用户名: 密码: 验证码:
半干旱区凝结水形成机制及对植物水分特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝结水是半干旱地区生态系统重要的水源,本文以内蒙古农业大学科技园区牧草地试验站和毛乌素沙地开发整治研究中心为试验基地,在2007~2009年期间,应用自制微型测渗计称重法、离体枝条法、人造凝结面法、压力室法、封袋法和盆栽干旱胁迫等方法对土壤凝结水特征,植物冠层凝结水特征,凝结水对臭柏(Sabina vulgaris)、油蒿(Artemisia ordosica)和籽蒿(Artemisia sphaerocephala)水分特性的影响等方面进行了研究。取得如下结果:
     1.半干旱地区土壤表层凝结水由吸湿水,大气水汽凝结水和土壤深层水汽凝结水组成。土壤凝结水主要发生在土壤表层0~2cm和2~4cm,土壤表层0~2cm和2~4cm凝结量与0~10cm凝结量呈现线性正相关关系。大气中水汽对土壤表层(5cm)凝结水的贡献率远小于深层土壤水汽的贡献率,二者比值为3.1:10~4.5:10。随着土壤表层凝结量的降低,大气水汽对土壤凝结水的贡献将增大,深层土壤水汽的贡献将减小,在干旱季节,二者最大比值为8:10。大气中的水汽总是先于土壤中的水汽到达和离开土壤表层。
     2.土壤凝结水量随着季节发生变化,雨季土壤凝结水量与蒸发量均大于旱季。当日凝结量和次日蒸发量呈现显著的线性正相关系关系(y=0.947x+0.0103,R2=0.9454,n=348,P<0.05)。初始土壤(粟钙土)表层含水量与含水量增量呈现极显著的线性负相关关系(y=-0.2618x+0.7192,R2=0.5609,n=51,P<0.0001)。土壤中所含小粒径沙粒和物理性粘粒越多越有利于土壤吸湿凝结水的形成,吸湿凝结能力大小为臭柏样地土样>油蒿样地土样>裸地样地土样>风成沙土。
     3.植物覆盖有助于土壤吸湿凝结水的形成,在毛乌素沙地,冠层凝结能力的大小为臭柏冠层>油蒿冠层>裸地。臭柏冠层内垂直高度相对湿度达到100%持续时间从大到小依次为100cm、50cm、150cm和5cm。臭柏冠层内人造凝结面与离体枝条拦截凝结水的能力差异不显著,均与凝结持续时间呈线性正相关关系。2009年5~9月植物生长期内,臭柏冠层内的PVC凝结盘均能够拦截到凝结水,垂直高度凝结量差异不显著,雨季和旱季最大日均拦截量分别为0.0994mm和0.0086mm。臭柏冠层内PVC凝结盘凝结水量与冠层下土壤凝结水量相关性显著。
     4.雨季和旱季影响土壤吸湿凝结量的主导气象因子分别是相对湿度和绝对湿度。臭柏冠层内PVC凝结盘凝结量与12h夜间平均温度呈现极显著负相关关系,与24h平均相对湿度、12h夜间平均相对湿度和达到露点时间呈现极显著正相关关系。
     5.凝结水对臭柏、油蒿、籽蒿离体枝条和盆栽苗木枝条的水分特性影响显著,凝结水能够维持或提升枝条的水势,增加枝条相对含水量,在室内喷雾封袋后臭柏、油蒿和籽蒿枝条水势平均12h增量分别为0.0454~0.1646MPa、0.1725~0.3466MPa和0.6553~0.7792MPa;相对含水量平均12h增量分别为0.92%~3.01%、2.47%~4.68%和1.57%~4.95%。
Condensation water is important water source in semiarid Ecosystems. We used homemade micro-lysimeter, detached shoots, artificial condensation surface, pressure chamber and plants of drought stress to determined characteristics of soil condensation water, characteristics of canopy condensation water, and condensation water’s effect on water characteristics of Sabina vulgaris, Artemisia ordosica and Artemisia sphaerocephala from 2007 to 2009 at the test base of Grassland Experimental Station of Science and Technology Park of Inner Mongolia Agriculture University and Mu Us Sandland Development and Research Center. The results showed as follows:
     1. There were three kinds of water vapor source, water vapor of direct adsorption by soil from air, condensation water from air and water vapor from the lower soil layer about condensation water of soil in Semi-arid areas; Condensation water of soil is mainly occurred at 0~2cm and 2~4cm of soil surface,there was linear positive correlation between condensation volume of 0~2cm, 2~4cm and condensation volume of 0~10cm.The contribution rate of water vapor from air was smaller than from lower soil layer to upper 5cm soil condensation water, their contribution ratios usually were from 3.1:10 to 4.5:10.When condensation volume of soil surface reduced , the contribution rate of water vapor from air would increased and the contribution rate of lower soil layer would reduced , their maximum contribution ratio was 8:10 in the dry season. Water vapor from air always condensated and evaporated earlier than water vapor from lower soil layer at upper 5cm soil layer.
     2. Soil condensation water would change with the seasons, condensation volume and evaporation volume of soil condensation water was higher in the rainy season than in the dry season,a strong and significant linear positive correlation was found between today’s condensation volume(x) and next day’s evaporation volume(y), their equation was y=0.947x+0.0103(R2=0.9454,n=348,P<0.05). There was linear positive correlation between initial soil water content and increasing of soil surface moisture,their equation was y=-0.2618x+0.7192(R2=0.5609,n=51,P<0.0001). If soil contained more and more small particle sand and physical clay, which would help the formation of condensation water of soil, condensation ability of the soil from big to small was undisturbed soil of Sabina vulgaris’s plot, undisturbed soil of Artemisia ordosica’s plot, undisturbed soil of bare land’s plot, and aeolian sandy soil.
     3. Where there were more plant-covered will help the formation of condensation water of soil. In Mu Us Sandland, condensation ability of the canopy from big to small was Sabina vulgaris, Artemisia ordosica and bare land. Duration ability of 100% relative humidity from big to small were 100cm, 50cm,150cm and 5cm in the vertical height of Sabina vulgaris canopy. There were no significant difference between the ability of intercepting condensation water of artificial condensation surface and detached shoots’of Sabina vulgaris, the intercepting volumes of condensation water by artificial condensation surface and detached shoots of Sabina vulgaris were linear positive correlation with condensation water’s duration. PVC condensation plate of Sabina vulgaris canopy were able to intercept condensation water from May to September in 2009, the biggest rainy season’s intercepting volume was 0.0994mm and the biggest dry season’s intercepting volume was 0.0086mm. Condensation volume of Sabina vulgaris canopy was significantly correlated with condensation volume of soil.
     4. Relative humidity was the main meteorological factor that will effect the formation of soil condensation water in rainy season, and absolute humidity was the main meteorological factor that will effect the formation of soil condensation water in dry season. Condensation volume of PVC condensation plate was significantly positive correlated with 24h average relative humidity and 12h average relative humidity of night, and was significantly negatively correlated with 24h average temperature and 12h average temperature of night.
     5. Condensation water’effects on the moisture characteristics of Sabina vulgaris,Artemisia ordosica and Artemisia sphaerocephala were significant, it could keep and enhance water potential and relative water content of shoots. After spraying fog and sealing bag indoors, the average water potential increment of Sabina vulgaris,Artemisia ordosica and Artemisia sphaerocephala were 0.0454~0.1646MPa/12h, 0.1725~0.3466MPa/12h and 0.6553~0.7792MPa/12h, respectively; the average increment of relative water content of were 0.92%~ 3.01%/12h, 2.47%~4.68%/12h and 1.57%~4.95%/12h, respectively.
引文
1刘文杰,张克映,张光明,等.西双版纳热带雨林干季林冠雾露水资源效应研究[J].资源科学, 2001,23(2):75-80
    2 Bruijnzeel L A. Hydrology of tropical montane cloud forest: a reassessment. Land Use and Water Resources Research,2001,1:1-18
    3 Weathers K C, Likens G E. Clouds in Southern Chile: an important source of nitrogen to nitrogen-limited ecosystems. Environmental Science and Technology,1997,31: 210-213
    4郭占荣,刘建辉.中国干旱半干旱地区土壤凝结水研究综述[J].干旱区研究,2005,22(4):576-580
    5 Jacobs A F G, Heusinkveld B G and Berkowicz S M. Dew deposition and drying in a desert system: a simple simulation model[J].Journal of Arid Environments,1999,42:211-222
    6 Monteith J L. Dew[J].Quarterly Joarnal of the Royal Meteorological Society,1956,42: 572- 580
    7 Gutterman Y, Shem-Tov S. Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Deserthighlands of Israe,l and its adhesion to the soil crust[J].Journal of Arid Environments,1997,35(4):695-705
    8 Duvdevani S. Dew in Israel and its effect on plants[J].SoilScience,1964,2:14-21.
    9 Stone E C. Dew as an ecological factor I.A review of the literature[J].Ecology,1957, 38:407-413
    10 Li Xiaoyan. Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J].Journal of Hydrology,2002,260:151-160
    11 Subramaniam A R, kesava Rao A V R. Dew fall in sand dune areas of India[J].International Journal of Biometeorology,1983,27(3):271-280
    12 Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments—A review[J]. Jounral of Arid Environments,2006,65:572-590
    13 Goossens D, Offer Z Y. Comparisons of day-time and night-time dust accumulation in a desert region[J]. Journal of Arid Environments,1995,31(3):253-281
    14 Evenari M, Shanan L, Tadmor N. The Negev-The Challenge of a Desert[M]. Cambridge, MA: Harvard University Press,1971
    15 Slatyer R O. Plant-Water Relationships[M]. London: Academic Press,1967
    16庄艳丽,赵文智.干旱区凝结水研究进展[J].地球科学进展,2008,23(1):32-38
    17问晓梅,张强,王胜,张杰.陆面露水特征及生态气候效应的研究进展[J].干旱气象,2008,26(4): 5-11
    18 Wells W H. An essay on dew, and several appearances connecte with it[M]. London: Taylor and Hessey,1814
    19 Monteith J L. Dew[J]. Quarterly Journal of the Royal Meteorological Society,1957, 83:322-341
    20朱炳海.气象学词典[M].上海:上海辞书出版社,1985
    21郑若霭.沙地凝结水特征[J].土壤学报,1963,11(1):84-91
    22侯新伟,陈浩,李向全,等.中国北方土壤凝结水研究综述[J].工程勘察,2009,(8):42-46
    23 Moore W J. Physical chemistry [M].London:Longmans,1963
    24 Hillel D.Environmental soil physics[M].San Diego:Academic Press,1998
    25耿宽宏.沙地水分测定及其水分变化规律[J].地理,1961,6(3)
    26王积强.中国北方地区若干蒸发实验研究[M].北京:科学出版社,1990:72-87
    27陈荷生,康跃虎.沙坡头地区凝结水及其在生态环境中的意义[J].干旱区资源与环境, 1992, 6(2):63-72
    28于庆和.塔里木盆地北东缘群克地区土壤凝结水的初步研究[J].干旱区地理,1992,15:77-84
    29蒋瑾,王康富,张维静.沙地凝结水及在水分平衡中作用的研究[J].干旱区研究,1993,10(2): 1-9
    30冯起,高前兆.半湿润沙地凝结水的初步研究[J].干旱区研究,1995,12(3):72-77
    31张建山.沙漠滩区凝结水补给机理研究[J].地下水,1995,17(2):76-77
    32冯金朝,刘立超,肖洪浪,等.沙坡头地区土壤水分吸湿凝结的动态观测与理论计算[J].中国沙漠,1998,18:10-15
    33范高功.凝结水形成的试验研究及生态环境效应分析[J].西安工程学院学报,2002,24(4):63 -66
    34周金龙,艾克日木·阿不都拉,董新光.天山北麓平原区凝结水的观测试验分析[J].新疆农业大学学报,2002,25:49-53
    35郭占荣,韩双平.西北干旱地区凝结水试验研究[J].水科学进展,2002,13(5):623-628
    36曹文炳,万力,周训,等.西北地区沙丘凝结水形成机制及对生态环境影响初步探讨[J].水文地质工程地质,2003,(2):6-10
    37方静,丁永建.荒漠绿洲边缘凝结水量及其影响因子[J].冰川冻土,2005,27(5):755-760
    38张建山,仵彦卿,李哲.陕北沙漠滩区降水入渗与凝结水补给机理试验研究[J].水土保持学报,2005,19(5):124-126
    39王哲,梁煦枫,王德建,等.鄂尔多斯风沙滩地区土壤凝结水试验研究[J].地下水,2006,28(6): 28-31
    40王兴鹏,张维江.风蚀沙化过渡地带沙地凝结水时空变化的初步探讨[J].宁夏大学学报(自然科学版),2006,27(3):266-269
    41梁永平,阎福贵,侯俊林,等.内蒙桌子山地区凝结水对岩溶地下水补给的探讨[J].中国岩溶, 2006,25(4):320-323
    42曾亦键,万力,王旭升,等.浅层包气带地温与含水量昼夜动态的实验研究[J].地学前缘, 2006, 13(1):52-57
    43罗玉昌,王哲,赵平和.毛乌素沙地土壤凝结水试验研究[J].内蒙古气象,2007(4):35-38
    44韩双平,荆继红,荆磊,等.温度场与凝结水的观测研究[J].地球学报,2007,28(5):482-485
    45张晓影,李小雁,王卫,等.毛乌素沙地南缘凝结水观测实验分析[J].干旱气象,2008,26(3):8-13
    46李玉灵,朱帆,张国盛,王林和,板本圭児,吉川賢.毛乌素沙地凝结水动态变化及其影响因子的研究[J].干旱区资源与环境,2008,22(8):61-66
    47韩奎学,吴景峰.土壤凝结水变化规律的初步探讨[J].河北工程技术高等专科学校学报, 2008, (2):10-13
    48孙自永,余绍文,周爱国,张俊,刘德良,杨丽.新疆罗布泊地区凝结水试验[J].地质科技情报, 2008,27(2):91-96
    49武文一,于显威,杨晓晖,于春堂,卢晓杰.库布齐沙漠北缘沙丘不同部位露水凝结量的初步研究[J].水土保持研究,2008,15(3):88-92
    50王冠丽,刘廷玺,孙铁军,等.不同利用方式下沙地土壤凝结水变化规律野外试验分析[J].中国沙漠,2009,29(2):254-258
    51王哲,刘少玉,李娣,等.鄂尔多斯盆地风沙滩区凝结水形成机理的实验研究[J].2009,26(4): 496-501
    52方静,丁永建.荒漠绿洲边缘不同粒径砂砾凝结水量[J].2009, 28(6):1102-1106
    53刘新平,何玉惠,赵学勇,等.科尔沁沙地不同生境土壤凝结水的试验研究[J].应用生态学报, 2009,20(8):1918-1924
    54 Philip J R, D A de Vries. Moisture movement in porous materials under temperature gradients[J]. Trans.Amer.Geophys.Union,1957,38:222-232
    55 Danalatos N G. C, Kosmas N, Moustakas, Berliner P R. Rock fragments :II Their effect on soil properties and biomass production[J].Soil Use Manage,1995,11:121-126
    56 Kosmas C, Danalatos N G., Poesen J, van Wesemael B. The effect of water vapour adsorption on soil moisture contentunder Mediterranean climatic conditions[J]. Agric.Water Manage,1998,36:157-168
    57 Kosmas C, Marathianou M, Gerontidis S, Detsis V, Tsara M, Poesen J.Parameters affecting water vapor adsorption by the soil under semi-arid climatic conditions.1 Agric.Water Manage.2001,48:61-78
    58 Thomas M D. Aqueous vapor pressure of soils. 4. In fluence of replaceable bases[J]. Soil Science,1928,25:485-493
    59 Marshall T J, Holmes J W, Rose C W. Soil Physics[M].New York :Cambridge University Press,1996
    60 De Vries D A. Simultaneous transfer of heat and moisture in porous media[J]. American Geophysical Union,1958,39(5):909-916
    61 Milly P C D. Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric-based formulation and a numerical model[J]. Water Resources Research,1982, 18(3):489-498
    62 Milly P C D.A simulation analysis of thermal effects on evaporation from soil[J].Water Resources Research,1984,20(8):1087-1098
    63 Parlange M B, Cahill A T, Nielsen D R, Hopmans J W, Wendroth O. Review of heat and water movement in field soils[J].Soil and Tillage Research,1998,47(12):5-10
    64 Scanlon B R, Milly P C D. Water and heat fluxes in desert soils.2. Numerical simulations[J].Water Resources Research,1994,30(3):721-733
    65 Bristow K L, Campbell G S, Papendick R I, Elliott L F. Simulation of heat and moisture transfer through a surface residue-soil system[J]. Agricultural and Forest Meteorology,1986,36:193-214
    66 Passerat S A, Bruckler L, Thony J L, Vauclin M. Numerical modeling of coupled heat and water flows during drying in a stratified bare soil—comparison with field observations[J].Journal of Hydrology,1989,105:109-138
    67 Van de Griend A A , Owe M. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions[J]. Water Resources Research,1994,30(2):181- 188
    68 Yakirevich A, Berliner P R, Sorek S. A model for numerical simulating of evaporation from bare saline soil[J]. Water Resources Research,1997,33(5):1021-1033
    69 Chiu-On N G. Macroscopic equations for vapor transport in a multi-layered unsaturated zone. Advances in Water Resources,1999,22 (6):611-622
    70 Qin Z, Berliner P, Karnieli A. Numerical solution of a complete surface energy balance model for simulation of heat fluxes and surface temperature under bare soil environment[J]. Applied Mathematics and Computation ,2002,130(1):171-200
    71 Janssen L H J M, Romer F G, Kema N V. The frequency and duration of dew occurrence over a year: Model results compared with measurements[J].Tellus:Series B,1991, 43:408-419
    72 Beysens D. The formation of dew[J].Atmospheric Research,1995,39:215-237
    73 Zangvil A. Six year of dew observations in the Negev Desert, Israel[J].Journal of Arid Environments,1996,32(4):361-371
    74 Kidron G J. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highland, Israel[J].Atmospheric Research,2000, 55(3/4): 257-270
    75 Berkowicz S M, Heusinkveld B G, Jacobs A F G. Dew in an arid ecosystem: Ecological aspects and problems in dew measurement[C]∥Schemenauer R S, Puxbaum H.Proceedings of 2nd International Conference on Fog and Fog Collection. New found land: St Johns,2001:301-304
    76 Richards K. Observation and simulation of dew in rural and urban environments[J]. Progress in Physical Geography,2004,28:76-94
    77 Kalthoffa N, Fiebig-wittmaack M, Meiβner C, et al. The energy balance, evapo- transpiration and nocturnal dew deposition of an arid valley in the Andes[J]. Journal of Arid Environments, 2006,65:420-443
    78 Moro M J, Were A, Villagarc L, et al. Dew measurement by Eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology,2007,335: 295-302
    79 Subram aniam A R, Kesava Rao A V R. Dew fall in sand dune area of India[J].International Journal of Biometeorology,1983,27:271-280
    80 Richards K. Observation and simulation of dew in rural and urban environments[J]. Progress in Physical Geography,2004, 28:76-94
    81 Bunnenberg C, Kuhn W. An electrical conductance method for determining condensation and evaporation processes in arid soils with high spatial resolution[J].Soil Science,1980,129(1):58-66
    82 Rosenberg N J. Evaporation and condensation on bare soil under irrigation in the east central great plants[J].Agronomy Journal,1969,61:557-561
    83 Waggoner J E, Begg J E, Turner N C. Evaporation of dew[J].Agricultural Meteorology, 1969,6:227-230
    84 Sudmayer R A, Nulsen R A, Scott W D. Measured dewfall and potential condensation on grazed pasture in the Collie river basin, southwestern Australia[J].Journal of Hydrology,1994,154:255-269
    85 Jacobs A F G, Heusinkveld B G, Berkowicz S M. Dew measurements along a longitudinal sand dune transect, Negev desert,Israel[J].International Journal of Biometeorology, 2000,43:184-190
    86 Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments—A review[J].Jounral of Arid Environments,2006,65:572-590
    87 Ninari N, Berliner P R. The role of dew deposition on the soil surface[J]. Atmospheric Research,2002,64(1/4):323-334
    88孙宏勇,刘昌明,张永强,等.微型蒸发器测定土面蒸发的实验研究[J].水利学报,2004,8:114- 118
    89王积强.关于沙地凝结水测定问题——与蒋瑾等同志商榷[J].干旱区地理,1993,10(4): 54-56
    90 Sentelhas P C, Gillespie T J. Estimating hourly net radiation for leaf wetness duration using the Penman-Monteith equation[J].Theoretical and Applied Climatology,2008, 91:205-215
    91 Kabela E D, Hornbuckle B K , Cosh M H, Anderson M C, Gleason M L. Dew frequency, duration, mount, and distribution in corn and soybean during SMEX05. Agricultural and Forest Meteorology,2009,149:11-24
    92刘文杰,曾觉民,王昌命,等.森林与雾露水关系研究进展[J].自然资源学报,2001,16(6): 571-575
    93刘文杰,张一平,马友鑫,等.森林内雾水的水文和化学效应研究现状[J].林业科学,2005, 41(2):141-146
    94 Aarie F. G. Jacobs, Addo Van Pul and Rushdi M. M. El-Kilani. Dew formation and the drying process within a maize canopy[J]. Boundary-Layer Meteorology, 1994, 69:367- 378
    95 Aarie F. G. Jacobs and Joost P. Nieveen. Formation of dew and dring process within crop canopies[J]. Meteorol. Appl.,1995,2:249-256
    96刘文杰,张克映,王昌命,等.西双版纳热带雨林干季林冠层雾露形成的小气候特征研究[J].生态学报,2001,21(3):486-491
    97刘文杰,张一平,刘玉洪,等.西双版纳热带季节雨林林冠穿透雾水的观测研究[J].植物生态学报,2003,27(6):749-755
    98刘文杰,张一平,刘玉洪,等.热带季节雨林和人工橡胶林林冠截留雾水的比较研究[J].生态学报,2003,23(11):2379-2386
    99刘文杰,张一平,李红梅,等.热带人工橡胶林林冠截留雾水的边缘效应研究[J].生态学报, 2004,24(7):1430-1435
    100刘文杰,李鹏菊,李红梅,等.西双版纳热带季节雨林林冠截留雾水和土壤水的关系[J].生态学报,2001,26(1):9-15
    101阎百兴,王毅勇,徐治国,董树斌.三江平原沼泽生态系统中露水凝结研究[J].2004, 2(2): 94-99
    102阎百兴,邓伟.三江平原露水资源研究[J].自然资源学报,2004,19(6):732-737
    103 Noffsinger T L. Survey of techniques for measuring dew[J].In:Waxler,A. (Ed.),Humidity and Moisture.Reinhold,New York, 1965,2:523-531
    104 Perdro M J, Gillespie T J. Estimating dew duration.Ⅰ. Utilizing micrometeorological data [J].Agricultural Meteorology,1982,25:283-296
    105 Perdro M J, Gillespie T J. Estimating dew duration.Ⅱ. Utilizing standard weather station data[J].AgriculturalMeteorology,1982,25:297-310
    106 Scherm H, Van Bruggen A H C. Sensitivity of simulated dew duration to meteorological variations in different climatic regions of California[J].Agricultural and Forest Meteorology,1993,66:229-245
    107 Kidron G J, Barzilay E, Sachs E. Microclimate control upon sand microbiotic crusts, Western Negev Desert, Israel[J].Geomorphology,2000,36(1/2):1-18
    108 Menenti M,Bastiaanssen W G M,Van-Eick D. Determination of surface hemispherical reflectance with Thematic Mapper data[J]. Remote Sensing of Environment,1989.28: 327-337
    109 Minnis P,Mayor S, Smith W L, Young D F. Asymmetry in the diurnal variation of surface albedo[J].IEEE Transaction on Geoscience and Remote Sensing,1997,35(4):879-891
    110 Pinter Jr P J. Effect of dew on canopy reflectance and temperature[J]. Remote Sensing of Environment,1986,19(2):187-205
    111 Fraser A B. The sylvanshine: retroreflection from dew-covered trees[J].Applied Optics,1994,33(21):4539-4547
    112 Ridley J, Strawbridge F, Card R, Phillips H. Radar backscatter characteristics of a desert surface[J].Remote Sensing of Environment,1996,57(2):63-78
    113 Wigneron J P,Calvet J C, Kerr Y. Monitoring water interception by crop fields from passive microwave observations[J]. Agricultural and Forest Meteorology,1996.80(2–4):177-194
    114 Wood D, McNairn H,Brown R J, Dixon R. The effect of dew on the use of RADARSAT-1 for crop monitoring; choosing between ascending and descending orbits[J].Remote Sensing of Environment,2002,80(2):241-247
    115 Duvdevani S. An optical method of dew estimation[J].Quarterly Journal of the Royal Meteorological Society,1947,73:282-296
    116 Gilead M, Rosenan N .Ten years of dew observation in Israel.Israel Exploration Journal 1954:4(2)
    117 Kidron G J. A simple weighing method for dew and fog measurements[J].Weather,1998, 53:428-433
    118 Kidron G J. Altitude dependent dew and fog in the Negev Desert, Israel[J]. Agricultural and Forest Meteorology,1999,96:1-8
    119 Zangvil A, Druian P. Measurements of dew at a desert site in southern Israel[J]. Geographical Research Forum,1980,2:26-34
    120 Adrie F G. Dew measurements along a longitudinal sand dune transect, Negev desert, Israel[J].International Journal of Biometeorology,2000,43:184-190
    121 Yoash V. Water absorption by the aerial organ of plants[J].Physiological Plantarum, 1963,16:44-51
    122 Waisel Y.Dew absorption by plants of arid zones[J].Bulletin Research Council Israel,1958,6D:180-186
    123 Ganong W F. On the absorption of water by the green parts of plants[J].Botanical Gazette,1894,19:136-143
    124 Schonland S.On the absorption of water by the aerial organs of some succulents[J]. Transactions of the Royal Society South Africa,1909,1:395-401
    125 Stone E C. Water absorption by needles of ponderosa pine seed lings and its internal redistribution[J]. Plant Physiology,1957,25:120-125
    126 Grammatikopoulus G, Manetas Y. Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance[J]. Can J Bot,1994,72:1805-1811.
    127郑玉龙,冯玉龙.西双版纳地区附生与非附生植物叶片对雾水的吸收[J].应用生态学报, 2006,17(6):977-981
    128郑玉龙.西双版纳地区雾水对附生植物的生态效应研究[D].河北大学,2006
    129庄艳丽,赵文智.凝结水对温带荒漠一年生植物生态作用研究[J].干早区研究,2009,26(4): 526-532
    130 Stone E C. The ecological importance of dew[J].The Quarterly Review of Biology,1963, 38:328-341
    131 Spaulding V M. Absorption of atmospheric moisture by desert shrubs[J].Bulletin of the Torrey BotanicalClub,1906,33:367-375
    132 Boucher J F. Foliar absorption of dew influences shoot water potential and root growth in pinus stobus seedlings[J].Tree Physiology,1995,15:819-823
    133 Burgess S S O. , Awson T E D. The contribution of fog to the water relations of Sequoia sempervirens(D.Don):foliar uptake and prevention of dehydration[J].Plant,Cell and Environment,2004,27:1023-1034
    134 Gouvra E, Grammatikopoulos G. Beneficial effects of direct foliar water uptake on shoot water potential of five chasmophytes[J]. Botany,2003,81:1278-1284
    135 Rafael S. Oliveira, Todd E. Dawson, Stephen S.O. Burgess. Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil[J]. Journal of Tropical Ecology,2005,21:585-588
    136 de Bary A. Vergleichende Anatomie der Vegetationsorgane der phanerogamen und Farne[M]. Leipzig: W.Engelmann,1877
    137 Haberlandt G. physiologische Pflanzenanatomie[M]. Leipzig:Engelmann,1884
    138 Volkens G. Die flora der agyptisch-arabischen Wuste auf Grundlagen anatomisch-physiologischer Forschungen[M].Berlin: Gebr.Brontrager.1887
    139 Stevens A B P. Thestructure and development of the hydathodes of Caltha palustris L.[J].1956,55:339-345
    140 Dieffenbach H, Kramer D, Luttge U. Release of guttation fluid from passive hydathodes of intact barley plants.Ⅰ.Structural and cytological effects[J]. Annals of Botany, 1980,45:397-401
    141 Frey-Wyssling A, von Rechenberg-Ernst V. Uber die Wasserpermeabilitat der Epithemzellen von Hydathoden[J].Flora,1994,137:193-215
    142 Belin-DePoux M. Contribution a letude des hydathodes.Ⅰ.Remarques sur le type“a epitheme”chez les dicotyledones[J]. Revue General Botanique,1969,76 :631-657
    143 Fahn A. Secretory tissues in plants[M].London:Acdemic Press,1979
    144 Salisbury F B, Ross C W. Plant physiology[M].4th ed. Belmont,CA:Wadsworth.1992.
    145 Sporer H. Die blattanatomie der sudafrikanischen Crassula Pyramidealis Thunberg[J]. Osterreichische Botanische Zeitschrift,1915,65:81-101
    146 Kean J. The morphology and physiology of the leaves of some Crassulaceae[J]. Transactions of the Botanical Society of Edinburgh,1924,29:96-104
    147 Rost T L. Vascular pattern and hydathodes in leaves of Crassula argentea(crassulaceae) [J]. Botanical Gazette,1969,130:267-270
    148 Voronin N S, Voronin S N, Voronina R A. Distribution of hydathodes on leaves of some species of the genus Crassula [J].Botanicheskii zhurnal SSSR,1976,61:621-628
    149 Marloth R. Notes on the absorption of water by aerial organs of Plants[J].Transactions of the Royal society of south Africa,1910,1:429-433
    150 Wetzel K. Die Wasseraufnahme der hoheren Pflanzen gemaBigter Klimate durch oberirdische Organe[J]. Flora, 1924,117:221-269
    151 Sveshnikova V M. On the absorption of water vapour by the aboveground parts of the Karakum Desert Plants[J]. Botanicheskii Zhurnal SSSR,1972,57:880-888
    152 Barthlott W, CApesius I. Wasserabsorption durch Blattund SproBorgane einiger Xerophyten [J]. Zeitschrift fur Pflanzenphysiologie 1974,72:443-455
    153 Schonland S. On the absorption of water by the aerial organs of some succulents[J]. Transactions of the Royal Society of South Africa, 1910,1:395-401
    154 Rundel P W. Water uptake by organs and carbon assimilation[J]. Encyclopedia of plant Physiology New Series,1982,12B:111-134
    155 Tolken H R. A revision of the genus Crassula in southern Africa[M]. Rondebosch, South Africa: Contributions from the Bolus Herbarium, No 8,1977
    156 Von Willert D J, Eller B M, Werger M J A, Brinckmann E, Ihlenfeldt H D. Life strategies of succulents in deserts with special reference to the Namib Desert[M]. Cambridge: Czmbridge Univ. Press,1992
    157 Martin C E. Physiological ecology of the Bromeliaceae[J]. Botanical Review,1994, 60:1-82
    158 Bewley J D, Krochko J E. Desiccation-tolerance. In physiological plant ecologyⅡ. Water relations and carbon assimilation[J]. Encyclopedia of plant Physiology New Series,1982,12B:325-378
    159 Martin C E, von Willert. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of crassula from the namib desert in southern Africa[J]. Plant boil.2000,2:229-242
    160 Sergi Munne-Bosch,Salvador Nogues, Leonor Alegre. Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions[J]. New Phytol,1999,144:109-119
    161 Munne-Boach S,Alegre L. Role of dew on the recovery of waterstressed Melissa officinalis L. plants[J].J Plant Physiol,1999,154:759-766
    162 H.¢.库里克.干旱地区沙地水分状况于水分平衡[M].赵兴梁译.呼和浩特:内蒙古林学院,1989
    163赵军.内蒙古典型草原露水资源研究初探[D].内蒙古大学,2006
    164郭占荣,刘花台.西北地区凝结水及其生态环境意义[J].地球学报, 1999,20:762-766.
    165 Muselli M, Beysens D, Marcillat J, Milimouk I, Nilsson T, Louche A. Dew water collector for potable water in Ajaccio(Corsica island, France)[J].Atmos.Res, 2002,64:297-312
    166 Monteith J L, Unsworth M H. Principles of environmental physics[M].Second Arnold,London,UK,1990
    167 Beysens D, Muselli M, Nikolayev V, et al.Measurement and modelling of dew in island, coastal and alpine areas[J]. Atmospheric Research, 2005,73:1-22
    168刘文杰,李红梅,段文平.西双版纳地区露水资源分析[J].自然资源学报,1998,13(1):40-42.
    169 Youhua Ye, Kai Zhou, Liying Song, et al.Dew amounts and its correlations with meteorological factors in urban landscapes of Guangzhou[J]. Atmospheric Research (China),2007,86:21-29
    170 Arvidsson I. Plants as dew collectors[J].International Association Science of Hydrology General Assembly Toronto,1957,2:481-484
    171 Kidron G J. Angle and aspect dependent dew and fog precipitation in the Negev desert[J]. Journal of Hydrology,2005,301: 66-74
    172 Ye Yh, Zhou K, Song Ly,etal. Dew amounts and its correlations with meteorological factors in urban landscapes of Guangzhou,China[J].Atmospheric Research,2007,86(1):21-29
    173 Lloyd M G. The contribution of dew to the summer water budget of northern Idaho[J].Bulletin of the American Meteorological Society,1961,42:572-580
    174 Nagel J F. On the measurement of dew[J].Archives of Meteorology, Geophysics and. Bioclimatology Series B,1962,11:403-423
    175孙自永,程国栋,马瑞,等.雾水的D和18O同位素研究进展[J].地球科学进展,2008,23 (8):794-802
    176秦艳.毛乌素沙地臭柏、油蒿细根的生产与周转[D].内蒙古农业大学,2008
    177王林和,张国盛,隋明杰,等.毛乌素沙地臭柏不定根发生特性的研究[J].林业科学,2002, 38(5):156-159
    178 Gleick P H. Basic water requirements for human activities:meeting basic needs[J]. Water International,1996,21:83-92
    179 Nilsson T. Initial experiments on dew collection in Sweden and Tanzania[J]. Sol.Energy Mat.Sol.Cells,1996,40:23-32
    180 Takenaka N, Soda H, Sato K, Terada H, Suzue T, Bandow H, Maeda Y. Difference in amounts and composition of dew from different types of dew collectors[J]. Water[J],Air,and Soil Pollution,2003,147:51-60
    181 Beysens D, Milimouk I, Nikolayeva V, Muselli M, Marcillat J. Using radiative cooling to condense atmospheric vapor:a study to improve water yield[J].Hydrology,2003, 276:1-11
    182张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1-16
    183И·Ф·库利克.干旱地区沙地水分状况与水分平衡[M].赵兴梁译,呼和浩特:内蒙古林学院, 1989
    184 Agam(Ninari) N, Berliner P R. Diurnal water content changes in the bare soil of a coastal desert[J].Journal of Hydrometeorology,2004,5(5):922-933

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700