用户名: 密码: 验证码:
基于GIS的区域水土流失过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域水土流失过程研究对认识土壤侵蚀对环境要素的影响、理解全球变化与区域土壤侵蚀关系具有重要意义,而且能为水土流失治理的宏观规划和区域环境问题决策提供支持。本论文在对区域水土流失过程理论分析和其影响因子分析的基础上,完善了已有的区域水土流失模型的算法,探索了区域尺度上土壤含水量的估算方法,并在ArcGIS环境和.NET Framework2.0下,用C#语言开发了计算机模型系统,在试验流域应用,完成了区域水土流失过程模拟。主要研究结论如下:
     (1)探索了区域水土流失模型中土壤含水量的计算方法。考虑到在较大尺度流域影响土壤含水量的气候因子(气温)、土壤因子(容重)、植被因子(土地利用)和地形因子(坡向、地形湿度指数),在GIS支持下,建立藉河示范区土壤含水量模拟方程,回归效果显著。将样点的模拟值和实测值进行分析,得到所有测点模拟值的平均误差为0.105。结果表明,利用地形湿度指数、坡向、土地利用、降水、气温和土壤容重等,以实测的土壤含水量数据为基础,可以建立模型并模拟土壤水分,作为土壤前期含水量用来支持模型中径流的估算;
     (2)完善了区域水土流失过程模型的主要算法设计。考虑土壤前期含水量、蒸发、雨滴溅蚀、土壤粘结力和不同产流机制等,完善了区域水土流失中降雨产流过程、侵蚀产沙过程的算法。并在计算机模型系统和GIS支持下完成降雨产流、侵蚀产沙和径流泥沙物质汇集过程的计算。
     (3)完成了试验区水土流失过程的模拟。利用藉河示范区2005年7月份数据,采用了不同分辨率、不同时间步长对模型进行测试,结果表明模型设计时的各个模块都能够达到预定功能,输出图形都能反映藉河示范区侵蚀特征,且空间格局和结构都符合实际情况,宏观上主要受土地利用和气候特征影响,微观上主要受地形微起伏影响。将模型应用于藉河示范区,得到2005年藉河示范区汛期的总径流量、侵蚀产沙量分别为为6.73*10~8 m~3和6.74×10~6t ,径流模数和侵蚀模数分别为9.48×10~4 m3/km~2.a、2978t/km~2.a。模拟结果和实际水土流失情况较为符合。
Studying the dynamic process of soil and water loss at regional scale was of great importance to understanding the effects of soil erosion on environmental factors and the relationship between global change and regional soil erosion. Meanwhile, it could provide the basis for governmental planning and decision-making in soil and water conservation. This study made improvement for Regional Soil and Water Loss Model, explored the estimation methods of soil moisture and developed a computer module system under ArcGIS environment and .NET Framework2.0, using C# programming language based on theory analysis of soil erosion process and its influence factors. The result was applied in watersheds and regional soil and water loess process was modeled. The results were as follows:
     (1) Explored the estimation methods of regional soil water content. Considering the climatic factors (temperature), soil factors (soil bulk density), vegetation factor(land use)and terrain factor(topographic wetness index, slope aspect), the water moisture was simulated based on GIS, and the regression results were significant. By comparison, the average error between simulated value and the surveyed value was 0.105, which means the simulation accuracy was high. The result showed that the soil moisture could be modeled based on surveyed soil moisture data considering topographic wetness index, slope aspect, land use, rainfall, and temperature and soil bulk density. Modeled soil moisture could be used in estimation of runoff in Regional Soil and Water Loss Model as antecedent soil moisture.
     (2) Algorithm design of Regional Soil and Water Loss Model was improved. This research considered antecedent soil moisture, evaporation, raindrop detachment , soil cohesion and different runoff producing mechanisms et al , improved algorithms of the rainfall-runoff process and the soil erosion and sediment yield process in regional soil and water loss. Supported by GIS and computer model system, the process of runoff, sediment, and accumulation were completed.
     (3) Completed the simulation of regional soil and water loss process in research areas. The model was tested based on data in Jihe River demonstration zone in July 2005 by using different resolution and time step. The results showed that all of the modules designed can function well. The output maps could characterize the soil erosion in Jihe River demonstration zone properly; the spatial pattern and structure depicted by the map were accordant with the practical situation. The soil erosion in Jihe River was mainly influenced by land using and climatic factors at macro scale, and by terrain microrelief at micro scale. The model was applied in Jihe River demonstration zone. The calculated results of the total runoff and sediment were 6.73 billion m~3 and 6.74×10~6 t , and the modulus of runoff and modulus of erosion were 9.48×104m3/km~2.a and 2978t/km~2.a respectively in Jihe River demonstration zone. The simulation results were comparatively accordant with the practical situation.
引文
[1] Oldeman L R. The global extent of soil degradation [C]∥Greenland D J, Szabolcs I, eds. Soil Resilience and Sustainable Land Use. Wallingford: CAB International, 1994, 99-118.
    [2]水土流失状况与基础数据专题研究组.中国水土流失状况.北京:中国水土流失与生态安全综合科学考察专题报告, 2006.
    [3]中华人民共和国水利部.土壤侵蚀分类分级标准SL190-96 [S].北京,中国水利水电出版社,1997.
    [4]杨勤科,李锐,刘咏梅.区域土壤侵蚀普查方法的初步讨论[J].中国水土保持科学, 2008, 6 (3): 1-7.
    [5] Liu B Y, Zhang K L, Xie Y. An Empirical Soil Loss Equation [C] / / Proc. of 12th ISCO. Beijing: Tsinghua Press, 2002: 143-149.
    [6]刘宝元.西北黄土高原区土壤侵蚀预报模型开发项目研究成果报告[R].北京:水利部水土保持监测中心, 2006.
    [7]刘宝元,史培军. WEPP水蚀预报流域模型[J].水土保持通报, 1988, 18(5): 6-12.
    [8] Kirkby M J. From Plot to Continent: Reconciling Fine and Coarse Scale Erosion Models. In: D.E. Stott, R.H. Mohtar, and G.C. Steinhardt (eds). Sustaining the Global Farm– Selected papers from the 10th International Soil Conservation Organization Meeting, May 24-29, 1999, West Lafayette, IN. International Soil Conservation Organization in cooperation with the USDA and Purdue University, West, Lafayette, 2001: 860-870.
    [9] Kirkby M J, Le Bissonais Y, Coulthard T J, et al. The development of land quality indicators for soil degradation by water erosion [J]. Agriculture, Ecosystems & Environment, 2000, 81(2): 125-136.
    [10] Kirkby M A R, McMahon M D, Shao J, et al. MEDALUS soil erosion models for global change [J]. Geomorphology, 1998, 24(1): 35-49.
    [11] Wischmeier W H, D D Smith. A Guide for soil and water conservation planning[M]. USDA Agric. Handbook. No 537, 1978.
    [12]杨勤科,李锐.中国水土流失和水土保持的定量评价研究进展[J].水土保持通报, 1998, (5): 13-188.
    [13]蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展, 2003, 22 (3): 242-250.
    [14]郑粉莉,刘峰,杨勤科,等.土壤侵蚀预报模型研究进展[J].水土保持通报, 2001, 21(6):16-18,32.
    [15]张光辉.土壤水蚀模型研究进展[J].地理研究,2001, 20(3): 274-281.
    [16] Valentin C B, Favis-Mortlock J, Ingram D, et al. The GCTE Soil Erosion Network[C]// Proceedings of the ISCO meeting, 26-31 May 2002, Beijing, China, II: 299-305.
    [17] Boardman J. European Cooperation in the Field of Scientific and Technical Research. COST Action 623: Soil Erosion and Global Change. Http: //www.soilerosion.net/cost 623/wgroups.htm1, 2002, .
    [18] De Jong S M, Paracchini M L, Bertolo F, et al. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data [J]. Catena, 1999, 37(34): 291-308.
    [19]冷疏影,冯仁国,李锐,等.土壤侵蚀与水土保持科学重点研究领域与问题[J].水土保持学报, 2004, 18(1): 2-6, 26.
    [20]姚志宏.基于GIS区域水土流失模型的算法设计与实现[D].陕西杨凌:中国科学院水利部水土保持研究所, 2007.
    [21]唐克丽.土壤侵蚀与水土保持名词,唐克丽论文选集[A].陕西人民出版社, 2004.
    [22] Meyer L D. Evaluation of the universal soil loss equation [J]. Journal of Soil and Water Conservation, 1984, 39: 99-104.
    [23] Cook M F. The natural and controlling variables of the water erosion process [J]. Soil Sci. Soc. of Am. Proceeeding, 1936, 1: 60-64.
    [24] Zingg A W. Degree and length of land slope as it affects soil loss in runoff [J]. Agricultural Engineering, 1940, 21: 59-64.
    [25] Smith D D. Interpretation of soil conservation data for field use [J]. Agricultural Engineering , 1941, 22: 173-175.
    [26] Wischmeier W H, Smith D D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains[M]. Agriculture Hand-book 282. Washington,D C: U. S. Department of Agriculture, 1965.
    [27] Wischmeier W H, Smith D D. Predicting rainfall erosion losses: a guide to conservation planning[M]. Agriculture Handbook 537. Washington D. C.: U. S. Department of Agriculture ,. 1978.
    [28] Renard K G, Foster G R, Weeies G A. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation(RUSLE) [M]. Agriculture Handbook, 703. Washington D. C.: U.S. Department of AgricuIture, 1997.
    [29] Horton R E, Leach L F, VAN Vliet R. Laminar sheet-flow [J]. Transactions of the American Geophysical Union, 1934, (15): 393 - 404.
    [30] Ellison W D. Soil erosion studies--PartⅠ[J]. Agricultural Engineering, 1947, 28(4): 145-146.
    [31] Meyer L D, Wischmeier W H. Mathematical Simulation of the Process of Soil Erosion by Water [J]. Transactions of the ASAE, 1969, (12): 754-759, 762.
    [32] Foster G R, Meyer L D. A close-form soil erosion equation for upland areas [M]. In : Shen , H. W. (ed.). Sedimentation. Colorado State Univ., Ft.Collins , Colorado, 1972, 1-19.
    [33] Nearing M A, Lane L J, Alberts E E, et al. Prediction technology for soil erosion by water : Status and research needs [J]. Soil Sci Soc Am. J, 1990, 54(6): 1702-1711.
    [34] Morgan R. The European Soil Erosion Model: an update on its structure and research base, In: Rickson, R. (ed.), Conserving Soil Resources : European perspectives [M]. CAB International, Cambridge, 1994, 286-299.
    [35] De Roo A P J, Wesseling C G, Ritsema C J. LISEM: A Single-Event Physically Based Hydrological and soil Erosion Model for Drainage Basins. I: Theory. Input and Output [J]. Hydrological Processes, 1996, 1107-1118.
    [36] Rose C W, Williams J R, Sander G C, et al. A mathematical model of soil erosion and deposition processes : I1 Theory for a plane land element [J]. Soil Sci1 Soc1 of Am. J., 1983, 47(5): 991-995.
    [37] Renschler C S, Flanagan D C. GeoWEPP-the Geo-spatial interface for the Water Erosion Prediction Project [C]. ASAE Conference Paper, 2002.
    [38]刘善建.天水水土流失测验的初步分析[J].科学通报, 1953, (12): 59-65.
    [39]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报, 1956, 4(2): 99-115.
    [40]朱显谟.有关黄河中游土壤侵蚀区划问题[J].土壤通报, 1958, (1): 1-6.
    [41]黄秉维.陕甘黄土地区土壤侵蚀的因素与方式[J].科学通报, 1953, 9: 37-41.
    [42]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训[J].科学通报, 1955, 12: 15-21.
    [43]朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报, 1960, 8(2): 110-121.
    [44]田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报, 1964, 12(3): 278-296.
    [45]蒋定生.黄土抗蚀性的研究[J].土壤通报, 1978, 4: 20-23.
    [46]吴礼福.黄土高原土壤侵蚀模型及其应用[J].水土保持通报, 1996, 16(5): 29-35.
    [47]林素兰,黄毅,聂振刚,等.辽北低山丘陵区坡耕地土壤流失方程的建立[J].土壤通报,1997, 28(6): 251-253
    [48]杨武德,陈宝林,徐锴.红壤坡地不同利用方式土壤侵蚀模型研究[J].土壤侵蚀与水土保持学报, 1999, 5(1): 52-58.
    [49]杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报, 1999, 19(1): 1-9.
    [50]黄炎和,卢程隆,付勤,等.闽东南土壤流失预报研究[J].水土保持学报, 1993, 7(4): 13-18.
    [51]周伏建,陈明华,林福兴,等.福建省土壤流失预报研究[J].水土保持通报, 1995, 9(1): 25-30.
    [52]金争平,赵焕勋,和泰,等.皇甫川小流域土壤侵蚀量预报模型方程研究[J].水土保持学报, 1991, 5(1): 8-18.
    [53]杨艳生,史德明,吕喜玺.长江三峡区的坡面土壤流失量和入江泥沙量研究[J].水土保持学报, 1991, 5(3): 22-27.
    [54]陈法扬,王志明.通用土壤流失方程在小良水土保持试验站的应用[J].水土保持通报, 1992, 12(1): 23-41.
    [55] Liu B Y, Nearing M A , Risse L M. Slope gradient effects on soil loss for steep slopes[J]. transactions of the ASAE, 1994, 37 (6) :1835-1840.
    [56] Liu B Y, Nearing M A, Shi P J, et al. Slope length effects on soil loss for steep slopes [J]. Soil Sci1 Soc1 of Am. J. 2000, 64 (5): 1759-1763.
    [57]章文波,谢云,刘宝元.降雨侵蚀力研究进展[J].水土保持学报, 2002, 16(5): 43-46.
    [58]江忠善,郑粉莉,武敏.坡面水蚀预报模型研究[J].水土保持学报, 2004. 18(1): 66-69.
    [59]江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J].泥沙研究, 2005(4): 1-6.
    [60]江忠善,宋文径.黄河中游黄土丘陵沟壑区小流域产沙量计算[A]. //第一次河流泥沙国际学术讨论会论文集[C].北京:光华出版社, 1980. A3-1-A3-10.
    [61]牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算[A].见:第一次河流泥沙国际学术讨论会文集[A].北京:光华出版社, 1980. A4-1-A4-10.
    [62]孙立达,孙保平,陈禹等.西吉县黄土丘陵沟壑区小流域土壤流失量预报方案[J].自然资源学报, 1988, 3(2): 141-153.
    [63]尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式[J].地理学报, 1989, 44(1): 32-45.
    [64]范瑞瑜.黄河中游地区小流域土壤流失量计算方程的研究[J].中国水土保持科学, 1985, (2): 12-18.
    [65]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报, 1996, 2(1): 1-9.
    [66]江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[A].见:第二届全国泥沙基本论研究学术讨论会论文集[C].北京:中国建材工业出版社, 1995. 207-275.
    [67]牟金泽,孟庆枚.陕北中小流域年产沙量计算[A].黄土高原水土流失综合治理科学讨论会资料汇编[C].陕西:中国科学院西北水土保持研究所. 1981. 251-255.
    [68]史景汉,郝建忠,熊运阜,等.黄丘一副区小流域暴雨洪水输沙过程预报模型[J].中国水土保持, 1989, (1): 32-37.
    [69]谢树楠,张仁,王孟楼.黄河中游黄土丘陵沟壑区暴雨产沙模型研究[A].黄河水沙变化研究论文集[C].第五卷,黄河水沙变化基金会,1993,238~274.
    [70]包为民,陈耀庭.中大流域水沙耦合模拟物理概念模型[J].水科学进展, 1994, 5(4): 287-292.
    [71]汤立群.流域产沙模型的研究[J].水科学进展, 1996, 7(1): 47-53.
    [72]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社, 1998.
    [73]段建南,李保国,石元春,等.应用于土壤变化的坡面侵蚀过程模拟[J].土壤侵蚀与水土保持学报, 1998, 4(1): 47-53.
    [74]白清俊.黄土坡面细沟侵蚀带产流产沙模型研究[J].水土保持学报, 2000, 14 (1): 93-96.
    [75]符素华,张卫国,刘宝元,等.北京山区小流域土壤侵蚀模型[J].水土保持研究, 2001, 8(4): 114-120.
    [76]祁伟,曹文洪,郭庆超,等.小流域侵蚀产沙分布式数学模型的研究[J].中国水土保持科学, 2004, 2(1): 16-22.
    [77]贾媛媛,郑粉莉,杨勤科,等.黄土丘陵沟壑区小流域水蚀预报模型构建[J].水土保持通报, 2004, 24(2): 5-7,16.
    [78]李兵斌.黄土丘陵区小流域分布式水文-侵蚀预报模型研究[D].陕西西安:陕西师范大学. 2008.
    [79]周佩华. 2000年中国水土流失趋势预测与防治对策[J].中国科学院水土保持研究所集刊, 1988, (7): 57-71.
    [80]胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究[J].土壤学报, 2001, 38(2): 167-175.
    [81]卜兆宏,唐万龙,杨林章,等.水土流失定量遥感方法新进展及其在太湖流域的应用[J].土壤学报, 2003, 40(1): 1-9.
    [82] Fu B J, Zhao W W, Chen L D, et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China [J]. Land Degradation & Development, 2005, 16(1): 73-85.
    [83]杨艳生.区域性土壤流失预测方程的初步研究[J].土壤学报,1990,27(1) :73 - 78.
    [84]杨勤科,李锐,徐涛,等.区域水土流失过程及其定量描述的初步研究[J].亚热带水土流失研究, 2006, 18(2): 20-23, 31.
    [85]杨勤科,李锐.我国区域土壤侵蚀与环境研究述评[J].中国人口?资源与环境, 2006, 16(6): 90-94.
    [86]杨勤科, R.M.Tim,李领涛,等. ANUDEM—专业化数字高程模型插值算法及其特点[J].干旱地区农业研究, 2006, 24(3): 36-41.
    [87]杨勤科,张彩霞,李领涛,等.基于信息含量分析法确定DEM分辨率的方法研究[J].长江科学院院报, 2006, 23(5): 21-23, 28.
    [88]张彩霞,杨勤科,段建军.一种高质量的数字地形模型建立方法----ANUDEM法[J].中国农学通报, 2005, 21(12): 411-415.
    [89]师维娟,杨勤科,赵东波,等.中分辨率水文地貌关系正确DEM建立方法研究----以黄土丘陵区为例[J].西北农林科技大学学报, 2007, 35(2): 143-148.
    [90]杨勤科, McVicar T R, Van Niel, T. G.,等.水文地貌关系正确的DEM建立方法的初步研究[J].中国水土保持科学, 2007, 5(4): 1-6.
    [91]杨勤科,张彩霞, McVicar T R,等. ANUDEM和TIN两种方法建立的DEM的对比研究[J].水土保持通报, 2006, 26(6): 84-88.
    [92] Yang Q K, McVicar T R., Van Niel T G, et al. Improving terrain representation of a digital elevation model by reducing source data errors and optimising interpolation algorithm parameters: an example in the Loess Plateau, China [J]. International Journal of Applied Earth Observation and Geoinformation (JAG), 2007, 9(3): 235-246.
    [93]徐涛.基于GIS的区域水土流失模型研究[D].陕西杨凌:中国科学院水利部水土保持研究所, 2005[D].
    [94]姚志宏,杨勤科,吴喆,等.区域尺度降雨径流估算方法研究Ⅰ-算法设计[J].水土保持研究, 2006, 13(5): 306-308.
    [95]姚志宏,杨勤科,吴喆,等.区域尺度侵蚀产沙估算方法研究[J].中国水土保持科学, 2007,5(4): 13-17.
    [96]吴喆.基于GIS的区域水土流失模型设计与开发[D].陕西西安:西北大学城市与资源学系, 2007.
    [97]张宏鸣.基于GIS的区域水土流失模型的优化与改进[D].陕西杨凌:西北农林科技大学, 2008.
    [98]汪翠英.区域水土流失模型敏感性分析[D].陕西杨凌:西北农林科技大学, 2008.
    [99]夏积德.区域水土流失模型的不确定性分析[D].陕西杨陵:西北农林科技大学,2008.
    [100]王中根,刘昌明,左其亭.基于DEM的分布式水文模型构建方法[J]地理科学进展, 2002, 21(5): 430-439.
    [101]刘昌明,李道峰,田英.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展, 2003, 22(5): 437-445.
    [102]刘昌明,夏军,郭生练.黄河流域分布式水文模型初步研究与进展[J].水科学进展, 2004, 15(4): 495-500.
    [103]郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报, 2000, 33(6): 1-6.
    [104]王光谦,刘家宏,李铁键.黄河数字流域模型[J].应用基础与工程科学学报, 2005, 13(1): 15-21.
    [105] Posen J W, Boardman J, Wilcox B, et al. Water erosion monitoring and experimentation for global change studies [J]. Journal of Soil and Water Conservation, 1996, 51: 386-390.
    [106] Jetten V. LISEM, Limburg Soil Erosion Model Windows version2. x USER MANUAL DRAFT. 2002.
    [107]贾媛媛,郑粉莉,杨勤科.黄土高原小流域分布式水蚀预报模型[J].水利学报, 2005, 36(3): 328-332.
    [108] S M de Jong, Paracchini M L, Bertolo F. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data [J]. Catena, 1999, 37(34): 291-308.
    [109]汤国安,杨勤科,张勇.不同比例尺DEM提取地面坡度的精度研究[J].水土保持通报, 2001, 21(1): 53-56.
    [110]汤国安,赵牡丹,李天文,等. DEM提取黄土高原地面坡度的不确定性[J].地理学报, 2003, 58(6): 824-830.
    [111] Da wen Yang, Shinjiro Kanae, Taikan Oki, et al. Global potential soil erosion with reference to land use and climate changes [J]. Hydrological Processes, 2003, 17: 2913-2928.
    [112] Da wen Yang, Katsumi Musiake. A continental scale hydrological model using distributed approach and its application to Asia [J]. Hydrological Processes, 2003, 17 :2855-2869.
    [113] Zhang X. Comparison of Slope Estimates from low Resolution DEMs Scaling Issues and a Fractal Method for Their Solution [J]. Earth Surface Process and Landforms, 1999, 24: 763-769.
    [114]王中根,郑红星,刘昌明,等.黄河典型流域分布式水文模型及其应用研究[J].中国科学E辑技术科学, 2004, 34(增刊): 49-59.
    [115] Van Deursen W P A. Geographical Information Systems and Dynamic Models: Development and application of a prototype spatial modelling language [D]. Utrecht, the Netherlands: Utrecht University, 1995.
    [116]陆兆熊,蔡强国.黄土高原地区土壤侵蚀及土地管理研究进展[J].水土保持学报, 1992, 6(4): 86-95.
    [117]朱显谟,张相麟,雷文进.泾河流域土壤侵蚀现象及其演变[J].土壤学报, 1954, 2(4): 209-222.
    [118]张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报, 2001, 56(6): 673-681.
    [119]卜兆宏,李全英.土壤可蚀性(K)值图编制方法的初步研究[J].农村生态环境, 1995, 11(1): 5-9.
    [120]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社, 1997.
    [121]雷俊山.基于GIS的区域土壤抗侵蚀性因子研究[D].陕西杨凌:中国科学院水利部水土保持研究所, 2004.
    [122]张爱国,张平仓,杨勤科.区域水土流失土壤因子研究[M].北京:地质出版社, 2003.
    [123]江忠善,李秀英.黄土高原土壤流失预报方程中降雨侵蚀力和地形因子的研究[J].中国科学院西北水土保持研究所集刊, 1988, (7): 40-45.
    [124]杨艳生.论土壤侵蚀区域性地形因子值的求取[J].水土保持学报, 1988, 2(2): 89-96.
    [125]刘新华,杨勤科,李锐.中国地形起伏度的提取及在水土流失定量评价中应用[J].水土保持通报, 2001, 21(1): 57-59.
    [126]赵牡丹.中国水土流失地形因子分析[D].陕西杨凌:中国科学院水利部水土保持研究所,2007.
    [127] Zhang X , Drake N , Wainwright J. Scaling land surface parameters for global-scale soil erosion estimation [J].Water Resources Research, 2002, 38 (9) :1180-1189.
    [128] Yang Q K, Van Niel T G, McVicar T R, et al. Developing a digital elevation model usingANUDEM for the Coarse Sandy Hilly Catchments of the Loess Plateau, China [R]. 2005.
    [129]陈燕,齐清文,汤国安.黄土高原坡度转换图谱研究[J].干旱地区农业研究, 2004, 22(3): 180-185.
    [130]于浩,杨勤科,张晓萍,等.基于小波多尺度分析的DEM数据综合研究[J].测绘科学, 2008, 33(33): 93-95.
    [131]刘向东.森林植被垂直截留作用与水土保持[J].水土保持研究, 1994, (3): 19-24.
    [132]周厚远.陕北黄龙山植被保持水土研究[J].水土保持通报, 1981, 1(2): 39-41.
    [133]吴孝钦,李勇.黄土高原植物根系提高土壤抗冲性能的研究[J].Ⅱ:草本植物根系提高表层土壤抗冲刷力的试验分析.水土保持学报, 1990, 4(1): 11-16.
    [134]汪有科.森林植被保持水土保持功能评价[J].水土保持研究, 1994, 1(3): 24-30.
    [135]张光辉,梁一民.植被盖度对水土保持功效影响的研究综述[J].水土保持研究, 1996, (2): 104-110.
    [136]杨勤科,罗万勤,马宏斌,等.区域水土流失植被因子的遥感提取[J].水土保持研究, 2006, 267-268, 271.
    [137]韦红波.区域植被水土保持功能遥感评价研究[D].陕西杨凌:中国科学院水利部水土保持研究所, 2001.
    [138]刘咏梅.基于高时间分辨率遥感数据的区域水土保持植被综合分类研究——以黄土高原为例[D].陕西杨凌:中国科学院水利部水土保持研究所, 2006.
    [139]中科院黄土高原科考队.黄土高原地区土地资源.北京:中国科学技术出版社, 1991. 190.
    [140]赵英时.遥感应用分析原理与方法[M]. 2003,北京:科学出版社.
    [141] Myneni R B, Nemani R R, Running S W. Estimation of Global Leaf Area Index and Absorbed PAR Using Radiative Transfer Models [J]. IEEE Transactions on Goescience and Remote Sensing, 1997, 35: 1380-1393.
    [142]庞国伟,杨勤科,张爱国,等.陕西省水蚀土壤因子指标插值方法比较研究[J].水土保持通报, 2008, 29 (3): 176-182.
    [143]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验和教训[J].科学通报, 1955, (12): 15-12.
    [144]杨文志,邵明安.黄土高原土壤水分研究[M],北京:科学出版社, 2000, 40-41.
    [145] Moore I D, Grayson R B, Ladson A R. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications [J]. Hydrological processes,1991, 5(1): 3-30.
    [146]中华人民共和国国家标准(GB/T 21010- 2007).土地利用现状分类[S].2007- 08 - 10.
    [147]陈百明,周小萍.《土地利用现状分类》国家标准的解读[J].自然资源学报, 2007, 22 (6): 994-1003.
    [148]王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报, 2002, 55(1): 84-90.
    [149]傅伯杰,王军,马克明.黄土丘陵区土地利用对土壤水分的影响[J].中国科学基金, 1999, 4: 225-229.
    [150]黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域土壤水分空间格局及其影响因素[J].自然资源学报, 2005, 20(4): 483-492.
    [151]何福红黄明斌,党廷辉.黄土高原沟壑区小流域土壤水分空间分布特征[J].水土保持通报, 2002, 22 (4): 6-9.
    [152]张超王肖会.黄土高原丘陵沟壑区土壤水分变化规律的研究[J].中国生态农业学报, 2004, 12(3):47-50.
    [153]张北赢徐学选,白晓华.黄土丘陵区不同土地利用方式下土壤水分分析[J].干旱地区农业研究, 2006, 24(2): 95-99.
    [154]黄明斌,康绍忠,李玉山.黄土高原沟壑区森林和草地小流域水文行为的比较研究[J].自然资源学报, 1999, 14(3): 226-231.
    [155]邱扬,傅伯杰,王军,陈利顶.黄土丘陵小流域土壤水分的空间异质性及其影响因子[J].应用生态学报, 2000, 20(5): 715-720.
    [156]王国梁,刘国彬,常欣,许明祥.黄土丘陵区小流域植被建设的土壤水文效应[J].自然资源学报, 2002, 17(3): 339-344.
    [157]何福红,黄明斌,党廷辉.黄土高原沟壑区小流域土壤干层的分布特征[J].自然资源学报, 2003, 18(1): 30-36.
    [158]焦锋.基于GIS的黄土丘陵区土壤水库蓄水数量特征及其生态供水潜力评价[D],陕西杨陵:西北农林科技大学, 2006.
    [159]段建军.黄土高原地区土壤干层的分布状况与时空动态研究[D].陕西杨陵:中国科学院水利部水土保持研究所, 2006.
    [160]张彩霞.基于DEM的地形湿度指数提取与应用研究[D].陕西杨陵:西北农林科技大学, 2006.
    [161]王洪明,杨勤科,姚志宏.小流域尺度土壤水分与地形湿度指数的相关性分析[J].水土保持通报, 2009, 29(4): 110-113.
    [162]杨文治余存祖.黄土高原区域治理与评价[M].北京:科学出版社, 1992.
    [163] Fitzjohn C,Ternan J L,Williams A G. Soil moisture variability in a semi-arid gully catchment : implications for runoff erosion control [J]. Catena, 1998, 32(1): 55-70.
    [164]贾志军,王贾平,李俊义,等.土壤含水率对坡耕地产流入渗影响的研究[J].中国水土保持, 1987, (9): 25-27.
    [165] Meyles E, Williams A, Ternan L, et al. Runoff generation in relation to soil moisture patterns in a small Dartmoor catchment, Southwest England [J]. Hydrol. Process, 2003, 17, 251-264.
    [166] Castillo V M, Gomez-Plaza A, Martinez-Mena M. The role of antecedent soil water content in the runoff response of semiarid catchments:a simulation approach [J]. Journal of Hydrology, 2003, 284: 114-130.
    [167] Karnieli A, Ben-Asher J. A daily runoff simulation in semiarid watersheds based on soil water deficit[J] . Journal of Hydrology 1993, 149: 9-25.
    [168]贾志军,王贵平,李俊义,等.前期土壤含水率对坡耕地产流产沙影响的研究[A].陈永宗.西北黄土高原土壤侵蚀规律实验研究文集[C].北京:水利电力出版社, 1990, 32-36.
    [169] Truman C C, Bradford J M. Effect of antecedent soil moisture on splash detachment under simulated rainfall [J]. Soil Science, 1990, 150: 787-798.
    [170] Truman C C, Bradford J M, Ferris J E. Antecedent water content and rainfall energy influence on soil aggregates breakdown [J]. Soil Science Society of American Journal, 1990, 54(5): 1385-1392.
    [171] Luk S H. Effect of antecedent soil moisture content on rainwash erosion [J]. Catena, 1985, 12(2/3): 129-139.
    [172]王浩,雷晓辉,秦大庸,等.基于人类活动的流域产流模型构建[J].资源科学, 2003, 25(6): 14-18.
    [173]赵人俊.新安江模型参数的分析[J].水文, 1988, (6): 2-9.
    [174] Aston A R. Rainfall interception by eight small trees [J]. Hydrol., 1979, 42: 383-396.
    [175] Hoyningen-Huene, J von. Die Interzeption des Niederschlags in landwirtschaftlichen Pflanzenbest?nden. Arbeitsbericht Deutscher Verband für Wasserwirtschaft und Kulturbau, DVWK, Braunschweig, 1981, 63.
    [176] McVicar T R, Jupp D L B. A‘calculate then interpolate’approach to monitoring regional moisture availability, In: McVicar, T.R., LiRui, Walker, J, Fitzpatrick, R.W. and Liu Changming (eds), Regional Water and soil Assessment for managing Sustainable Agriculture in China andAustralia [C]. ACIAR Monograph 2002, 84, 258-276.
    [177] Beven K J. Distributed Hydrological Modelin: Application of the TOPMODEL Concept [C]. New York: John Wiley&Sons Ltd, 1997.
    [178] Kamphorst E, Jetten V G, Guerif J, et al. Predicting depressional storage from soil surface roughness[J]. Soil Sci. Soc. Am. J. 2000, 64: 1749-1758.
    [179] A.P.J., De Roo, Verzandvoort M. A. Spatial and temporal variability of soil surface roughness and the application in hydrological and soil erosion modeling [J].Hydrological Processes, 1996,10: 1035-1047.
    [180]张光辉,刘国彬.黄土丘陵小流域土壤表面特征变化规律研究[J].地理科学, 2001, 21 (2): 118-122.
    [181] Urban Hydrology for Small Watersheds (Technical Release 55). USDA Natural Resources Conservation Service June 1986: 195-231.
    [182] Smith R E, Goodrich D, Quinton J N. Dynamic distributed simulation of watershed erosion: the KINEROS2 and EUROSEM models [J]. Journal of Soil and Water Conservation, 1995. 50, 517-520.
    [183] Govers G. Empirical relationships on the transporting capacity of overland flow, International Association of Hydrological Sciences, Publication, 1990, 189: 45-63.
    [184] Rose C W, Williams J R, Sander G C, et al. A mathematical model of soil erosion and deposition processes. I. Theory for a plane element [J]. Soil Science Society of America Journal , 1983, 47, 991-995.
    [185] Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums [J]. Trans. Cam. Phil. Soc., 1851, 9 (2): 8-106.
    [186]汤国安,陈正江,赵牡丹,等. ArcView地理信息系统空间分析[M].北京:科学出版社,2002.
    [187]中国自然资源数据库.累年各月蒸发量(分台站) [DB]:http://www.naturalresources.csdb.cn/zrzy/ntBC14.asp?Page=3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700