用户名: 密码: 验证码:
更新世黄土高原中南部土壤侵蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原土壤侵蚀在近几十年一直是地学界研究的热点内容之一。现有的目标和成果多集中于侵蚀产沙模型、各种植被的水土保持效应、降雨侵蚀产沙的物理机制、土壤侵蚀的时空分布等方面,而对地质时期的土壤侵蚀问题研究较少。了解黄土高原在地质时期的侵蚀历史,以区分自然与人为侵蚀各自的作用,为相应的防治对策提供依据。
     人类活动影响全球气候为当前世界关注的焦点,但对于长时间尺度的气候冷暖旋回的影响程度现在尚不能做出判断。全球气候变化依然要服从其固有的规律,是地球轨道参数、太阳活动周期等因素共同作用的结果,不会以人类的意志转移。当前正处于气候由暖湿转冷干的过渡时期。本文选取更新世作为研究的时间范围,以忽略人类活动对黄土高原土壤侵蚀的影响,而从纯自然环境演变来探讨黄土高原中南部的土壤侵蚀期;黄土高原中南部为气候变迁敏感地区,黄土地层典型,土壤侵蚀问题较为突出,对冬夏季风强弱变化记录完整,有利于开展古气候与古侵蚀研究。
     通过对研究区的野外考察和采样分析,明确了更新世黄土高原发生强烈侵蚀的环境条件是气候过渡期及脆弱的生态环境;认为构造抬升期由于其持续时间过长、引起的土壤侵蚀强度与范围有限而不作为侵蚀期加以研究;确定侵蚀面是土壤侵蚀事件或侵蚀期良好的地质记录,将黄土高原的侵蚀面定义为黄土-古土壤地层中由于侵蚀而形成的不整合面,这些不整合面一般形成于古土壤发育期即将开始的时期;以侵蚀面上覆地层底部的形成时间近似为侵蚀期的发生时间;认为河流阶地不一定都能指示侵蚀期;古土壤发生层次的缺失是黄土-古土壤地层形成过程中正常的地质现象,也不能作为侵蚀面来推求侵蚀期。
     中国黄土沉积是与冰芯、深海记录相媲美的反演古气候变迁的载体之一。通过对洛川与杨凌第四层古土壤的采样分析,得出MIS11时期研究区气候稳定、极端气候事件少见,以此认为此期不应成为强烈侵蚀期。将反映夏季风强度变化磁化率曲线与ODP677δ18O曲线、SPECMAP相比照,得出了13个可能是侵蚀
     期的气候过渡期,其发生时间和对应的黄土地层层位分别是:2.580MaB.P(N/Q);2.190MaB.P(S29上部);1.870MaB.P(S26下部);1.240MaB.P(S14底部);1.120MaB.P(S12底部);0.964MaB.P(S9-1底部);0.865MaB.P(S8底部);0.760/0.780MaB.P(S7底部和上部);0.621~0.531MaB.P(S5);0.412MaB.P(S4底部);0.336MaB.P(S3底部);0.245MaB.P(S2底部);0.128MaB.P(S1底部)。
     在洛川找到了7处侵蚀面,分别记录了2.580MaB.P;1.240MaB.P(S14底部);1.120MaB.P;0.964MaB.P(S9-1底部);0.128MaB.P(S1底部)和0.073MaB.P.共计6个侵蚀期。
     在渭南重点考察了阳郭镇的黄土-古土壤地层,仅发现了一处典型的侵蚀面,指示0.412MaB.P和0.128MaB.P两个侵蚀期。
     在铜川市王益区和印台区找到了4个侵蚀面,其中S5-3与下伏地层的不整合面是铜川期侵蚀留下的侵蚀面,记录了0.531MaB.P的侵蚀期。其余地层记录了0.412MaB.P,0.128MaB.P两个侵蚀期。
     在宝鸡市岐山县蔡家坡、五丈原和扶风县县城、绛帐等地的考察一共找到了10处侵蚀面,记录了0.760MaB.P,0.621~0.531MaB.P,0.412MaB.P,0.336MaB.P,0.245MaB.P和0.128MaB.P共计6个侵蚀期。其中0.128MaB.P发生的侵蚀事件普遍而强烈,有多处侵蚀面发现。
     在淳化找到了3个侵蚀面,代表0.710MaB.P,0.412MaB.P和0.128MaB.P三个侵蚀期。杨凌黄土地层记录了0.128MaB.P发生的强烈侵蚀事件。
     而2.190MaB.P;1.870MaB.P和0.865MaB.P这3个理论气候侵蚀期没有发现对应的侵蚀面。
Soil erosion on the Loess Plateau is one of the hotspots of recent research ingeosciences. The available studies mainly focused on soil erosion and sediment yieldmodels,soil and water conservation effect of plant community, physical mechanismof erosion and sediment yield, temporal and spatial distribution of soil erosion, whileonly a few studies for soil erosion in geological time. To understand the erosionhistory of geological period, distinguishing the role of natural erosion and artificialacceleration erosion, providing basis for the respective control measures.
     It is one of the main issues that how human activities affected the global climate,and currently, we could not judge the impact of human activities on long-scaleclimatic fluctuation. Global climate change still should obey its own regularity, whichis regulated by earth orbital parameters, solar cycle and so on; it is independent of thehuman will. Now, the climate is experiencing a transition from warm-wet to cool-dryweather. This study selected Pleistocene as the studying time range, in order toneglect the impact of human activities on the Loess Plateau, and discuss the erosionperiods by pure natural evolve. The central south part of the Loess Plateau is sensitiveto the climate change, and has typical loess layers, soil erosion is very conspicuous,and the loess layer records the intensity change of summer and winter monsooncompletely, all these show that this area is good for ancient climate and ancienterosion study.
     Through field survey on the study area and sampling analysis in laboratory, wemade clear that climatic change period and fragile ecological environment is thebackground for intensive soil erosion; tectonic uplifting is unsuitable for taking aserosion period, for it lasts for such a long period but could not lead to severe soilerosion. Determining erosion surface is excellent geological record for erosion event or erosion period, and defining erosion surface as unconformity surface between loessand paleosol layers, the erosion surface generally formed in the upcoming period ofpaleosol. The occurrence time of erosion event is the formation time of the bottomlayer of overlying strata over the erosion surface. River terrace might not indicateerosion period; the absent of genetic horizon is normal phenomenon during theformation of loess-paleosol layers; it could not be taken as erosion surface and toobtain erosion period, too.
     For inversing ancient climate change, Chinese loess records were terrestrialsediments that could compared to those records in ice core and deep-sea. Wecompared magnetic susceptibility curve which shows the intensity change of summermonsoon, ODP677δ18Ocurve and SPECMAP, got 13 climatic change period whichcould be regarded as erosion periods, the occurrence time and corresponding loesslayer is: 2.580MaB.P(N/Q); 2.190MaB.P(S29 top); 1.870MaB.P(S26 bottom);1.240MaB.P(S14 bottom);1.120MaB.P(S12 bottom); 0.964MaB.P(S9-1 bottom);0.865MaB.P(S8 bottom);0.760/0.780MaB.P(S7 bottom and top); 0.621~0.531MaB.P(S5); 0.412MaB.P(S4 bottom); 0.336MaB.P(S3 bottom); 0.245MaB.P(S2bottom); 0.128MaB.P(S1 bottom)。
     We found 7 erosion surfaces in Luochuan, which record 6 erosion periods, theyare 2.580MaB.P; 1.240MaB.P; 1.120MaB.P; 0.964MaB.P; 0.128MaB.P;0.073MaB.P(L1bottom)。
     In Weinan, we mainly studied Yangguo loess-paleosol layer, but only found 1erosion surface, which indicate two erosion periods: 0.412MaB.Pand 0.128MaB.P。
     In Tongchuan, we found 4 erosion surfaces, among which 0.531MaB.P isTongchuan erosion period. The other erosion periods occurred at 0.412MaB.P and0.128MaB.P.
     Caijiapo, Wuzhangyuan, Jiangzhang and Fufeng Town in Baoji, we found9erosion surfaces, record 6erosion periods, they are 0.760MaB.P; 0.621~0.531MaB.P;0.412MaB.P; 0.336MaB.P; 0.245MaB.P; 0.128MaB.P. Among them, the erosionevent happened at 0.128MaB.P. is more severe than the others, many erosion surfaceswere found here.
     In Chunhua, we found 3 erosion surfaces, represent 0.710MaB.P, 0.412MaB.P. and 0.128MaB.P. erosion events. While in Yangling, only one erosion surface wasfound, indicate at 0.128MaB.P, there was severe soil erosion.
     But we found no erosion surface to correspond these 3 erosion periods:2.190MaB.P; 1.870MaB.Pand 0.865MaB.P.
引文
[1]洪业汤.不应把黄河看成是生态破坏的象征[N].科学报,1988-11-18,905.
    [2]杨勤业,袁宝印,主编.黄土高原地区自然环境及其演变[M].北京:科学出版社,1991,81-209.
    [3]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988,72.
    [4]唐克丽,王斌科,郑粉莉,等.黄土高原人类活动对土壤侵蚀的影响[J].人民黄河,1994,2:13-16.
    [5]査小春,唐克丽.黄土丘陵林地开垦土壤侵蚀与土壤性质变化[J].地理学报,2003,58(3):464-469.
    [6]唐克丽,张平仓,王斌科.土壤侵蚀与第四纪生态环境演变[J].第四纪研究,1991,4:300-309.
    [7]夏正楷.黄土高原第四纪期间水土流失的地质记录和基本规律[J].水土保持研究,1999,6(4):49-53.
    [8] He X B, Zhou J, Zhang X B, et al. Soil erosion response to climatic change and humanactivityduring the Quaternaryon the Loess Plateau, China[J]. Reg Environ Change,2006, 6: 62–70.
    [9]刘东生,等著.黄土与环境[M].北京:科学出版社,1985,1-410.
    [10]甘枝茂.从黄土地貌的发育中认识黄土高原的土壤侵蚀及其防治[J].水土保持通报, 1982, 1:6-10.
    [11]邓成龙,袁宝印.末次间冰期以来黄河中游黄土高原沟谷侵蚀-堆积过程初探[J].地理学报, 2001, 56(1):92-98.
    [12]景可,李凤新.全球气候变暖对黄土高原侵蚀产沙的影响[J].地理研究, 1993,12(2):1-8.
    [13]赵景波.淀积理论与黄土高原环境演变[M].北京:科学出版社, 2002, 10-83.
    [14]景可.黄土高原新构造运动对侵蚀的影响[J].水土保持通报, 1982, 6:10-14.
    [15]刘忠义,介彦清,张清田.陕西黄土高原新构造运动对土壤侵蚀影响的探讨[J].泥沙研究,1990,1:73-78.
    [16]徐建华,艾南山,马鸿良.黄土高原土壤侵蚀与构造应力场的关系[J].水土保持学报, 1990, 4(2):40-44.
    [17]马润勇,彭建兵,刘利年,等.青藏高原隆升的气候环境效应与黄土高原构造侵蚀[J].水土保持研究, 2006, 13(3):220-225.
    [18]米文宝,李龙堂.浅析新构造运动对黄土高原水土流失的影响[J].干旱区研究,1995,12(3):1-6.
    [19]杜娟,赵景波.黄土高原构造侵蚀期研究[J].陕西师范大学学报(自然科学版),2001,29(2):107-111.
    [20]赵景波,杜娟,黄春长.黄土高原侵蚀期研究[J].中国沙漠,2002,22(3):257-261.
    [21]李裕元,石辉.新构造运动对黄土高原环境变迁的影响[J].水土保持研究,2001,8(1):123-128.
    [22]李裕元,王力,邵明安.新构造运动对黄土高原土壤侵蚀的影响[J].水土保持学报,2001,15(5):76-78,85.
    [23] Davis W M. The Geographical Cycle [J]. The Geographical Journal, 1899, 14,(5):481-504
    [24]景可,陈永宗,李风新.黄河泥沙与环境[M].北京:科学出版社,1993,184-188.
    [25]杨守业,蔡进功,李从先,等.黄河贯通时间的新探索[J].海洋地质与第四纪地质,2001,21(2):15-20.
    [26]王苏民,吴锡浩,张振克,等.三门古湖沉积记录的环境变迁与黄河贯通东流研究[J].中国科学D辑,2001,31(9):760-768.
    [27]蒋复初,傅建利,王书兵,等.关于黄河贯通三门峡的时代[J].地质力学学报,2005,11(4):293-301.
    [28]吴锡浩,蒋复初,王苏民,等.关于黄河贯通三门峡东流入海问题[J].第四纪研究,1998,2:188.
    [29]潘保田,王均平,高红山,等.河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J].科学通报, 2005, 50(3):255-261.
    [30]潘保田,王均平,高红山,等.从三门峡黄河阶地的年代看黄河何时东流入海[J].自然科学进展,2005,15(6):700-705.
    [31]季军良,郑洪波,李盛华,等.山西平陆黄河阶地与古三门湖消亡、黄河贯通三门峡时代问题的探讨[J].第四纪研究,2006,26(4):665-671.
    [32]吴忱.地貌面、地文期与地貌演化——从华北地貌演化研究看地貌学的一些基本理论[J].地理与地理信息科学,2008,24(3):75-78.
    [33]孙建中.黄土学[M].香港:香港考古学会,2005,47-51.
    [34]潘保田,李吉均,曹继秀.黄河中游的地貌与地文期问题[J].兰州大学学报(自然科学版),1994,30(1):115-123.
    [35]袁宝印,郭正堂,乔彦松,等.地文期及其在新生代黄土和古地理研究中的意义[J].地质通报,2008, 27(3):300-307
    [36]丁仲礼,刘东生,刘秀铭,等. 250万年以来的37个气候旋回[J].科学通报,1989,34(19):1494-1496.
    [37]郭正堂,丁仲礼,刘东生.黄土中的沉积一成壤事件与第四纪气候旋回[J].科学通报,1996,41(1):56-59.
    [38] Hovan S A, Rea D K, Pisias N G, A direct link between the China loess and marine18O records: aeolian flux to the north Pacific[J], Nature, 1989, 340:296-298.
    [39] Porter S C, An Z S. Correlation between climate events in the North Atlantic andChina during the last glaciation[J], Nature, 1995, 375:305-308.
    [40] Liu T S, Ding Z L, Rutter N. Comparison of Milankovitch periods betweencontinental loess and deep sea recordes over the last 2.5Ma[J], Quaternary ScienceReviews, 1999, 18:1205-1212.
    [41] Roe G. On the interpretation of Chinese loess as a paleoclimate indicator[J],QuaternaryResearch, 2009, 71:150-161.
    [42] Williams D F, Thunell R C, Tappa E, et al. Chronology of the pleistocene oxygenisotope record: 0–1.88m.y.B.[J],Palaeogeography, Palaeoclimatology, Palaeoecology,1988, 64: 221-240.
    [43]丁仲礼,刘东生. 1.8Ma以来黄土-深海古气候记录对比[J].科学通报,1991,18:1401-1403.
    [44]刘嘉麒,倪云燕,储国强.第四季的主要气候事件[J].第四纪研究,2001,21(3):239-248.
    [45] Dansgaard W, White J W C, Johnsen S J. The abrupt termination of the Younger Dryasclimate event[J], Nature, 1989, 339:532-533.
    [46] Oppo D W, McManus J F, Cullen J L. Abrupt climate events 500,000 to 340,000 yearsago: evidence from subpolar NorthAtlantic sediments[J]. Nature, 1998, 279: 1335-1338.
    [47] Severinghaus J P, Sowers T, Brook E J, et al., Timing of abrupt climate change at theend of the Younger Dryas interval from thermally fractionated gases in polar ice[J],Nature, 1998, 391:414-416.
    [48] Weertman J. Milankovitch solar radiation variations and ice age ice sheet sizes[J],Nature, 1976, 261, 17 - 20 .
    [49] Berger A. Milakovitch theory and climate [J], Reviews of Geophysics, 1988,26(4):624-657.
    [50] Bennett K D. Milankovitch cycles and their effects on species in ecological andevolutionarytime [J], paleobiology, 1990, 16(1):11-21.
    [51] Short D A, Mengel J G, Crowley T J, et al., Filtering of Milankovitch cycles byEarth’s geography[J], QuaternaryResearch, 1991, 35:157-173.
    [52] Imbrie J, Berger A, Boyle E A, et al., on the structure and origin of major glaciationcycles[J], Paleoceanography, 1993, 8(6):699-735.
    [53] Liu T S, Ding Z L, Chinese loess and the paleomonsoon [J], Annu. Rev. Earth Planet.Sci., 1998, 26:111-145.
    [54] Huang C C, Pang J L, Zhao J B, Chinese loess and the evolution of the east Asianmonsoon[J], Progress in Physical Geography, 2000, 24(10):75-96.
    [55] Wang X S, Yang Z Y, Lovlie R, et al. A magnetostratigraphic reassessment ofcorrelation between Chinese loess and marine oxygen isotope records over the last1.1 Ma[J], Physics ofThe Earth and Planetary Interiors, 2006, 159:109-117.
    [56] Guo Z T, Liu T S, Fedoroff N, et al., Climate extremes in Loess of China coupled withthe strength of deep-water formation in the North Atlantic[J]. Global and PlanetaryChange, 1998, 18:113-128.
    [57]孙继敏,刘东生.洛川黄土地层的再划分及其L9、L15古环境意义的新解释[J].第四纪研究,2002,22(5):406-412.
    [58]李如海.湿陷性黄土地基处理—靖西输气管线工程地基处理回顾[J].天然气与石油,1998,16(4):33-37.
    [59]邢义川.黄土力学性质研究的发展和展望[J].水力发电学报,2000,4:54-65.
    [60]井彦林,仵彦卿,崔中兴,等.黄土湿陷性的智能化评价[J].水土保持通报,2006,26(1):53-56.
    [61]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社, 1997, 4.
    [62]谢定义.黄土力学特性与应用研究的过去、现在与未来[J].地下空间, 1999, 19(4):273-284.
    [63]吴侃,郑颖人.黄土结构性研究[A],第六届全国土力学及基础工程学术会议论文集[C].上海:同济大学出版社, 1991, 93-96.
    [64]郑建国,张苏民.湿陷性黄土的结构强度特性[J],水文地质工程地质, 1990, 4:22~25.
    [65]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11-16.
    [66]方学敏,万兆惠,徐永年.土壤抗蚀性研究现状综述[J].泥沙研究,1997,2:87-91.
    [67]査小春,贺秀斌.土壤物理力学性质与土壤侵蚀关系研究进展[J].水土保持研究,1999,6(2):98-103.
    [68]王松鹤,骆亚生,李焱.黄土固结蠕变特性试验研究[J].工程地质学报,2009,17(5): 643-647.
    [69]周杰,沈吉.中国西部环境演变过程研究[M].北京:科学出版社,2007,46-52.
    [70]陕西省地方志编纂委员会.陕西省志·地理志[M].西安:陕西人民出版社,2000,258-325.
    [71]朱照宇,丁仲礼.中国黄土高原第四纪古气候与新构造演化[M].北京:地质出版社,1994,1-209.
    [72]景可,王万忠,郑粉莉.中国土壤侵蚀与环境[M].北京:科学出版社,2005,268-299.
    [73]王万忠,焦菊英.黄土高原侵蚀产沙强度的时空变化特征[J].地理学报,2002,57(2):210-217.
    [74]王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996,195-267.
    [75] Lu H Y, Liu X D, Zhang F Q, et al, Dodson J. Astronomical calibration ofloess-paleosol deposits at Luochuan, central Chinese Loess Plateau[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1999,154:237-246.
    [76] Heslop D, Langereis C G, Dekkers M J. A new astronomical timescale for the loessdeposits of Northern China[J]. Earth and Planetary Sciences Letters, 2000,184:125-139
    [77] Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2. 6-Ma grain size record from theChinese loess based on five sections and correlation with the deep-seaδ18O record [J].Paleoceanography, 2002, 17(3), 1033, doi: 10. 1029/2001PA000725.
    [78]邓绶林,刘文彰.地学辞典[M].石家庄:河北教育出版社,1992.
    [79]甘枝茂,主编.黄土高原地貌与土壤侵蚀研究[M].西安:陕西人民出版社,1989,106-120.
    [80]中国科学院《中国自然地理》编辑委员会.中国自然地理·总论[M].北京:科学出版社,1985,232.
    [81]任美锷.黄河的输沙量:过去、现在和将来—距今15万年以来的黄河泥沙收支表[J].地球科学进展,2006,21(6):551-563.
    [82]汪啸风,陈孝红,等编著.中国各地质时代地层划分与对比[M].北京:地质出版社,2005,579-592.
    [83]张宗祜.黄河治理方略[A].见:中国科学院地学部第二次学部委员大会论文集[C].北京:科学出版社,1988,59-65.
    [84]吴忱.华北地貌环境及其形成演化[M].北京:科学出版社,2008,505-508.
    [85]戴仕宝,杨世伦,郜昂,等.近50年来中国主要河流入海泥沙变化[J].泥沙研究,2007,2:49-58.
    [86]刘成,王兆印,隋觉义.我国主要入海河流水沙变化分析[J].水利学报,2007,38(12):1444-1452.
    [87]臧启运,等著.黄河三角洲近岸泥沙[M].北京:海洋出版社,1996,102.
    [88]唐克丽,等著.中国水土保持[M].北京:科学出版社,2004,194-208.
    [89]田勇,姜乃迁,林秀芝.黄河干流泥沙空间分布研究[J].人民黄河,2008,30(10):38-40, 42.
    [90]史念海.黄土高原历史地理研究[M].郑州:黄河水利出版社,2001,433-511.
    [91]叶青超,陆中臣,杨毅芬,等.黄河下游河流地貌[M].北京:科学出版社,1990,71.
    [92]倪晋仁,马霭乃.河流动力地貌学[M].北京:北京大学出版社,1998,142.
    [93]严钦尚,曾昭璇.地貌学[M].北京:高等教育出版社,1985,68-73.
    [94] Westaway R. Long-term river terrace sequences: Evidence for global increases insurface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow inthe lower continental crust induced by surface processes[J]. Netherlands Journal ofGeosciences / Geologie en Mijnbouw,2002,81 (3-4): 305-328.
    [95]中国科学院《中国自然地理》编辑委员会.中国自然地理·地貌[M].北京:科学出版社,1981,95-98.
    [96]朱照宇.黄河中游河流阶地的形成与水系演化[J].地理学报,1989,44(4):429-440.
    [97]程绍平,邓启东,闵伟,等.黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动[J].第四纪研究,1998,3:238-248.
    [98]王均平.黄河中游晚新生代地貌演化与黄河发育[D].兰州:兰州大学博士学位论文,2006,93-94
    [99] Zhang J F, Qiu W L, Li R Q, et al. The evolution of a terrace sequence along theYellow River (Huanghe) in Hequ, Shanxi, China, as inferred from optical dating [J],Geomorphology, 2009, 109:54-65.
    [100]岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代[J].地质论评,1997,43(2):186-192.
    [101]中国科学院地理研究所渭河研究组.渭河下游河流地貌[M].北京:科学出版社,1983,54-104.
    [102]赵景波,朱显谟.黄土高原的演变与侵蚀历史[J].土壤侵蚀与水土保持学报,1999,5(2):58-63.
    [103]赵景波.黄土高原发展过程中的五大转折[J].水土保持学报,2002,16(1):132-135.
    [104]龚子同,张甘霖,陈志诚,等.土壤发生与系统分类[M].北京:科学出版社,2007,22.
    [105]王恒俊,张淑光.黄土高原地区土壤资源及其合理利用[M].北京:中国科学技术出版社,1991,32-41.
    [106]朱显谟,主编.黄土高原土壤与农业[M].北京:农业出版社,1989,72-81.
    [107]朱显谟.黄土-土壤结构剖面构型的形成及其重要意义[J].水土保持学报,1994,8(2):1-9.
    [108]赵景波.西安刘家坡剖面第1第5层古土壤研究[J].地理研究,1991,10(4):51-58.
    [109]胡雪峰,鹿化煜.黄土高原古土壤成土过程的特异性及发生学意义[J].土壤学报,2004,41(5): 669-675.
    [110]孙建中,赵景波.黄土高原第四纪[M].北京:科学出版社,1991,96-100.
    [111] Eash N S, Green C J, Razvi A, et al., Soil Science Simplified(Fifth Edition) [M],Ames: Blackwell Publishing, 2008, 151-154.
    [112]徐九华,谢玉玲,李建平,等.地质学(第三版)[M].北京:冶金工业出版社,2001,75-81.
    [113]袁宝印,巴特尔,崔久旭,等.黄土区沟谷发育与气候变化的关系--以洛川黄土塬区为例[J].地理学报,1987,42(4):328-337.
    [114]孙东怀,高万一.洛川塬几个侵蚀面的年代及其意义[A].刘东生主编.黄土·第四纪地质·全球变化(第一集)[C].北京:科学出版社,1990,98-100.
    [115]马乃喜.黄土地貌演化与土壤侵蚀关系的分析[J].水土保持通报,1996,16(2):6-10.
    [116]张洪江.土壤侵蚀原理(第二版)[M].北京:中国林业出版社, 2008, 17-18.
    [117]张宗祜,张之一,王芸生.中国黄土[M].北京:地质出版社, 1989, 181.
    [118]唐克丽,陈永宗,景可,等.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社, 1991, 2-4.
    [119]陶晓风,吴德超.普通地质学[M].北京:科学出版社,2007,84.
    [120]王亚强,王兰民,张小曳. GIS支持下的黄土高原地震滑坡区划研究[J].地理科学,2004,24(2):170-176.
    [121]赵芹,卿太明,曹叔尤.汶川特大地震对四川水土流失的影响及其经济损失评估[J].中国水土保持,2009,3:5-7.
    [122]贺秀斌.地质时期黄土高原土壤侵蚀系统初步分析[J].水土保持研究, 1994,1(5):16-21.
    [123]黄春长.环境变迁[M].北京:科学出版社, 1998, 50, 181.
    [124]朱筱敏,康安,韩德馨,等.柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系[J].地质科学,2003,38(3):413-424.
    [125]吴锡浩,安芷生.黄土高原黄土-古土壤序列与青藏高原隆升[J].中国科学D辑,1996,26(2):103-110.
    [126]崔之久,伍永秋,刘耕年.昆仑-黄河运动的发现及其性质[J].科学通报,1997,42(18):1986-1989.
    [127]崔之久,伍永秋,刘耕年,等.关于“昆仑-黄河运动”[J].中国科学D辑,1998,28(1):53-59.
    [128]江樟焰,伍永秋,崔之久.“昆仑-黄河运动”与我国自然地理格局的形成[J].北京师范大学学报(自然科学版),2005,41(1):85-88.
    [129]秦大河,主编.中国气候与环境演变·上卷·气候与环境的演变及预测[M].北京:科学出版社,2005,358-392.
    [130]刘志杰,孙永军.青藏高原隆升与黄河形成演化[J].地理与地理信息科学,2007,23(1):79-83.
    [131]潘保田,李吉均,陈发虎.青藏高原:全球气候变化的驱动机遇放大器,Ⅰ新生代气候变化的基本特征[J].兰州大学学报(自然科学版),1995,31(3):120-128.
    [132]潘保田,李吉均,朱俊杰.青藏高原:全球气候变化的驱动机遇放大器,Ⅱ青藏高原隆起的基本过程[J].兰州大学学报(自然科学版),1995,31(4):160-167.
    [133]潘保田,李吉均.青藏高原:全球气候变化的驱动机遇放大器,Ⅲ青藏高原隆起对气候变化的影响[J].兰州大学学报(自然科学版),1996,32(1):108-115.
    [134]郑度,姚檀栋.青藏高原隆升与环境效应[M].北京:科学出版社, 2004, 177.
    [135]杨达源.中国东部的第四纪风尘堆积与季风变迁[J].第四纪研究, 1991, 4: 354 -360.
    [136] Liu X D, Kutzbach J E, Liu Z, et al. The Tibetan Plateau of orbital-scale variabilityof the EastAsian monsoon[J]. Geophys Res Lett, 2003, 30(16):1839.
    [137] Harris N. The elevation history of the Tibetan Plateau and its implications for theAsian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,241:4-15
    [138] Mudelsee M, Schulz M. The Mid-Pleistocene climate transition: onset of 100kacycle lags ice volume build-up by280ka [J]. Earth and PlanetaryScience Letters,1997,151:117-123.
    [139]郭正堂,刘东生.约0.85Ma前后黄土高原区季风强度的变化[J].科学通报,1993,38(2):143-146.
    [140] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J], QuaternaryScience Reviews, 1991, 10(4): 297-317.
    [141]邬光剑,潘保田,管清玉,等.中更新世气候转型与100ka周期研究[J].地球科学进展,2002,17(4):605-611.
    [142]赵景波,顾静,杜娟.关中平原第五层古土壤发育时的气候与土壤水环境研究[J].中国科学D辑:地球科学,2008,38(3):364-374.
    [143]陆中臣,等著.河流地貌系统[M].大连:大连出版社,1991,42-63.
    [144]魏合龙,李广雪,周永青.侵蚀基准面变化对河流体系的影响[J].海洋地质动态,1995(5):4-6.
    [145]郭耀文,杨军,王满堂.地表侵蚀与地貌相互关系研究[J].中国水土保持,1996,2:23-25.
    [146]金德生,张欧阳,陈浩,等.侵蚀基准面下降对水系发育与侵蚀产沙影响的实验研究[J].地理研究,2003,22(5):560-568.
    [147]李容全,方修琦,邹铭.黄河演变与区域水土流失扩散模式的关系[J].北京师范大学学报(自然科学版),1990,1:76-82.
    [148]庞炳东.三门峡水库影响渭河下游河道横向演变研究[J].地理研究,1997,16(3):39-46.
    [149]曹如轩,雷福州,冯普林,等.三门峡水库淤积上延机理研究[J].泥沙研究,2001,2:37-40.
    [150]侯成波.黄河下游河床演变规律及对接冲刷分析[J].人民黄河,2006,28(6):17-19.
    [151]谢远云,李长安,张序强,等.青藏高原东北缘黄土的气候演化与高原隆升的耦合[J].中国地质,2003,30(4):436~441.
    [152]长江流域水土保持综合考察队.中国科学院西北水土保持研究所集刊(第四集-长江流域水土保持综合考察专集)[C].陕西杨凌:中国科学院西北水土保持研究所,1986, 33-34.
    [153]唐克丽,张科利,郑粉莉.子午岭林区自然侵蚀和人为加速侵蚀剖析[A].唐克丽,主编.中国科学院水利部水土保持研究所集刊[C]. 1993,17:17-28.
    [154]郑粉莉,唐克丽,王文龙.子午岭林区林地和开垦地土壤侵蚀特征研究[A].唐克丽,主编.中国科学院水利部水土保持研究所集刊[C]. 1993,17:29-36.
    [155]王万忠.黄土地区降雨特性与土壤流失关系研究[J].水土保持通报, 1983, 4:7-13.
    [156]王瑜,宋长青,孙湘君.内蒙古土默特平原北部全新世古环境变迁[J].地理学报,1997, 52(5):430-438.
    [157]Carsten R, Stefan M, Peter J M, et al. Warming of the tropical Atlantic Ocean andslowdown of thermohaline circulation during the last deglaciation[J]. Nature, 1999, 402:511-514.
    [158] Fanning AF, Weaver AJ. Temporal-geographical meltwater influences on the NorthAtlantic conveyor: Implications for the Younger Dryas[J], Paleoceanography, 1988,3(1):1-19.
    [159]AlleyR B, Meese DA, Shuman SA, et al.Abrupt increase in Greenland snowaccumulation at the end ofYounger Dryas Event[J], Nature, 1993,362:527-529.
    [160] Peteet D. GlobalYouger Dryas? [J], Quaternary International, 1995, 28:93-104.
    [161] An Z S, Porter S C, Zhou W J, et al., Episode of Strengthened Summer MonsoonClimate of Younger Dryas Age on the Loess Plateau of Central China [J], QuaternaryResearch, 1993,1:45-54.
    [162] Madsen D B, Li J Z, Elston R G. , et al., The Loess/Paleosol Record and the nature ofthe Younger Dryas climate in central China [J], Geoarchaeology: An InternationalJournal, 1998, 13(8):847-869.
    [163] Rodbell D T, Seltzer G O. Rapid Ice Margin Fluctuations during the Younger Dryasin theTropicalAndes [J], QuaternaryResearch, 2000, 54:328-338.
    [164] Singer C, Shulmeister J, McLea B. Evidence against a significantYounger Dryascooling event in New Zealand[J], Science, 1998, 281(5378):812-814.
    [165] Bennett K D, Haberle S G, Lumley S H. The Last Glacial-Holocene Transition inSouthern Chile[J], Science, 2000, 290(5490):325-328.
    [166]陈一萌,宫辉力.末次冰期气候不稳定性的黄土记录研究[M].北京:中国环境科学出版社,2007,172-189.
    [167]周杰,周卫健,陈惠忠,等.新仙女木时期东亚夏季风降水不稳定的证据[J].科学通报,1999,44(2):205-208.
    [168] Lu H Y, Thomas S, Yi S W, et al. An erosional hiatus in Chinese loess sequencesrevealed bycloselyspaced optical dating [J]. Chin Sci Bull, 2006, 51(18):2253-2259.
    [169]中国科学院《中国自然地理》编辑委员会.中国自然地理·气候[M].北京:科学出版社,1984,152-161.
    [170]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998,9-11
    [171]邹亚荣,张增祥,杨存建,等.中国土地资源的土壤侵蚀状况分析[J].水土保持学报, 2001, 15(3):43-47.
    [172]An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibilityevidence of monsoonvariation on the Loess Plateau of central China during the last 130,000 years [J],QuaternaryResearch, 1991, 36:29-36.
    [173]郭正堂,刘东生,安芷生.渭南黄土沉积中15万年来的古土壤及其形成时的古环境[J].第四纪研究,1994,3:256-269.
    [174]安芷生,S.C.Porter,J.Chappell,等.最近130ka洛川黄土堆积序列与格陵兰冰芯记录[J].科学通报,1994,39(24):2254-2256.
    [175]孙湘军,宋长青,王琫瑜,等.黄土高原南缘10万年以来的植被——陕西渭南黄土剖面花粉记录[J].科学通报,1995,40(13):1222-1224.
    [176]孙东怀,周杰,蒋复初,等.末次间冰期黄土高原夏季风气候的初步研究[J].科学通报,1995,40(20):1873-1875.
    [177] Guo ZT, Fedorot NT, LiuTS. Micromorphologyof the loess-paleosol sequence ofthe last 130 ka in China and paleoclimatic events [J], Science in China, Ser. D, 1996,39(5):468-477.
    [178]陈骏,仇刚,鹿化煜,等.最近130ka黄土高原夏季风变迁的Rb和Sr地球化学证据[J].科学通报,1996,41(21):1963-1966.
    [179]丁仲礼,孙继敏,余志伟,等.黄土高原过去130ka来古气候时间年表[J].科学通报,1998,43(6):567-574.
    [180]薛祥煦,周卫健,周杰.末次冰期极盛期陕西关中地区古气候古环境演变的生物记录[J].科学通报,1999,44(22):2444-2448.
    [181]杨英,沈承德,易惟熙,等. 21ka以来渭南黄土剖面的元素碳记录[J].科学通报,2001,46(8):688-690.
    [182]刘连文,陈骏,陈旸,等.最近130ka以来黄土中Zr/Rb值变化及其对冬季风的指示意义[J].科学通报,2002,47(9):702-706.
    [183]何勇,秦大河,任贾文,等.塬堡黄土剖面末次间冰期古土壤有机碳同位素记录的夏季风演化历史[J].科学通报,2002,47(12):943-945.
    [184]汪海斌,刘连友,冯兆东.末次间冰期古土壤的Zr/Rb值时空分布特征及其影响因素[J].科学通报,2008,53(2):238-246.
    [185]刘东生,主编.黄土与干旱环境[M].合肥:安徽科学技术出版社,2009,57-88.
    [186] Ji J F, Chen J, BalsamW, et al. High resolution hematite//goethite records fromChinese loess sequences for the last glacial-interglacial cycle: Rapid climatic response ofthe EastAsian Monsoon to the tropical Pacific [J], Geophysical Research Letters, 2004,31, L03207.
    [187]雷国良,张虎才,张文翔,等. Mastersize 2000型激光粒度仪分析数据可靠性检验及意义——以洛川剖面S4层古土壤为例[J].沉积学报,2006,24(4):531-539.
    [188]管清玉,潘保田,高红山,等.高分辨率黄土剖面记录的末次冰期东亚季风的不稳定性特征[J].中国科学D辑,2007,37(1):86-93.
    [189]张虎才,杨明生,张文翔,等.洛川黄土剖面S4古土壤及相邻黄土层分子化石与植被变化[J].中国科学D辑,2007,37(12):1634-1642.
    [190] Jiang H C, Wang P, Thompson J, et al. Last glacial climate instability documented bycoarse-grained sediments within the loess sequence, at Fanjiaping, Lanzhou, China [J].QuaternaryResearch, 2009, 72:91-102.
    [191] Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian wintermonsoon variations in the past 800,000 Years [J], Quaternary Research, 1995,44(2):149-159.
    [192] Evans M E, Heller F. Magnetism of loess/palaeosol sequences: recent developments[J], Earth-science Reviews, 2001, 54, 129-144.
    [193]石广玉,刘玉芝.地球气候变化的米兰科维奇理论研究进展[J].地球科学进展,2006,21(3):278-285.
    [194]丁仲礼.米兰科维奇冰期旋回理论:挑战与机遇[J].第四纪研究,2006,26(5):710-717.
    [195]鹿化煜,苗晓东,孙有斌.前处理步骤与方法对风成红粘土粒度测量的影响[J].海洋地质与第四纪地质,2002,22(3):129-135.
    [196]丁仲礼,余志伟,刘东生.中国黄土研究新进展(三)时间标尺[J].第四纪研究,1991,4:336-348.
    [197]鹿化煜,安芷生,杨文峰.洛川黄土序列时间标尺的初步建立[J].高校地质学报,1996,2(2):230-236.
    [198] Kukla G. Loess stratigraphy in central China [J]. Quaternary Science Review, 1987,6:191-219.
    [199] Kukla G, An Z S. Loess stratigraphy in central China [J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1989, 72:203-225.
    [200] Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magneticsusceptibility[J], Geology, 1988, 16(9):811-814.
    [201] Kukla G,An Z S, Melice J L, et al. Magnetic susceptibilityof Chinese loess [J],Transactions of the Royal Societyof Edinburgh: Earth Sciences, 1990, 81:263-288.
    [202] Xiao J L, Porter S C,An Z S, et al. Grain Size of Quartz as an Indicator ofWinterMonsoon Strength on the Loess Plateau of Central China during the Last 130,000Yr [J],QuaternaryResearch, 1995, 43(1):22-29.
    [203] Heller F, Evans M E. Loess magnetism [J], Reviews of Geophysics, 1995, 33(2): 211-240.
    [204] Porter S C. High-Resolution paleoclimatic information from Chinese eoliansediments based on grayscale intensity profiles [J], Quaternary Research, 2000,53(1):70-77.
    [205] Porter S C. Chinese loess record of monsoon climate during the lastglacial–interglacial cycle [J], Earth-Science Reviews, 2001, 54(1-3):115-128.
    [206] Ning Y F, Liu W G, An Z S. A130-ka reconstruction of precipitation on the ChineseLoess Plateau from organic carbon isotopes [J], Palaeogeography, Palaeoclimatology,Palaeoecology, 2008, 270(1-2):59- 63.
    [207] Heller F, LiuTS. Magnetostratigraphical dating of loess deposits in China [J],Nature, 1982,300, 431-433.
    [208] Heller F, Liu T S. Magnetism of Chinese loess deposits [J], Geophysical Journal ofthe RoyalAstronomical Society, 1984, 77(1):125-141.
    [209] Heller F, LiuTS. Palaeoclimatic and sedimentaryhistory from magneticsusceptibilityof loess in China [J], Geophys. Res. Lett., 1986,13 (11) :1169–1172.
    [210] Ding Z L, Rutter N W, Sun J M, et al, Re-arrangement of atmospheric circulation atabout 2.6 Ma over northern China: evidence from grain size records of loess-palaeosoland red claysequences [J]. QuaternaryScience Reviews, 2000, 19, 547-558.
    [211] Maher BA, Hu MY, Roberts H M, et al., Holocene loess accumulation and soildevelopment at the western edge of the Chinese Loess Plateau: implications formagnetic proxies of palaeorainfall [J], Quaternary Science Reviews, 2003, 22(5-7):445-451.
    [212] Han J M, Keppens E, LiuTS, et al. Stable isotope composition of the carbonateconcretion in loess and climate change [J], Quaternary International, 1997, 37:37-43.
    [213]An Z S, Porter S C. Millennial-scale climatic oscillations during the lastinterglaciation in central China [J], Geology, 1997, 25:603-606.
    [214] Imbrie J, Hays J D, Martinson D G, et al.The orbital theoryof Pleistocene climate:support from a revised chronology of the marineδ18O record [A], In: Berger A, Imbrie J,Hays J D, Kukla G, Salzman B (Eds.), Milankovitch and Climate[C]. Riedel, Norwell,MA, 1984, 269~305.
    [215] Meyers S D, Kelly B G, Obrien J J. An introduction to wavelet analysis inoceanography and meteorology-with application to the dispersion of Yanai waves[J].MonthlyWeather Review, 1993, 121(10):2858-2866.
    [216] Lau K M, Weng H. Climate signal detection using wavelet transform: How to make atime series sing [J]. Bulletin of the American Meteorological Society, 1995,76(12):2391-2402.
    [217] Torrence C, Compo G P.Apractical guide to wavelet analysis [J]. Bulletin of theAmerican Meteorological Society, 1998, 79(1):61-78.
    [218]郝志新,郑景云,葛全胜.黄河中下游地区降水变化的周期分析[J].地理学报,2007, 62(5):537-544.
    [219] Ding Z L, Rutter N, Liu T S. Pedostratigraphy of Chinese loess deposits and climaticcycles in the last 2.5 Myr [J]. Catena, 1993,1-2:73-91.
    [220] Balsam W L, Ellwood B, Ji J F Direct correlation of the marine oxygen isotoperecord with the Chinese Loess Plateau iron oxide and magnetic susceptibility records[J], Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 221(1-2), 141-152.
    [221]王永焱,等著.黄土与第四纪地质[M].西安:陕西人民出版社,1982,64.
    [222]施雅风,孔昭宸,王苏民,等.中国全新世大暖期的气候波动与重要事件[J].中国科学B辑,1992,12:1300-1308.
    [223]施雅风,孔昭宸,王苏民,等.中国全新世大暖期鼎盛阶段的气候与环境[J].中国科学B辑,1993,23(8):865-873.
    [224]安芷生,S.波特,吴锡浩,等.中国中、东部全新世气候适宜期与东亚夏季风变迁[J].科学通报,1993,38(14):1302-1305.
    [225]王绍武,龚道溢.全新世几个特征时期的中国气温[J].自然科学进展,2000,10(4):324-332.
    [226]赵景波,侯甬坚,杜娟,等.关中平原全新世环境演变[J].干旱区地理,2003,26(1):17-22.
    [227]安成邦,冯兆东,唐领余.黄土高原西部全新世中期湿润气候的证据[j].科学通报,2003,48(21):2280-2287.
    [228] Deng C L, Zhu R X, Jackson M J, et al. Variability of the temperature-dependentsusceptibility of the Holocene eolian deposits in the Chinese loess plateau: Apedogenesis indicator [J], Physics and Chemistry of the Earth, Part A: Solid Earth andGeodesy, 2001, 26(11-12): 873-878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700