U, Lundberg C, et al. Subretianl transplantation of brain-derived precursor cells to young RCS rats promotes photoreceptor cell survival. Exp Eye Res,2002,75(1): 23-37.
    [26]Bowes C, Li T, Danciger M. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature,1990,347(6294):677-680.
    [27]Cayouette M,Behn D,Sendtner M.Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. Neurosci,1998,18(22):9282-9293.
    [28]Sanyal S, De Ruiter A, Hawkins RK. Development and degeneration of retina in rds mutant mice: light microscopy. J Comp Neurol,1980,194(1):193-207.
    [29]Petters RM, Alexander CA, Wells KD. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol,1997,15(10): 965-970.
    [30]Li ZY, Wong F, Chang JH. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest Ophthalmol Vis Sei,1998,39(5):808-819.
    [31]Fire A,Xu S, Montgomery MK, et al.Potent and specific genetic interference by Double-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669):806.30.
    [32]Zamore PD,Tuschl T,Sharp PA,et al.RNAi:Double-stranded RNA directs the ATP-dependent cleavaee of mRNA at 21 to 23 nucleotide intervals.CeU 2000,101(1):25.
    [33]Yu JY,Taylor J,DeRuiter SL,et al.Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors.MoL Ther,2003,7:228-236.
    [34]Amarzguioui M,Holen T,Babaie E,et al.Tolerance for mutations and chemical modifications in a siRNA.Nucleic Acids Res,2003,312:589-595.
    [35]Bohula EA,Salisbury AJ,SohaH M,et al.The efficacy of small interfering RNAs targeted to the typel IGF receptor is infuenced by secondary structure in the IGF1R transcript.J Biol Chem,2003,278:15991-15997.
    [36]Yuan B,Latek R,Hossbach M,et al.siRNA Selection Server:an automated siRNA oligonucleotide prediction server.Nucleic Acids Res 2004,32:130-134.
    [37]Hu WY,Myers CP,Kilzer JM,et al.Inhibition of retroviral pathogenesis by RNA interference.Curr Biol,2002,12:1301-1311.
    [38]Connolly JB.Lentiviruses in gene therapy clinical research. Gene Ther,2002,9(24):1730-1734.
    [39]Yu X, Zhan X, Cheng L, et al. Lentiviral vectors with two independent internal promoters transfer high level expression of multiple transgenes to human hematopoietic stem progenitor cells. Molecular Therapy,2003,7:827-838.
    [40]Pfoiler A, Ikawa M, Dayn Y, et al. Transgenesis by lentiviral vectors:Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA,2002, 99(4):2140-2145.
    [41]Inder MV, Nikunj S.Gene therapy promises, problems and pros-pects. Nature,1997,389:239-242.
    [42]Naldini L,Blomer U,Gallay P,et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.see comments Science,1996,272:263-267.
    [43]Blomer U,Naldini L,Kafri T,et al. Highly efficient and sustanied gene transfer in adult neurons with a lentivirus vector.J Virol,1997,71:6641-6649.
    [44]Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet,2001,28(1):92-95.
    [45]Bemelmans AP,Kostic C,Crippa SV,et al.Lentiviral gene transfer of rpe65 rescues survival and function of cones in a mouse model of leber congenital amaurosis.Plos Med,2006,3(10).
    [46]McNally N, Kenna P, Humphries MM, et al. Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene. Hum Mol Genet,1999,8(7):1309-1312.
    [47]Vollrath D, FengW, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc NatlAcad Sci USA,2001,98 (22):12584-12589.
    [48]Shaw LC, Skold A, Wong F, et al. An allele-specific hammerhead ribozyme gene therapy for a porcine model of autosomal dominant retinitis pigmentosa. Mol Vis,2001,26(7):6-13.
    [49]Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme resue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med,1998,4:957-971.
    [50]Georgiadis A, Tschernutter M, Bainbridge JW,et al. AAV-mediated knockdown of Peripherin-2 in vivo using miRNA-based hairpins. Gene Therapy advance online publication,10 December 2009.
    [51]Chadderton N, Millington-Ward S, Palfi A, et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther,2009,17(4):593-599.
    [52]O'Reilly M, Palfi A, Chadderton N,et al.RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet,2007,81(1):127-135.
    [1]Wang Q, Chen Q, Zhao K, et al. Update on the molecular genetics of retinitis pigmentosa.Ophthalmic Genet,2001,22 (3):133-154.
    [2]Papaioannou M, Chakarova CF, Prescott DQC, et al. A new locus (RP31) for autosomal dominant retinitis pigmentosa maps chromosomep. Hum Genet,2005,118 (3):1-3.
    [3]Gorbatyuk MS, Pang JJ, Thomas J Jr,et al. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol Vis,2005,11:648-656.
    [4]Li T, Sandberg MA, Pawlyk BS, et al. Effect of vitamin A supplementation on rhodopsin mutants threonine-17 methionine and proline-347 serine in transgenic mice and in cell cultures. Proc Natl Acad Sci USA,1998,95(20):11933-11938.
    [5]Takahashi M, Miyoshi H, Verma IM, et al. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol,1999,73:7812-7816.
    [6]Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet,2001,28(1):92-95.
    [7]Bemelmans AP,Kostic C,Crippa SV,et al.Lentiviral gene transfer of rpe65 rescues survival and function of cones in a mouse model of leber congenital amaurosis.Plos Med,2006,3(10).
    [8]Sarra GM, Stephens C, Schlichtenbrede FC, et al. Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus.Vision-Res,2002,42(4):541-549.
    [9]McNally N, Kenna P, Humphries MM, et al. Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene. Hum Mol Genet,1999,8 (7):1309-1312.
    [10]Vollrath D, FengW, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc NatlAcad Sci USA,2001,98 (22):12584-12589.
    [11]Sullivan JM, Pietras KM, Shin BJ, et al. Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa. Mol Vis,2002,8:102-113.
    [12]Ali RR, Sarra GM, Stephens C, et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet,2000,25(3):306-310.
    [13]LaVail MM, Yasumura D, Matthes MT, et al. Ribozyme rescue of photoreceptor cells in P23H transgenic rats:long-term survival and late-stage therapy. Proc Natl Acad Sci USA,2000, 97(21):11488-11493.
    [14]O' Neill B, Millington-Ward S, O'Reilly M, et al. Ribozyme-based therapeutic approaches for autosomal dominant retinitis pigmentosa. Invest-Ophthalmol Vis Sci,2000,41(10):2863-2869.
    [15]Shaw LC, Skold A, Wong F, et al. An allele-specific hammerhead ribozyme gene therapy for a porcine model of autosomal dominant retinitis pigmentosa. Mol Vis,2001,26(7):6-13.
    [16]Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme resue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med,1998,4:957-971.
    [17]Georgiadis A, Tschernutter M, Bainbridge JW,et al. AAV-mediated knockdown of Peripherin-2 in vivo using miRNA-based hairpins. Gene Therapy advance online publication,10 December 2009.
    [18]Chadderton N, Millington-Ward S, Palfi A, et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther,2009,17(4):593-599.
    [19]O'Reilly M, Palfi A, Chadderton N,et al.RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet,2007,81(1):127-135.
    [20]Nir I, Kedziershi W, Chen J, et al. Expression of Bcl-2 protects against photoreceptor degeneration in retinal degeneration slow (rds) mice. J Neurosci,2000,20(6):2150-2154.
    [21]Yoshizawa K, Tsubura A.Characteristics of N-methyl-N-nitrosourea-induced retinal degeneration in animals and application for the therapy of human retinitis pigmentosa.Nippon Ganka Gakkai Zasshi, 2005,109(6):327-337.
    [22]Litchfield TM, Whiteley SJ, Lund RD, et al. Transplantation of retinal pigment epithelial, photoreceptor and other cells as treatment for retinal degeneration.Exp Eye Res,1997,64 (5):655-666.
    [23]Sauve Y, Pinilla I, Lund RD.Partial preservation of rod and cones ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res,2006,46(89):1459-1472.
    [24]Woch G, Aramant RB, Seiler MJ, et al. Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration.Invest Ophthalmol Vis Sci,2001,42(7):1669-1676.
    [25]Del Cerro M, Humayun MS, Sadda SR, et al. Histologic correlation of human neural retinal transplantation. Invest Ophthalmol Vis Sci,2000,41(10):3142-3148.
    [26]Arai S, Thomas BB, Seiler MJ,et al. Restoration of visual responses following transplantation of in intact retinal sheets in rd mice.Exp Eye Res,2004,79(3):331-341.
    [27]Smith LE. Bone marrow-derived stem cells preserve cone vision in retinitis pigmentosa. J Clin Invest,2004,114(6):765-774.
    [28]Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell.2009,5(4):396-408.
    [29]Wang S, Lu B, Girman S, Duan J,et al.Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One,2010,5(2):e9200.
    [30]Lenzi L, Coassin M, Lambiase A, et al. Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa. Vision Res,2005,45 (12):1491-1500.
    [31]Zeiss CJ, Allore HG, Towle V, et al. CNTF induces dose-dependent alterations in retinal morphology in normal and rcd-1 canine retina. Exp Eye Res,2005,82(1):1-10.
    [32]Andrieu-Soler C, Aubert-Poussel A, Doat M, et al. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rdl/rdl mouse. Mol Vis,2005, 17(11):1002-1011.
    [33]Lavail MM,Yasumura D, Matthes MT,et al. Protection of mouse photoreceptors by survival factors in retinal degenerations.Invest Ophthalmol Vis Sci,1998,39(3):592-602.
    [34]Borhani H, Peyman GA, Rahimy MH, et al.Vitreoretinal toxicity of basic fibroblast growth factor. Int Ophthalmol,1993,17(4):195-199.
    [35]Ahuja P, Caff AR, Holmqvist I, et al. Lens epithelium-derived growth factor (LEDGF) delays photoreceptor degeneration in explants of rd/rd mouse retina. Neuroreport,2001,12 (13):2951-2955.
    [36]Machida S, Tanaka M, Ishii T, et al. Neuroprotective effect of hepatocyte growth factor against photoreceptor degeneration in rats. Invest Ophthalmol Vis Sci,2004,45 (11):4174-4182.
    [37]Zhang M, Mo X, Fang Y, Guo W, et al. Rescue of photoreceptors by BDNF gene transfer using in vivo electroporation in the RCS rat of retinitis pigmentosa. Curr Eye Res,2009,34(9):791-799.
    [38]Frasson M, Picaud S, Leveillard T, et al. Glial cell line2derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci,1999,40(11):2724-2734.
    [39]VanWoerkom C, Ferrucci S. Sector retinitis pigmentosa. Optometry,2005,76 (5):309-317.
    [40]Medrano CJ, Fox DA. Oxygen consumption in the rat outer and inner retina:light and pharmacologically2induced inhibition. Exp Eye Res,1995,61(3):273-284.
    [41]Takano Y, Ohguro H, Ohguro I, et al. Low expression of rhodopsin kinase in pineal gland in Royal College of Surgeons rat. Curr Eye Res,2003,27 (2):95-102.
    [42]Sato M, Ohguro H, Ohguro I, et al. Study of pharmacological effects of nilvadipine on RCS rat retinal degeneration by microarray analysis. Biochem Biophys Res Commun,2003,306 (4):826-831.
    [43]Berson EL, Rosner B, Sandberg MA. Clinica 1 tr ial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol,2004,122 (9):1297-1305.
    [44]Gao Y, Deng XG, Sun QN, et al. Ganoderma spore lipid inhibits N-methyl-N-nitrosourea-induced retinal photoreceptor apoptosis in vivo. Exp Eye Res.2010,90(3):397-404.
    [45]Sakaguchi H, Kamei M, Fujikado T, et al. Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. J Artif Organs,2009, 12(3):206-209.
    [46]Chow AY, Chow VY, Packo KH, et al.The artifical silicon retina microchip for the treatment of vision loss from retinitis pigmentosa.Arch Ophthalmol,2004,122(4):460-469.
    [47]Tam BM, Qazalbash A, Lee HC,et al.The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin a deprivation. Invest Ophthalmol Vis Sci,2010, 51(3):1327-1334.
    [48]Li T, Sandberg MA, Pawlyk BS, et al. Effect of vitamin A supp lementation on rhodopsin mutants threonin-17 to methionine and Praline to serine in transgenicmice and in cell culture. Proc Nat scad Sci USA,1998,95:11933-11938.
    [49]Radtke ND, SeilerMJ, Aramant RB, et al. Transp lantation of intact sheets of fetal neural retina with its retinal p igment epithelium in retinitis pigmentosa patients. Am J Ophthalmol,2002,133: 544-550.
    [50]Tao W, Wen R, Goddard MB, et al. Aguirre GDEncap sulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol, Vis Sci,2002,43:3292-3298.
    [51]谢正秀,丁淑华.视网膜色素变性的发病机理及实验纂要.中医药刊,2002,20:196-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700