用户名: 密码: 验证码:
强旱生植物沙冬青AmDHN、AmERF基因克隆及转化甜菜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜是世界上重要的糖料作物之一,也是我国第二大糖料作物,在我国国民生产总值中占有重要地位。本试验是在已对强旱生植物沙冬青cDNA文库研究的基础上,通过EST序列分析和GENBANK核酸数据库的比对,对检测到的34个DHN基因ESTs和15个ERF的ESTs进行拼接得到基因全长的cDNA序列,通过设计特异性引物克隆了沙冬青AmDHN基因和AmERF转录因子,构建了沙冬青AmDHN基因植物表达载体和沙冬青AmDHN基因、AmERF转录因子及PPT抗性基因二价植物表达载体,建立了甜菜组培再生体系,利用农杆菌介导法将沙冬青AmDHN基因导入甜菜,并进行了功能验证。主要研究结果入如下:
     1.克隆了沙冬青脱水素(AmDHN)基因,其全长为1106bp,读码框为552bp,编码183个氨基酸,理论MW=18407.4,理论pI=6.22。
     2.克隆了沙冬青乙烯应答转录因子(AmERF),其读码框为633bp,编码211个氨基酸,理论MW=23216.0,理论pI=8.20。网络Blastx程序比对,找到56个同源性较高的序列,其中与拟南芥(Arabidopsis thaliana)、水稻粳稻品种组(japonica cultivar-group of Oryza sativa)、辣椒(Capsicum annuum)、蒺藜苜蓿(Medicago truncatula)的一致性分别达到83%、72%、74%和61%。
     3.利用PCR定点突变技术对AmDHN基因的1个碱基进行了定点突变,成功地将其碱基序列CCATGG突变为CTATGG。
     4.构建了沙冬青的AmDHN基因植物表达载体pCAMBIA3301-DHN与AmDHN基因、AmERF转录因子的二价植物表达载体pCAMBIA3301-DHN-AmERF,为今后进一步研究沙冬青抗逆基因的表达规律及代谢调控等提供了基础,同时也丰富了利用转基因技术提高作物抗逆性的基因库。
     5.建立了以甜菜叶柄为外植体的遗传转化再生体系,筛选出诱导丛生芽能力较高的甜菜基因型材料4个(N98122、N9849、HBB-1和内甜单1),分化诱导培养基2种(MS+NAA0.5mg/L+6-BA1.5mg/L;MS+NAA0.5mg/L+KT3.0mg/L),生根诱导培养基1种(MS+NAA2.0mg/L)。
     6.采用农杆菌介导法并结合真空辅助侵染将脱水素基因导入了甜菜,获得经PCR检测阳性转基因植株107株,PPT抗性检测结果显示转基因植株具有很强的PPT抗性,干旱胁迫试验结果显示转基因甜菜植株的抗旱性要高于非转基因甜菜植株。
Sugar beet is one of important sugar crops in the world and the second largest sugar crop in China. It plays an important role in the development of sugar beet industry. A cDNA library of strong xerophyte Ammopiptanthus has been known. We analyzed its EST sequence and compared GENBANK DNA database, and then spliced ESTs of 34 DHN genes and 15 ERF genes. A full-length cDNA sequences was got. AmDHN gene and AmERF transcription factor of Ammopiptanthus were cloned using a specific primer. And then, AmDHN gene plant expression vector, AmDHN gene, AmERF transcription factor and PPT screening for resistance gene divalent expression vector of the plant of Ammopiptanthus were built in turn. Sugar beet regeneration tissue culture system was established. Ammopiptanthus AmDHN gene was transferred into sugar beet using Agrobacterium method. Functions of transgenic sugar beet were verified. The results are as follows:
     1. AmDHN full length with 1106 bp was successfully cloned by PCR amplification technique. DNAman analysis indicated open read frame was 552 bp, coded 183 aa, theory MW was 18407.4 and pI was 6.22.
     2. Transcriptional factor AmERF of Ammopiptanthus was cloned successfully. Open read frame was 633 bp, coded 211 aa, theory MW was 23216.0 and pIwas 8.20 by DNAm- an analysis. Nucleotide sequence of transcriptional factor AmERF of Ammopiptanthus was compared by Blastx procedure, and 56 homologous sequences were founded. Consistency with Arabidopsis thaliana, Oryza sativa (japonica cultivar-group), Capsicum annuum, Medicago truncatula was 83%、72%、74% and 61% respectively.
     3. Mutation of base sequence CCATGG of DHN gene to CTATGG was completed successfully using PCR site-directed mutagenesis technique.
     4. AmDHN gene plant expression vector (pCAMBIA3301-DHN), DHN gene and divalent expression vector of AmERF transcription factor (pCAMBIA3301-DHN-AmERF) of Ammopiptanthus were built.
     5. A sugar beet genetic transformation and regeneration system was built, in which explants were petiole of sugar beet. 4 genotypes sugar beets (N98122、N9849、HBB-1and NeiTianDan1) which have higher ability to induce multiple shoots were screened, compan- ied with 2 differentiation inducing medium (MS+NAA0.5mg/L+6-BA1.5mg/L;MS+NAA 0.5mg/L+KT3.0mg/L) and 1 rooting inducing medium (MS+NAA2.0mg/L).
     6. Ammopiptanthus AmDHN gene was transferred into sugar beet integrated Agrobacterium tumefaciens with vacuum, and then got 107 transgenic plants which have stronger PPT resistance. Under drought stress, transgenic sugar beet plant has stronger resistance than non-transgenic ones.
引文
1翟大勇,沈黎明.脱水蛋白研究进展[J].生物化学与生物物理学进展,1998,25(2):119-122
    2刘广宇,魏令波,陈吉龙,等.植物脱水素研究进展[J].生物工程进展,2001,21(2):24-27
    3黎昊雁,徐亮.植物抗逆机制及相关基因工程研究进展[J].检验检疫科学,2002,12(6):53-55
    4郭九峰,孙国琴,沈传进,等.沙冬青cDNA文库的构建和EST分析[J].华北农学报,2007,22(4):37-41
    5中国农业科学院甜菜研究所主编.《中国甜菜栽培学》[M].农业出版社,北京,1982
    6曲文章.《甜菜生理学》[M].黑龙江科学技术出版社,哈尔滨,1990
    7张木清,王华忠,白晨,等.《糖料作物遗传改良与高校育种》[M].中国农业出版社,北京,2006
    8 Paul H, Zijlstra C, Leeuwaugh J E, et al. Reproduction of the beet cyst nematode Heterodera schachtii on transformed root cultures of Beta vulgaris L [J]. Plant Cell Rep, 1987, 21(6):379-381
    9 Krens F A, Janar Zijistra C, Vander Molen W, et al. Transformation and regeneration in sugar beet induced by shooter mutants ofAgrobacterium tumefaciens[J]. Euphytica, 1988, 21(1):185-194
    10 Zhong Z X, Smith H G, Thomas T H. Micropropagation of wild beet inflorescence pieces[J]. Plant Growth Regulation, 1993, 12(4):53-66
    11崔平,路运才.甜菜种质资源的研究现状及其进展[J].中国糖料,1999,(2):44-47
    12李雅华,崔平.甜菜种质资源的繁种更新[J].中国糖料,2000,(4):48-50
    13崔平.甜菜种质资源描述规范和数据标准[M].中国农业出版社,北京,2006
    14崔平,潘荣.甜菜种质资源的繁种更新及安全保存[J].中国糖料,2004,(1):57-59
    15杨继春,崔杰.甜菜种质资源的研究与利用[J].中国甜菜糖业,2001,(4):8-12
    16 Lindsey K, Jones M G K. Stable transformation of sugar beet pmtoplast by electropo ration[J]. Plant Cell Rep, 1987, 10:43-52
    17 Krens F A, Jamar D. The role of explants source and culture conditions on callus induction and shoot regeneration in sugarbeet (Beta vulgaris L.) [J]. J Plant Physiol, 1989, 134:651-655
    18 Goska M, Rogozinska J. Micropropagation of sugar beet and possibilities of using it in breeding Hodowla Roslin Aklinat[J]. Nasien, 1990, 32(5):87-94
    19 Hall R D, Pederson C, Krens F A. Improvement of protoplast culture protocols for Beta vulgaris L(sugar beet) [J]. Plant Cell Rep, 1993, 12:339-341
    20姚华建,李大伟,于嘉林,等.甜菜坏死黄脉病毒外壳蛋白基因在甜菜转基因植株中的表达[J].生物工程学报,1997,13(4):440-442
    21 Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nat. Biorechnol, 2001, 19:765-768
    22 Boncompagni E, Magne Qlsteras, Poggi M C, et al. Occurrence of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and their roles in osmopr otection[J]. Apps Envir Microbio, 1999, 65(5):2072-2077
    23 Hayashi H, Alia Mustardy L, et al. Transformation ofArabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinbetaine and enhanced tolerance to salt and cold stress[J]. Plans J, 1997, 12:133-142
    24 Takabe T, Hayashi Y, Tanaka A. Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants[M]. Sapporo Japan, 1998:63-68
    25白晨,云和义,宫前恒,等.内蒙古甜菜生产概况[J].内蒙古农业科技,1997,(3):13-15
    26 Ben-Tahar S, Gerents D, Kallerhoff J, et al.Transforming Beta vulgaris cells with Agrobacteriumcontag vector which imparts eg. resistance to virus, by contacting bacteria with dispersion or suspension of callus tissue[J]. Patent, 1991, 12(2): 133-139
    27 Fry J E, Barnason A R, Hinchee M. Genotype-independent transformation of sugar beet using Agrobacterium tumefaciens in molecular biology and plant development.Third international congress of the ISPMB[M]. Tucson, USA, 1991, P84
    28 Ingersoll J C, Huette T M, Owens L D. Effect of promoter-leader sequences on transient expression of reporter gene chimeras biolistically transferred into sugarbeet(Beta vulgaris L.) suspension cells[J]. Plant Cell Rep, 1996, 15:836-840
    29 Marie M, Britt-Louise L, Paul T. Reduced titer of BNYVV on transgenic sugarbeets expressing the BNYVV coat protein[J]. Euphytica, 1996, 90: 293-299
    30刘巧红,徐德昌.基因工程方法在抗甜菜丛根病育种中的应用[J].中国甜菜糖业,2000,(1):17-19
    31马龙彪,徐香玲,张悦琴.几丁质酶基因转化甜菜的初步研究[J].中国糖料,2000,(3):18-20
    32徐德昌,刘巧红,江莉萍.甜菜转基因植株抗性表现及种子获得[J].中国甜菜糖业,2002,(4):3-11
    33 Saunders J W. A flexible in vitro shoot culture propagation system for sugarbeet that includes rapid floral induction of ramets[J].Crop Sci, 1982, 22:1102-1105
    34 Saunders J W, Mahoney M D. Benzyladenine induces foliar adventitious shoot formation on young plants of two sugarbeet (Beta vulgaris L.) cultivars[J].Euphytica, 1982, 31:801-804
    35 Miedema P. A tissue culture technique for vegetative propagation and low temperature reservation of Beta vulgaris[J].Euphytica, 1982, 31:635-643
    36 Detrez C, Tetu T, Sangwan R S. Direct organogenesis from petiole and thin cell layer explants in sugar beet cultured in vitro[J].J Exp Bot, 1988, 204:917-926
    37 Hussey G, Hepher A. Clonal propagation of sugar beet plants and the formation of polyploida by tissue culture[J].Ann Bot, 1978, 42:47
    38 Doley W P, Saunders J W. Hormone-free medium will support callus production and subsequent shoot regeneration from whole plant explant in some sugar beet, Beta vulgaris L[J].Populations Plant Cell Rep, 1989, 8:222-225
    39 Lenzener S, Zoglauer K, Schider O. Plant regeneration from protoplasts of sugar beet (Betavulgaris L.) [J]. Physiol Plant, 1995, 94:342-350
    40 Sevenier R, Hall R D, Ingrid M, et al. High level fructan accumulation in a transgenic sugar beet [J].Nature Biotechnology, 1998, 16:843-846
    41 Hasegawa P M, Bressan R A, Zhu J K. Plant cellular and molecular responses to high salinity Annu Rev Plant Physio[J].Plant Mo Biol, 2000, 51:399-405
    42 Netting A G. pH abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions:cellular responses to stress and their implication for plant water relations[J].J Exp Bot, 2000, 51(343):147-158
    43 Matsuoka D, Nanmori T, Sato K, et al. Activation of AtMEKI, an Arobidopsis mitogen-activated protein kinase, in vitro and in vivo: analysis of active mutants expressed in E.colt and generation of the active form in stress response in seedli- ngs[J].Plant J, 2002, 29:637-647
    44 Steen P, Pedersen H C. Gene transfer for herbicide resistance[J].Sugar Beet Res, 1993, 30(4): 267-274
    45 Hall R D, Rikson B T, Weyens G J, et al. A high efficiency technique for the regeneration of transgenic sugar beet from stomatal guard cells[J].Nature Biotechnology, 1996, 14:1133-1138
    46 Xiong L, Zhu J K. Salt tolerance In The Arabidopsis Book[M]. Electronic Booked. By American Society of Plant Biologists, 2002:1-22
    47 Zhang J, Nguyen H T, Blum A. Genetic analysis of osmotic adjustment in crop plants[J]. J Exp Bot, 1999, 50(2): 291-302
    48 Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREBI and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression[J].Plant Cell, 1998, 10:1391-1406
    49 Margara J. Neoformation de bourgeons in vitro chezla Betterave sucriere (Beta vulgaris L.) culture in vitro. C.R.Acad[J].Sci(Paris) Ser.D, 1970, 285:1041-1044
    50 Greef W D, Jacobs M. In vitro culture of the sugarbeet,Description of a cell line with high regeneration capacity[J].Plant Sci Lett, 1979, 17:55-61
    51 Tetu T, Sangwan R S, Sangwan-Norreel B S. Hormonal control of organogenesis and somatic embryogenesis in Beta vulgaris callus[J].J Exp Bot, 1987, 38:506-517
    52 Krens F A, Adelina Trifonjova L C, Paul K, et al. The effect of exogenously-applied phytohormones on gene transfer efficiency in sugarbeet (Beta vulgaris L.)[J].Plant Science, 1996, 116:96-106
    53 Lindsey K, Jones M G K. Transient gene expression in electroporated protoplast intact cell of sugar beet[J].Plant Mol Bio, 1989, 8:71-74
    54黄彩云.甜菜远缘杂交胚培养及植株再生[J].中国甜菜糖业,1997, (4):1-3
    55张剑峰,李天然,邓香兰.高效诱导甜菜再生植株的研究[J].生物工程学报,1997,(13):273-276
    56马龙彪,郭九峰,陆国庆.甜菜基因型的筛选及胚性细胞系建立的研究[J].中国甜菜,1994, (3):8-11
    57卫群,张剑峰.不同基因型甜菜叶柄的组织培养及植株的再生[J].中国糖料,1998,(4):21-24
    58张悦琴,邵明文.花药、未授粉胚珠培养技术及其在甜菜育种中的应用[J].甜菜糖业, 1992,(5):6-11
    59张悦琴,邵明文.甜菜花粉植株的诱导及其观察[J].中国甜菜,1984,(3):1-8
    60张悦琴,马龙彪,陆国庆.利用细胞工程育种方法选育甜菜抗褐斑病品系初报[J].中国糖料, 1997,(4):20-23
    61马龙彪,张悦琴,吴则东.抗甜菜褐斑病体细胞无性系变异的研究[J].中国糖料,2001,(1):1-5
    62邵明文,马龙彪.甜菜原生质体培养再生愈伤组织[J].植物学报,1993,(35):727-729
    63邵明文,张悦琴,黄彩云.甜菜花药、胚珠培养及其在育种上应用[J].中国农业科学,1993,(2):56-62
    64王宇清,罗翠娥.甜菜(Beta vulgaris L.)花药培养的研究[J].甜菜糖业,1990,(1):16-19
    65张悦琴,邵明文.甜菜胚珠培养诱导单倍体植株的研究[J].中国甜菜,1986,(3): 9-13
    66罗翠娥.糖甜菜(Beta vulgaris L.)胚珠培养的研究[J].甜菜糖业(甜菜分册),1987,(1):11-13
    67邵明文,张悦琴,黄彩云.甜菜未授粉胚珠培养的研究[J].中国甜菜,1988,(2):4-13
    68 Freytag A H, Wrather J A, Erichsen A W. Salt tolerant sugarbeet progeny from tissue cultures challenged with multiple salts[J].Plant Cell Rep, 1990, 8:647-650
    69 Snezana M, Sibila J, Kovacer L. Vegetative propagation of sugar beet from floral ramets[J].Jsugaberet Res, 1990, 27: 90-96
    70 Paul H, van Deelen J E M, Henken B, et al. Expression in vitro of resistance to Heterodera schachting hairy roots of an alien monotelosomic addition plant of Beta vulgaris L, transformed by Agrobacteriun rhizogenes[J].Euphitica, 1990, 48:153-157
    71 Lindsay K. Gallois P Transformation of Sugarbeet (Beta vulgaris L.) by Agrobaeteriurntumefaciens[J].JExp Bot, 1990, 41(226):529-536
    72 Jacq B, Lesobre O, Sangwan R S,et al. Factors influencing T-DNA transfer in Agobacteriummediated transformation of sugarbeet[J].Plant Cell Rep, 1993, 12:621-624
    73 Joersbo M, Donaldson I, Kreiberg J, et al. Analysis of mannose selection used for transformation of sugar beet[J].Mol Breed, 1998, 4:111-117
    74 Lisu-Nam, Landova B, Landa Z. Isolation of protoplasts from sugar beet leaves[J]. Biologia Plantrum, 1976, 18:389-392
    75 Bhat S R, Ford-loyd B V, Callow J A, et al. Isolation of protoplasts and regeneration of callus from suspension cultures of cultivated beets[J].Plant Cell Rep, 1985, 4:345-350
    76 Krens F A, Jamer D, Rouwendal G J A, et al. Transfer of cytoplasm from new Beta CMS sources to sugar beet by asymmetric fusion, I Shoot regeneration from mesophyll protoplasts[J].Theor Appl Genet, 1990, 79:390-396
    77李兴锋,陈惠民,邵明文,等.甜菜原生质体培养直接产生体细胞胚[J].植物学报,1992,34 (5):402-404
    78郭九峰,邵明文,马龙彪,等.甜菜原生质体培养再生植株的研究[J].中国甜菜,1994,(4):6-9
    79 Harpster M H, Townsend J A, Jones J D G, et al. Relative strengths of the 35S cauliflower mosaic virus and nopaline synthase promoters in transformed tabacco, sugar beet and oilseed rape callus tissue[J].Mol Genet, 1988, 212:182-190
    80 Kifle S, Shao M, Jung C, et al. An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.) [J].Plant Cell Rep, 1999, 18:514-519
    81 D’Halluin K, Bossut M, Bonne E, et al. Transformation of sugar beet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants[J].Bio/Technology, 1992, 10:309-314
    82张林生,赵文明.LEA蛋白与植物的抗旱性[J].植物生理学通讯,2003,39(1):61-66
    83孙歆,雷韬,袁澍,等.脱水素研究进展[J].武汉植物学研究,2005,23(3):299-304
    84 Allagulova C R, Gimalov F R. The plant dehydrins: structure and putative function [J].Biochemistry, 2003, 68:945-951
    85 Dure III L. Structural motifs in LEA proteins In Plant Responses to Cellular Dehydration during Environmental Stress[C].Edited by Close T J and Bray E A pp, U.S.A. 1993, P91-103
    86 Choi D W, Zhu B. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of CV Dicktoo. Theor [J].Appl.Genet, 1999, (98):1234-1247
    87 Yves Cloutier, Christopher J. Efficiency of Cold Hardiness Induction by Desiccation Stress in Four Winter Cereals[J].Plant Physiology, 1984, (76):595-598
    88 Dure L III, Crouch M. Common amino acid. Sequence domains among the LEA proteins of higher plants[J].Plant Mol Biol, 1989,12:475-486
    89 Ismail A M, Hall A E. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea[J].Plant Physiol, 1999, 120:237-244
    90 Campbell S A, Close T J. Dehydrins: genes, proteins, and association with phenotypic traits [J].New Phytol, 1997 (137):61-74
    91 Close T J, Kortt A A. A cDNA-Based Comparison of Dehydration-Induced Protein (Dehydrins) in Barley and Corn[J].Plant Mol.Biol, 1989 (13):95-108
    92 Jensen A B, Goday A. Phosphorylation mediates the nuclear targeting of the maize RAB17 protein[J].Plant J, 1998(13):691-697
    93 Goday A, Jensen A B. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals[J].Plant Cell, 1994, 6:351-360
    94 Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins[J].Physiol Plant, 1996, 97(4):795-803.
    95 Danyluk J, Perron A. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J].Plant Cell , 1998, (10):623-638.
    96 Svensson J, Ismail A M. Dehydrins:Sensing,signaling and cell adaptation[J].Amsterdam Elsevier, 2002,17:155-171
    97 Kiyosue T, Yamaguchi-Shinozaki K. cDNA cloning of Ecp40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis[J].Plant Mol. Biol, 1993,(21):1053-1068
    98 Nylander M, Svensson J. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana[J].Plant Mol Biol, 2001,(45):263-279
    99翟大勇,沈黎明.脱水蛋白研究进展[J].生物化学与生物物理学进展,1998,25(2):119-122
    100 Godoy J, Lunar R. Expression tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants[J].Plant Mol Biol, 1994, 26: 1921-1934.
    101 Alsheikh M K, Heyen B J. Ion binding proper-ties of the dehydrin ERD14 are dependent upon phosphorylation[J].J Biol Chem, 2003, 278:40882-40889.
    102 Wisniewski M, Webb R. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica)[J].Physiol Plant,1999, (105):600-608.
    103 Wang X J, Loh C S. Drying rate and dehydrin synthesis associated with abscisic acidinduced dehydration tolerance in Spathoglottis plicata orchidaceae proto- corms[J].J Exp Bot, 2002, 53:551-558
    104 Rorat T, Szabala B M. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species[J].Planta, 2006, (224):205-221
    105 Mitwisha L, Brandt W. HSP12 is a LEA-like protein in Saccharomyces cerevisiae[J]. Plant Mol Biol, 1998,(37):513-521
    106 Borovskii G B, Stupnikova I V. Accumulation of dehydrin-like protein in the mitoch- ondria of cereals in response to cold, freezing, drought and ABA treatment[J].BMC Plant Biology, 2002, 2:5-11
    107 Giordani T, Natali L. Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.)[J]. Plant Mol Biol, 1999, 39(4):739-748
    108 Bravo L A, Close T J. Characterization of an 80- kDa dehydrin-like protein in barley responsive to cold acclimation[J].Physiol Plant, 1999, (106):177-183
    109 Whitsitt M S, Collins R G. Modulation of dehydration tolerance in soybean seedlings[J]. Plant Physiol, 1997, (114):917-925
    110刘慧丽,李玲.脱落酸(ABA)诱导基因表达的调控元件[J].植物学通报,2001,18(3):276-282
    111 Yamaguchi-Shinozaki K, Kasugua M. Biological mechanisms of droght stress response. Japan International Research Center for Agricultural Sciences Working Report[J]. J Exp Bot, 2002,(3):1-8
    112 Cellier F, Conejero G. Dehydrin transcript fluctuations during a day/night cycle in droughtstressed sunflower[J].J Exp Bot, 2000, 511:299-304
    113 Rouse D T, Marotta R.Promoter and expresion studies on an Ara dopsis thaliana dehdrin gene[J].FEBS Left, 1996, 381:252-256
    114 Ohno R, Takumi S. Kinetics of transcript and protein accumulation of a low- molecular-weight wheat LEA D-11 dehydrin in response to low temperature[J].Plant Physiol, 2003, 160(2): 193-200
    115刘广宇,魏令波,陈吉龙,等.植物脱水素研究进展[J].生物工程进展,2001,21(2):24-27
    116 Lisse T, Bartels D. The recombinant dehydrinlike desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three- dimensional structure in its native state [J].Biol Chem, 1996, (377) 555-561
    117 Puhakainen T, Hess M V. Over expression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J].Plant Mol.Biol, 2004, 54(5):743-753
    118 Hara M, Terashima S. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu[J].Plant Physiol, 2001, (158) 1333-1339
    119黎昊雁,徐亮.植物抗逆机制及相关基因工程研究进展[J].检验检疫科学,2002,12(6):53-55
    120胡孝义,谭晓风.1个油茶Y2SK2型脱水素的全长cDNA克隆及生理功能的预测[J].林业科学,2008,44(10):55-62
    121杜俊波,席德慧.青稞脱水素基因dhn4的克隆与原核表达[J].四川大学学报(自然科学版),2008,45(2):441-445
    122刘进元,常智杰.《分子生物学实验指导》[M].清华大学出版社,北京,2002
    123 Close T J. ehydrins: emergence of a biochemical role of a family of plant dehydration proteins[J].Physl Plant, 1996, (97):795-803
    124 Baker J, Steele C, Dure L, et al. Sequence and characterization of 6 LEA proteins and their genes from cotton[J].Plant MolBiol, 1988, (11):277-29
    125 Allagulova C R, Gimalov F R, Shakirova F M, et al.The plant dehydrins: structure and putative functions[J].Biochemistry, 2003, (68):945 -951
    126黄发平,张林生,王路平,等.小麦脱水素基因WZY2的克隆及其序列分析[J].西北农林科技大学学报(自然科学版),2009,37(2):93-99
    127王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展[J].生物技术通报,2002,(1):16-19
    128刘广宇,魏夸波,陈吉龙,等.植物脱水素研究进展[J].生物工程进展,2001,21(2): 24-27
    129王君丹,胡莺雷,魏晓,等.脱水素基因转化的矮牵牛对干旱胁迫的反应[J].分子植物育种,2004,2(3):369-374
    130 Shen Y, Tang MJ, Hu YL, et al. solation and characterization of a dehydrin-like gene from droughttolerant Boea crassifolia[J].Plant Science, 2004, 166(5):281-287
    131 Hara M, Terashima S, Fukaya T, et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J].Planta, 2003, 217(2):290-298
    132 Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J].Proc.Natl.Acad.Sci. U.S.A, 1997, 94:7076-7081
    133 Jofuku K D, den Boer B, G van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J].The Plant Cell,1994,6(9): 1211-1225
    134 Anderson J P, Young J. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense[J].Plant Physio1, 2007, 143(1):400-409
    135 Kizis D, lumbreras V, pages M.Role of AP2/EREBP transcription factors in generegulation during abiotic stress[J].FEBS letters, 2001, 498(2):679-689
    136 Wu K, Tian L, Hollingworth J, et al. Functional analysis of tomato Pti4 in Arabid- opsis[J].Plant Physiol, 2002, 128:30-37
    137 Guo H, Ecker JR. The ethylene signaling pathway: new insights[J].Curr. Opin. Plant Biol, 2004, 7:40-49
    138 Lee J H, Kim D M, Lee J H, et al.Functional characterization of NtCEF1,an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus[J]. Planta, 2005, 222(2):211-224
    139 Ohme-Takagi M, Suzuki K, Shinshi H. Regulation of ethylene-induced transcription of defense genes[J].Plant and Cell Physiology, 2000, 41(11):1187-1192
    140 Allen M.D, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by aβ-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J].The EMBO Journal, 1998, 17:5484-5496
    141 Nakano T,Suzuki K,Fujimura T, et a1.Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J].Plant Physiol, 2006, 140(2):411-432
    142 Gu Y-Q, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis[J].Plant Cell, 2002, 14:817-831
    143 Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Nature Biot- echnology, 1999, 17:287-291
    144 Fujimoto SY, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression[J].Plant Cell, 2000, 12:393-404
    145 Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J].Plant Cell, 2001, 13:1035-1046
    146 Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: genome- wide comparative analysis among eukaryotes[J].Science, 2000, 290:2105-2110
    147庄静,周熙荣,孙超才,等.甘蓝型油菜中一类AP2/ERF转录因子的克隆和生物信息学分析[J].中国生物工程杂志,2008,28(5):29-40
    148庄静,周熙荣,孙超才,等.油菜沪油15中AP2/ERF-B3亚族转录因子的克隆和生物信息学分析[J].分子细胞生物学报,2008,41(3):192-206
    149孟宪鹏,李付广,刘传亮,等.ERF转录因子对生物胁迫的反应及对棉花抗性改良的意义[J].分子植物育种,2008,39(l):111-116
    150邓家琼.转基因农业生物技术的产业化、政策与启示[J].西北农林科技大学学报,2008,126(5):36-41
    151张春来,蔡惠珍,孙以楚,等.甜菜抗丛根病种质创新与分子生物技术[J].中国糖料2008,122(1):61-63
    152路运才.转基因甜菜研究进展[J].中国糖料,2008,122(1):57-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700