账户: 密码:
基于信息技术的枫桥香榧生境特征分析与适宜性评价
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
本文以我国特有的珍稀果树枫桥香榧为例,在充分掌握枫桥香榧野外分布及其生物生态学特性的基础上,依托研究区地学数据库,运用信息技术的强大功能,通过多样区的综合分析,提取出具有普遍性和代表性的枫桥香榧适生环境的生境特征及其关键性的限制因子,综合分析适生环境的形成机理,借助Logistic方法建立评价和决策模型,根据所建模型反演和预测枫桥香榧最佳适生区域。研究结果将有助于阐明枫桥香榧生境特征及其选择机制,为枫桥香榧种植规划决策提供科学依据。主要研究内容和结果概述如下:
     (1)基于面向对象方法的IKONOS影像枫桥香榧分布信息提取
     利用高分辨率IKONOS影像为遥感数据源,采用面向对象的信息提取方法,利用光谱、形状、纹理等构建特征空间,进行研究区枫桥香榧空间分布信息提取,并与常规监督分类结果进行比较。结果显示,应用面向对象方法进行信息提取的总体精度达到81.67%,其中枫桥香榧分类精度达到.74.32%,Kappa系数达到0.75,分别比监督分类精确度提高6%、15.65%和10.39%。研究表明,借助高分辨率的遥感影像和面向对象的分类方法进行枫桥香榧空间分布信息提取的精度能够满足研究区对于枫桥香榧资源调查和生境结构分析的要求。
     (2)枫桥香榧分布区地质、土壤与小气候要素特征分析
     在Arcgis9.0的支持下,通过对研究区枫桥香榧分布图与各种资源环境图件的空间叠加与计算,对研究区枫桥香榧分布与地质、土壤和小气候要素进行定量分析和统计,揭示枫桥香榧生境分布的环境特征。统计分析表明,枫桥香榧分布区母岩多数为流纹质晶屑、玻屑熔结凝灰岩,占总面积的88.9%。研究区内枫桥香榧70%以上分布在黄泥土和山地黄泥土,是研究区最适宜枫桥香榧生长的土壤类型。75.2%的分布区土壤有机质含量大于2%,61.6%的分布区土层厚度大于70cm,表明土壤肥力是影响枫桥香榧分布的重要因子之一。和对照区相比,枫桥香榧核心区具有明显的水分资源优势,表现为常年空气湿度大,夏季温凉多雨,2-3月份降水偏多,4-6月份降水偏少的降水分配模式。尤其是夏季高温干旱季节的降水量比对照区高出55.6mm,同期>35℃的高温天数比对照区少了32天,这种类型的降水和温度特征与枫桥香榧生长发育关键时期的气候需求相互匹配。
     (3)基于数字地形分析的枫桥香榧生境结构空间特征研究
     在研究区1:1万DEM的支持下,利用空间地形分析技术进行枫桥香榧空间分布与各地形因子的叠置分析。结果表明,与集水线距离的远近是影响枫桥香榧分布的重要因子之一,47.76%的枫桥香榧集中分布在距集水线50m以内,累计96.16%的枫桥香榧分布在距集水线150m的空间范围内。枫桥香榧分布对海拔、坡度、坡向和坡位等地形因子选择性较高。76.15%的枫桥香榧分布在400-600m高度带,97.52%的枫桥香榧分布坡度在30°以下,74.43%属于阳坡和半阳坡,95.55%的枫桥香榧分布在中坡和下坡位。综合分析可知,研究区400-600m高度带上距离集水线150m空间范围内坡度在30。以下的向阳坡地是枫桥香榧最适宜的空间分布区域。枫桥香榧幼苗期对环境因子特别是水分的高度选择性是枫桥香榧分布的海拔等地形因子分异的主要原因。
     (4)枫桥香榧适生环境因子分析与生态适宜性评价
     采用SPSS统计软件对与集水线距离、海拔、坡度、土壤湿润度、太阳直接辐射量、坡向、土壤质地和土壤有机质这8个指标进行主成分分析。结果表明,枫桥香榧生境选择的主要影响因素依次为水分、热量与土壤养分因子。枫桥香榧根系生理特性及其在开花结实过程对环境因子的独特需求表明,水分因子可能是影响枫桥香榧生境形成的最重要的生态因子之一。应用Logistic回归模型对研究区枫桥香榧空间分布与环境因子的关系进行建模和评价。经统计检验,这8个参数对模型均有显著性作用。其中,前3个因子(与集水线距离、年太阳辐射量和土壤有机质含量)对模型的影响是主要的。适宜性评价结果表明,研究区优质枫桥香榧生长的生态适宜程度较高,中、高度适宜面积占总面积的61.7%:枫桥香榧发展的后备土地资源潜力较大。
     (5)枫桥香榧的产量和品质与生境因子的相关分析
     回归分析表明,枫桥香榧产量与年太阳辐射量、海拔、坡向、土壤有机质和钾含量关系密切。土壤养分因子,特别是有机质含量和钾含量高低对于枫桥香榧产量影响较大。不同生境条件枫桥香榧种子营养成分分析表明,原产地枫桥香榧种仁不饱和脂肪酸含量、氨基酸含量和蛋白质含量、钾含量和硒含量均高于引种地枫桥香榧种子相应营养元素的含量,而原产地枫桥香榧种子的钙、铜、锌、铁、锰、镁等矿质元素含量则低于对照。和引种地相比,原产地的枫桥香榧种子营养成分丰富,营养元素含量高,枫桥香榧的综合品质显著高于引种地。
Taking the endemic Chinese torreya as an example the paper carried out researches on the relationship between habitat selection and environmental factors based on information technology. Firstly, spatial database was established based on remote sensing image, DEM, soil, geology and meteorological data. Secondly, the key factors affecting its spatial distribution and site selection was analyzed by spatial analysis methods. Finally, the Logistic regression model was introduced into the suitability evaluation and the most suitable distribution zone was successfully predicted using the model. The results would be beneficial for understanding the ecological requirements and would provide scientific basis for preferable site selection and sustainable use of this rare species. The main contents are summarized as follow:
     (1)Extraction of distribution information of Chinese torreya based on object-oriented method from IKONOS imagery
     Based on the IKONOS satellite images, the object-oriented technology was used to extract the Chinese torreya information by building feature space from spectrum, shape and texture characteristics. The accuracy assessment demonstrated that the overall accuracy reached 81.67%, the accuracy of Torreya classification reached 74.32% and KAPPA coefficient was 0.75, which was 6%, 15.65% and 10.39% higher than that using supervised classification method respectively. The results showed that the accuracy of classification results using IKONOS image and the object-oriented method could meet the requirements of inventory and habitat analysis of Chinese torreya in the study area.
     (2) Analysis of geology, soil characteristics and microclimate factors
     Quantitative analysis and statistics of environmental features of habitats including geology, soil and microclimate elements were carried out in the study area based on GIS.88.9% of Torreya trees were distributed in the acid tuff. This rare species demanded on soil fertility, and 70% were found to present on mountain yellow earth and yellow earth; 75.2% of Torreya distributed on areas with soil organic matter content greater than 2%; 61.6% were located at regions with soil thicontrol plotness greater than 70 cm. The results showed that the soil nutrient is one of the important factors affecting the distribution of Chinese torreya. Compared with controlled areas, the microclimate characteristics in original habitat are featured by higher relative humidity, cool and rainy in summer and precipitation periodic variation in its growth season. During July and September, The number of>35℃days was 32 days less than control areas whereas the rainy days and the rainfall was 5 days and 55.6 mm more than control areas respectively. These results demonstrated that the meteorological features in the original habitat were highly agreed with the climatic requirements of Chinese torreya.
     (3) Habitat structure characteristics of Chinese torreya based on digital terrain analysis
     The spatial distribution map of rare Chinese torreya from IKONOS image is over-lapped with 8 topographical factors derived from Digital Elevation Models using digital terrain analysis method. The results showed that 47.76% of the rare plant records occur in areas within 50 m to valley line, and 96.16% were restricted in areas less than 150 meters away from the valley line. The spatial pattern of Chinese torreya exhibited high selectivity of topographical factors such as elevation, slope, aspect and slope position.76.15% occurred at the elevation belts between 400-600m,97.52% grew on the slopes less than 30°74.43% belonged to sunny or half-sunny slope, and 95.55% occurred on the midslope and downslope. Those areas less than 150 m to valley line with slopes less than 30°, altitudes between 400-600 m, and concave surfaces could be identified as the most suitable region for this rare plant. The main cause of topographic differentiation may be highly correlated with the high selectivity of environmental factors during its seedling growth stage.
     (4) Habitat factor analysis and ecological suitability evaluation
     The special habitat factors for Chinese torreya were analyzed with Principal Component Analysis (PCA) and a series of environmental factors including distance to valley line, elevation, slope, topographical wetness index, solar radiation index, soil texture and soil organic matter. The results of PCA analysis indicated that the main environmental factors of affecting habitat of Chinese torreya were in order of importance:moisture, heat and soil nutrient. And moisture might be one of the most important ecological factors for Chinese torreya due to its unique biological and ecological characteristics. A Logistic regression was used to calculate a model for the relationship using topographical attributes. It is concluded that 8 explanatory variables are noted to be significant and 3 topographical factors (distance to valley line, solar radiation index and soil organic matter) may be the important factors influencing its habitat selection. The results from Logistic model evaluation showed that the acreage of the high and moderate suitable zone for Chinese torreya planting accounted for 61.7% of the total area. This result indicated that the study area showed great potential for cultivation of Chinese torreya.
     (5) Relationship of yield and quality of Chinese torreya with environmental factors
     Regression analysis showed that the yield of Chinese torreya highly related with solar radiation, altitude, slope, soil organic matter and potassium content. Soil nutrient factors, especially organic matter content and potassium content influenced its yield significantly. Nutrient analysis of Chinese torreya from different habitats showed that unsaturated fatty acids, amino acids and protein content, potassium content and selenium of dry seeds in origin habitat were higher than that in introduction area. Whereas the contents of calcium, copper, zinc, iron, manganese, magnesium and other mineral elements were lower than that in introduction area. Those torreya trees in origin habitat were rich in nutrients compared to that in introduction area, and their comprehensive quality was significantly higher than that from introduction area.
引文
1. 曹宝,秦其明,马海建,等.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例.地理与地理信息科学,2006,22(2):46-49.
    2. 曹雪,柯长青.基于对象级的高分辨率遥感影像分类研究.遥感信息,2006(5):27-30.
    3. 陈君颖,田庆久.高分辨率遥感植被分类研究.遥感学报,2007,11(2):221-227.
    4. 陈楠,王钦敏,汤国安.基于单个栅格的DEM坡度与分辨率关系研究.中国矿业大学学报,2007,36(4):499-504.
    5. 陈秋计,赵长胜,谢宏全.基于G1S和ANN技术的矿区复垦土宜评价.金属矿山,2004,333(3):52-56.
    6. 陈士林,肖小河,王禹.中国药用植物数值区划.资源开发与市场,1994,10(1):8-10.
    7. 陈瑶,胥晓,张德然,魏勇.四川龙门山西北部植被分布与地形因子的相关性.生态学杂志,2006,25(9):1052-1055.
    8. 戴文圣,黎章矩,程晓建,等.香榧林地土壤养分、重金属及对香榧子成分的影响.浙江林学院学报,2006,23(4):393-399
    9. 邓振镛,尹宪志,陈艳华.甘肃三种特色作物气候生态适应性分析与适生种植区划.南京气象学院学报,2004,27(6):814-821.
    10.董广军,范永弘,罗睿.基于粗糙集理论的遥感影像分类研究.计算机工程与应用,2003(13):103-105.
    11.杜红悦,李京.土地农业适宜性评价方法研究与系统实现—以攀枝花为例.资源科学,2001,23(5):41-45.
    12.方圣辉,佃袁勇,周源.基于Ikonos数据的红树分类方法研究.测绘信息与工程,2005,30(4):5-6.
    13.付晓,冯仲科.数字高程模型及其在林业中的应用.林业科技,2002,(9):13-15.
    14.付晓,周维.数字高程模型及其在森林资源调查中的应用.广西林业科学,2002,31(1):12-15.
    15.傅雨露,章先洋.香榧产量与气象因子的关系分析.温州农业科技,1996(3):29-31.
    16.傅雨露,章先洋,黄岳夫.香榧产量与气象因子的关系分析.上海农业科技,1999(1):69-70.
    17.龚子同主编.中国名特优农产品的土宜.长春:吉林人民出版社.1994.
    18.郭兰萍,黄璐琦,阎洪,等.基于地理信息系统的苍术道地药材气候生态特征研究.中国中药杂志,2005,30(8):565-569.
    19.韩凝,张秀英,王小明,等.基于面向对象的IKONOS影像香榧树分布信息提取研究.浙江大学学报(农业与生命科学版),2009,35(6):670-676.
    20.韩宁林,王东辉.香榧栽培技术.北京:中国农业出版社,2006:1-12.
    21.何勇.浅析枫桥香榧(细榧)产量与气象因子的关系.安徽农业科学,2008,36(17):7231-7232.
    22.贺瑜,刘刚.DEM与空间叠加分析在土地定量评价中的研究.计算机工程,2006,32(1):251-253.
    23.胡芳名,谭晓风,刘惠民.中国主要经济树种栽培与利用.北京:中国林业出版社,2006:72-75.
    24.黄波.基于GIS的土宜评价模型的改进.遥感技术与应用,1997,12(1):14-18.
    25.黄嘉佑.气象统计分析与预报方法.北京:气象出版社,2004.
    26.黄建文,陈永富,鞠洪波.基于面向对象技术的退耕还林树冠遥感信息提取研究.林业科学,2006,42(Z1):68-71.
    27.黄晓霞,江源,刘全儒,等.小五台亚高山草甸与生境关系分析.植物生态学报,2007,31(3):437-444.
    28.江洪,黄建辉,陈灵芝,等.东灵山植物群落的排序、数量分类与环境解释.植物学报,1994,36(7):539-551.
    29.焦超卫,赵牡丹,汤国安.基于GIS的植被空间格局特征与地形因子的相关关系—以陕西省耀县为例.水土保持通报,2005,25(6):19-23
    30.金志凤,尚华勤.GIS技术在常山县胡柚种植气候区划中的应用.农业工程学报,2003,19(3):153-155.
    31.冷文芳,贺红士,布仁仓,等.气候变化条件下东北森林主要建群种的空间分布.生态学报,2006,26(12):4257-4266.
    32.黎章矩,戴文圣.中国香榧.北京:科学出版社,2007:26-56.
    33.黎章矩,程晓建,戴文圣,等.香榧品种起源考证.浙江林学院学报,2005,22(4):443-448.
    34.黎章矩,程晓建,戴文圣,等.浙江香榧生产历史、现状与发展.浙江林学报,2004,21(4):471-474.
    35.李德仁.空间信息技术与农业发展.大自然探索.1999,18(67):1-6.
    36.李红,孙丹峰,张凤荣,等.基于GIS和DEM的北京西部山区经济林果适宜性评价.农业工程学报,2002,18(5):250-255.
    37.李军,黄敬峰,王秀珍,等.山区年降水量的短序列订正方法.山地学报,2005,23(6):687-693.
    38.李军,黄敬峰,王秀珍,等.山区年降水量的时空分布特征研究.科技通报,2006,22(1):42-47.
    39.李军.基于GIS的气候要素空间分布研究和中国植被净第一性生产力的计算.浙江大学博士论文,2006,6.
    40.李湘阁,阂庆文,余卫东.南京地区茶树生长气候适宜性研究.南京气象学院学报,1995,18(4):572-577.
    41.李雪,肖淑兰,赵文忠.信息技术在农业领域的应用分析.东北农业大学学报,2008,39(3):125-128.
    42.林培,孙丹峰.试论现代土宜科学与地区名优农产品开发.中国农业大学学报,2002,7(1):33-39.
    43.刘长胜,卢伟,金晓斌,等.GIS支持下土地整理中未利用地适宜性评价—以广西柳城县为例.长江流域资源与环境,2004,13(4):333-337.
    44.刘秋锋,康慕谊,刘全儒.中条山东段森林乔木树种分布的环境梯度分析与种组划分.生态学杂志,2006,25(11):1306-1311.
    45.刘权,刘海.香榧生态适区的模式识别.浙江林学院学报.1993,10(2):152-156.
    46.刘增力,郑成洋,方精云.河北小五台山主要植被类型的分布与地形的关系:基于遥感信息的分析.生物多样性,2004,12(1):146-154.
    47.陆健健,王伟,王天慧,等译.《生态学基础(第5版)》,高等教育出版社,2008.
    48.卢纹岱SPSS for Windows统计分析(第二版).北京:电子工业出版社,2002.
    49.鲁如坤.土壤农业化学分析法.北京:中国农业出版社,1999:100-145
    50.马廷.高分辨率卫星影像及其信息处理的技术模型.遥感信息,2001(3):6-10.
    51.孟鸿飞,朱向东,边建云.诸暨市香榧古树群资源调查研究.华东森林经理,2004,18(2):27-31.
    52.穆宁,张振文,曹建宏.地形对赤霞珠干红葡萄酒香气成分的影响.干旱地区农业研究,2007,25(2):30-34
    53.倪绍祥.近10年来中国土地评价研究的进展.自然资源学报,2003,18(6):672-683.
    54.秦承志,朱阿兴,李宝林,等.坡位的分类及其空间分布信息的定量化.武汉大学学报(信息科学版),2009,34(3):374-377.
    55.秦其明.遥感图像自动解译面临的问题与解决的途径.测绘科学,2000,25(2):21-24.
    56.邱炳文,池天河,王钦敏.基于GIS和多目标评价方法的果树适宜性评价.农业工程学报,2005,21(6):96-100.
    57.曲衍波,齐伟,赵胜亭,等.胶东山区县域优质苹果生态适宜性评价及潜力分析.农业工程学报,2008,24(6):109-114.
    58.任钦良.高温干旱季节香榧苗受害情况调查.亚林科技,1984(2):52-53.
    59.任钦良.香榧生物学特性的研究.经济林研究,1989,7(2):56-60.
    60.绍兴市地方志编纂委员会.绍兴市志第13卷:农业区划.北京:中华书局出版社,2002.
    61.沈泽昊,张新时,金义兴.地形对亚热带山地景观尺度植被格局的梯度分析.植物生态学报,2000,24(4):430-435.
    62.施拥军.森林遥感分类技术研究——以浙西北山区为例.浙江大学,硕士论文,2003.
    63.史同广,郑国强,王智勇,等.中国土地适宜性评价研究进展.地理科学进展,2007,26(2):106-115.
    64.史舟,管彦良,王援高,等.基于GIS的县级柑桔适性评价咨询系统研制.浙江大学学报(农业与生命科学版),2002,28(5):492-498.
    65.谭永生.像素级中高分辩率遥感影像融合研究.浙江大学,硕士论文,2007,5.
    66.汤国安,陈楠,柳咏梅,等.黄土丘陵沟壑区1:1万及1:5万比例尺DEM地形信息容量对比.水土保持通报,2001,21(2):34-36.
    67.汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.北京:科学出版社.2006:343-351.
    68.汤国安,赵牡丹,李天问,等.提取黄土高原地面坡度的不确定性.地理学报,2003,58(6):824-830.
    69.唐宏,盛业华,陈龙乾.基于GIS的土宜评价中若干技术问题.地理科学,1999,(6):36-38.
    70.唐嘉平,刘剑.基于GIS的特色经济作物种植适宜性评价系统.农业系统科学与综合研究,2002,18(1):9-12.
    71.田新光,张继贤,张永红.面向对象的红树林信息提取.海洋测绘,2007,27(2):41-44.
    72.童品璋.诸暨香榧的现状、问题与对策.经济林研究,2003,21(4):148-150.
    73.汪少林,汪培玲,朱亮.甘肃绿色道地药材生产布局研究.甘肃中医学院学报,2001,18(2):60-63.
    74.王国宏,杨利民.祁连山北坡中段森林植被梯度分析及环境解释.植物生态学报,2001,25(6):733-740.
    75.王雷.黄土高原数字高程模型(DEM)的地形信息容量研究.西北大学硕士学位论文,2005.
    76.王庆安,卞维林.利用气象能见度作晴空卫星遥感大气订正的一种实用方法.南京大学学报,1994,30(2):363-370.
    77.王树廷,王伯民.气象资料的整理和统计方法.北京:气象出版社,1982.
    78.王小明,王珂,敖为赳,等.基于空间信息技术的香榧适生环境因子分析.应用生态学报,2008,19(11):2550-2554.
    79.王小明,王珂,秦遂初.香榧适生环境研究进展.浙江林学院学报.2008,25(3):382-386.
    80.王新辉.面向对象的高分辩率影像香榧分布信息提取研究.浙江大学,硕士论文,2008,5.
    81.王妍,刘洪斌,宁茂歧.栅格DEM的水平分辨率对地形信息的影响分析.测绘与空间地理信息,2005,28(6):41-44.
    82.吴君根,刘宇.香榧山核桃高产技术问答.北京:气象出版社,1994:15-30.
    83.吴君根,周瑞祖.气象条件与香榧产量关系的初探.浙江气象,1985(1):24-28.
    84.吴竹明,李国祥,麻土华,等.浙江省农业地质背景及与全省主要名优农业特产的关系.杭州:浙江省地质矿产研究所,1995.
    85.武强,陈萍,董东林,等.基于GIS的农业土宜评价系统研制技术.中国矿业大学学报,2001,30(4):379-383.
    86. 《香榧资源调查及区划》协作组.浙江省绍兴市香榧资源调查及区划.绍兴:农业区划办公室,1986.
    87.谢树春,赵玲.基于GIS的湘中紫色土丘陵地区土宜评价——以衡南县谭子山镇紫色土综合治理试验区为例.经济地理,2005,25(1):101-105.
    88.熊双林.国内外农业信息技术发展应用现状简介.农业网络信息,2004(9):4-7,27.
    89.胥晓,吴勇,廖咏梅.四川小河沟自然保护区植被类型在地形上的分异研究.西北植物学报.2006,26(3):572-578.
    90.徐炳成,山仑,陈云明.黄土高原半干旱区植被建设的土壤水分效应及其影响因素.中国水土保持科学,2003,1(4):32-35.
    91.杨昕.基于DEM的地面光热资源模拟及农业应用.西安:西北大学,2004.
    92.杨永川,达良俊.丘陵地区地形梯度上植被格局的分异研究概述.植物生态学报,2006,30(3):504-513.
    93.俞云文.浙江芙蓉山破火山口构造特征及火山——侵入杂岩的成岩物质来源.中国区域地质,1993(1):35-44.
    94.喻庆国,亢新刚,曹顺伟,等.云南糯扎渡自然保护区植被空间分异研究.西北林学院学报2007,22(2):9-14.
    95.臧淑英,高亦珂,祖元刚.基于GIS的优势树种与地形空间关系格局探讨.东北林业大学学报,2000,28(5):120-121.
    96.曾宏达,陈光水,杨玉盛.基于DEM的森林空间分布研究.国土与自然资源研究,2005,(3):85-87.
    97.曾伟.基于GIS的龙游县低红壤地区柑桔生产适宜性评价及其系统研制.浙江大学,硕士论文,2006,5.
    98.曾燕,邱新法,刘昌明,等.基于DEM的黄河流域天文辐射空间分布.地理学报,2005,60(4):680-688.
    99.张才德,杨水章,严月英,等.香榧林地土壤条件的初步研究.土壤通报,1987(9):170-174.
    100.张翠萍,牛建明,董建军,等.植被制图的发展与现状.中山大学学报,2005,44(S2):245-249.
    101.张翠萍,牛建明,董建军,等.基于IKONOS数据的植被制图与植被空间格局—以五分地沟试验区为例.生态学报,2006,26(2):449-456.
    102.张红旗,李家永,牛栋.典型红壤丘陵区土地利用空间优化配置.地理学报,2003,58(5):668-676.
    103.张红旗.GIS支持的县级区域柑桔土地适宜性综合评价.资源科学,1998,20(1):62-70.
    104.张建.论空间信息技术在精准农业中的应用.贵州农业科学,2006,34(1):106-107
    105.张谧,熊高明,陈志刚.神农架米心水青冈—曼青冈群落的地形异质性及其生态影响.生态学报.2004,24(12):2686-2692.
    106.张日清,吕芳德,何方,等.美国山核桃引种栽培区划研究Ⅱ区划结果与分区描述.中南林学院学报,2002,22(3):14-19.
    107.张日清,吕芳德,张勖,等.美国山核桃在我国扩大引种的可行性分析.经济林研究,2005,23(4):1-10.
    108.张若蕙.浙江珍稀濒危植物.杭州:浙江科学技术出版社,1994:54-60.
    109.张秀英.面向对象的南京城区植被遥感方法研究.南京大学,博士论文,2006,6.
    110.张旭,国庆喜.地形对天然次生林空间格局的影响.东北林业大学学报,2007,35(1):68-71
    111.张艳林,马金辉,李国鹏.TPI算法在自动识别黄土丘陵地区沟沿线中的应用.中国科技论文在线,2008,1(13):1490-1494.
    112.章绍尧,丁炳扬.浙江植物志:总论卷.杭州:浙江科学技术出版社,1993:76-83.
    113.赵萍,傅云飞,郑刘根,等.基于分类回归树分析的遥感影像土地利用/覆被分类研究.遥感学报,2005,9(6):708-716
    114.郑成洋,方精云,何建源.福建武夷山自然保护区地形对毛竹(Phyllostachys pubescens)林分布的影响.生物多样性.2004,12(1):75-81
    115.郑宇,胡业翠,刘彦随,等.山东省土地适宜性空间分析及其优化配置研究.农业工程学报,2005,21(1):60-65.
    116.郑远长.贡嘎山区主要植物群落分布与气候的关系.山地研究,1994,12(4):201-206.
    117.《中国热带亚热带西部丘陵山区农业气候资源及其合理利用研究》课题协作组.中国热带亚热带西部山区“名特优作物”气候生态研究文集.北京:气象出版社,1996.
    118.中国科学院南京土壤研究所.土壤物理化学分析.上海:上海科学技术出版社,1983.132-136.
    119.周启鸣,刘学军.空间数据的增值——以数字地形分析为例.地理信息世界,2006,4(3),4-13.
    120.周永忠,娄伟平.气象条件对诸暨香榧生产的影响.安徽农业科学,2008,36(15):6340-6341,6366.
    121.朱蕾.土地利用/覆盖变化及其对生态安全的影响研究.浙江大学博士论文,2007,6.
    122.朱晓勤,刘康,秦耀民.基于GIS的秦岭山地植被类型与环境梯度的关系分析.水土保持学报,2006,20(5):192-195.
    123.左闻韵,劳逆,耿玉英,马克平.预测物种潜在分布区—比较SVM与GARP植物生态学报,2007,31(4):711-719
    124. Allen R. B., Hewitt A. E., Partridge T. R. Predicting land use suitability from vegetation and landform in depleted semiarid grassland, New Zealand. Landscape and Urban Planning,1995,32:31-42.
    125. Anderson R. P., Lew D., Peterson A. T. Evaluating predictive models of species' distributions:criteria for selecting optimal models. Ecological Modelling,2003, 162:211-232.
    126. Andreas P, Petter P, Lars E, et al. Spatial influence of topographical factors on yield of potatao (Solanum tubersum L.) in central Sweden. Precision Agriculture,2005, 6(4):341-357.
    127. Antoine, G., Niklaus, E. Z. Predictive habitat distribution models in ecology. Ecological Modeling,2000,135:147-186.
    128. Augustin N. H., Mugglestone M. A., Bucontrol plotland S. T. An autologistic model for the spatial distribution of wildlife. Journal of Applied Ecology,1996,33:339-347.
    129. Barnsley M. J., Barr S. L. Inferring urban land use from satellite sensor images using kernel-based spatial reclassification. Photogrammetric Engineering and Remote Sensing,1996,62:949-858.
    130. Barrio G. D., Alvera B., Puigdefabregas J., et al. Response of high mountain landscape to topographic variables:Central Pyrenees. Landscape Ecology,1997,12:95-116.
    131. Bauer T., Steinnocher K. Per-parcel land use classification in urban areas applying a rule-based technique. In:GeoBIT/GIS,2001,6:12-17.
    132. Bazzaz F. A. Habitat selection in plants. The American Naturalist,1991,137 (s): 116-130.
    133. Beven K. J., Kirkby M. J. A physically based, variable contribution area model of basin hydrology. Hydrological Sciences Bulletin,1979,24:43-69.
    134. Binz A., Heitz C. Schul-und Exkursionsflora fur die Schweiz mit Berucontrol plotsichtigung der Grenzgebiete. Schwabe, Basel,1990.
    135. Bolstad P. V., Swank W., Vose J. Predicting southern Appalachian overstory vegetation with digital terrain data. Landscape Ecology,1998,13:271-283.
    136. Borcard D., Legendre P., Drapeau P. Partialling out the spatial component of ecological variation. Ecology,1992,73:1045-1055.
    137. Bouma J. Using soil survey data for quantitative land evaluation. In:B. A. Stewart (Editor), Advances in Soil Science,9. Springer, New York,1989.
    138. Breiman L., Friedman J. H., Olshen R. A., et al. Classification and Regression Trees. Monterey, California, U. S. A. Wadsworth International Group,1984,1-358.
    139. Brzeziecki B., Kienast F., Wildi 0. A simulated map of the potential natural forest vegetation in Switzerland. Journal of Vegetation Science,1993,4:499-508.
    140. Bydekerke L., Van Ranst E., Vanmechelen L., Groenemans R. Land suitability assessment for cherimoya in southern Ecuador using expert knowledge and GIS. Agriculture, Ecosystems and Environment.1998,69:89-98.
    141. Carmel Y and Kadmon R. Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecology,1999,145(2):243-254.
    142. Carmel Y., Kadmon R. Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecology,1999,145:243-254.
    143. Ceballos-Silva A., Lopez-Blanco J. Evaluating biophysical variables to identify suitable areas for oat in Central Mexico:a multi-criteria and GIS approach. Agriculture, Ecosystems and Environment,2003,95:371-377.
    144. Chavez P. S. Radiometric calibration of Landsat Thematic Mapper multispectral images. Photogrammetric Engineering and Remote Sensing,1989,55(10):1285-1294.
    145. Claessens L., Verburg P.H., Schoorl J. M., et al. Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landscape Ecology,2006,21:63-76.
    146. Clements F. E., Shelford V.E. Bioecology. J. Wiley & Sons, New York,1939.
    147. Corona P., Scotti R., Tarchiani N. Climatic factors directly related to water balance have a greater influence on the productivity of examined Douglas-fir plantations than examined topographic and soil factors. Forest Ecology and Management,1998,110: 195-207.
    148. Costa-Cabral, M. C., Burges S. J. Digital elevation model networks (DEMON):A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research,1994,30 (6):1681-1692.
    149. Def iniens. eCognition professional User Guide 4, Germany,2000:76-77,110-147,485.
    150. Dicontrol plotson B. G., Beier P. Quantifying the influence of topographic position on cougar(Puma concolor) movement in Southern California, USA. Journal of Zoology, 2007,271(3):270-277.
    151. Felicisimo A.M., Frances E., Fernandez J. M., et al. Caculating catchment area with divergent flow based on a regular grid. Computer and Geosciences,1991,17(3):413-422.
    152. Fischer, H. S. Simulating the distribution of plant communities in an alpine landscape. Coenoses,1990,5:37-43.
    153. Florinsky I.V., Kuryakova G. A. Influence of topography on some vegetation cover properties. Catena,1996,27:123-141.
    154. Fontaine M., Aerts R., Ozkan K., et al. Elevation and exposition rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey, Forest Ecology and Management,2007,247:18-25.
    155. Foster B. An examination of some problems and solutions in monitoring urban areas from satellite platforms. International Journal of Remote Sensing,1985,6(1): 139-151.
    156. Franklin I. V., Kuryakova G. A. Determination of grid size for digital terrain modeling in landscape investigations-exemplified by soil moisture distribution at a mirco-scale. International Journal of Geographical Information Science,2000,14(8): 815-832.
    157. Franklin J. Predicting the distribution of shrub species in Southern California from climate and terrain-derived variables. Journal of Vegetation Science,1998,9: 733-748.
    158. Franklin J. Predictive vegetation mapping:geographical modeling of biospatial patterns in relation to environmental gradients. Progresses in Physical Geography, 1995,19:474-499.
    159. Franklin J, Woodcocontrol plot Curtis E, Warbington R. Multi-attribute vegetation maps of forest service lands in California supporting resource management decisions. Photogrammetric Engineering & Remote Sensing,2000,66(10):1209-1217.
    160. Freeman, T. G. Calculating catchment area with divergent flow based on a regular grid. Computer and Geosciences,1991,17(3):413-422.
    161. Fu P., Rich P. M. Design and Implementation of the Solar Analyst:an ArcView Extension for Modeling Solar Radiation at Landscape Scales. (1999-04-19) http://www. esri. com/library/userconf/proc99/proceed/papers/pap867/p867. htm
    162. Gao J. and Skillcorn D. Capability of SPOT XS data in producing detailed land cover maps at the urban-rural periphery. International Journal of Remote Sensing,1998, 19:2877-2891.
    163. Garcia-Aguirre M. C., Ortiz M. A., Zamorano J. J., et al. Vegetation and landform relationships at Ajusco volcano Mexico, using a geographic information system (GIS). Forest Ecology and Management,2007,239(3):1-12.
    164. Gbadegesin A., Nwagwu U. On the Suitability Assessment of the Forest and Savanna Ecological Zones of South-Western Nigeria for Maize production agriculture, Ecosystems and Environment,1990,31:99-113.
    165. Geneletti D., Gorte B. G. H. A method for object-oriented land cover classification combining landsat TM data and aerial photographs. Remote Sensing,2003,26 (6): 1273-1286.
    166. Gilabert M. A., Conese C., Maselli F. An atmospheric correction method for the automatic retrieval of surface reflectance from TM images. International Journal of Remote Sensing,1994,15(10):2065-2086.
    167. Gottfried M., Pauli H., Reiter K., et al. A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Diversity and Distributions,1999,5:241-251.
    168. Guisan A, Weiss S.B., Weiss A. D., et al. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology,1999,143(3):107-122.
    169. Guisan A, Zimmennmrn N. E. Predictive habitat distribution models in ecology. Ecological Modeling,2000,135:147-186.
    170. Guisan A., Theurillat J. P., Kienast F. Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science,1998,9:65-74.
    171. Haralicontrol plot R. M. Statistical and structural approaches to texture. Proceedings of the IEEE,1979,67(5):786-804.
    172. Hastie T., Tibshirani R. Generalized additive models. Statistical Science,1986,1(3): 297-318.
    173. Hoersch B., Braun G., Schmidt U. Relation between landform and vegetation in alpine regions of Wallis, Switzerland. A multiscale remote sensing and GIS approach. Computers, Environment and Urban Systems,2002,26 (3):113-139.
    174. Horsch B. Modelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models Ecological Modelling,2003,168: 267-282.
    175. Hsu S.Y. Texture-tone analysis for automated land-use mapping. Photogrammetric Engineering and Remote Sensing,1978,44(11):1393-1404.
    176. Jenness J. Topographic position index (TPI). [2007]. http://www. jennessent. com/arcview/tpi. htm.
    177.Johansen K., Coops N. C., Gergel S. E., et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sensing of Environment,2007 (110):29-44.
    178. Jones K. B, Heggem D. T, Wade T. G., et al. Assessing landscape conditions relative to water resources in the Western United States:a strategic approach. Environmental Monitoring and Assessment,2000,64(1):227-245.
    179. Ketting, R. L., Farrokinia, F. Unsupervised texture segmentation of remotely sensed multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics,1976,14 (1):19-26.
    180. Kikuchi T. A DCA analysis of floristic variation of plant communities in relation to micro-landform variation in a hillside area. Ecological Review,1990:22,25-31.
    181. Kikuchi T. Vegetation and landforms. University of Tokyo Press, Tokyo,2001. (in Japanese)
    182. Kikuchi T, Miura 0. Differentiation in vegetation related to micro-scale landforms with special reference to the lower side-slope. Ecological Review,1991,22:61-70.
    183. Kikuchi T, Miura 0. Vegetation patterns in relation to micro-scale landforms in hilly land regions. Vegetation,1993,106:147-154.
    184. Klug-Pumpel B. Effects of microrelief on species distribution and phytomass variations in a caricetum curvulae stand. Vegetatio,1982,48:249-254.
    185. Laliberte A.S., Rango A., Havstad K. M., et al. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment,2004,93(1):198-210.
    186. Lassueur T., Joost S., Randin C. F. Very high resolution digital elevation models: Do they improve models of plant species distribution? Ecological Modelling,2006, 198:139-153.
    187. Lee J. H., Philpot W.D. A Spectral-Textural Classifier for Digital Imagery. In: Proceedings of International Geoscience and Remote Sensing Symposium,1990: 2005-2008.
    188. Legendre P., Fortin M. J. Spatial pattern and ecological analysis. Vegetatio,1989, 80,107-138.
    189. Levin S. A. The problem of pattern and scale in ecology:the Robert H. MacArthur Award Lecture. Ecology,1992,73:1943-1967.
    190. Li Hong, Sun Danf eng, Zhang Fengrong. Suitability Evaluation of Fruit Trees in Beijing Western Mountain Areas Based on DEM and GIS. Transactions of the Chinese Society of Agricultural Engineering,2002,18(5):250-255.
    191. Li L., Qin Y. A review and prospective about high resolution satellite image. Aerial Survey of Railroad,2001(1):1-4.
    192. Maggini R., Lehmann A., Zimmermann N. E., et al. Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography, 2006,33:1729-1749.
    193. Magunssen S., Boudewyn P., Wulder M. Contextural Classification of Landsat TM Images to Forest Inventory Covertypes. International Journal of Remote Sensing,2004,25 (12):2421-2440.
    194. McCullagh P., Nelder J. A. Generalized Linear Models(seconded). London:Chapman and Hall,1989.
    195. Miller J.R., Joyce L. A., Knight R. L., et al. Forest roads and landscape structure in the southern Rocontrol ploty Mountains. Landscape Ecology,1996,11(2):115-127.
    196.Moran M.S., Jacontrol plotson R. D., Slater P. N, et al. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satelilte sensor output. Remote Sensing of Environment,1992,41(2):169-184.
    197. Nagamatsu D, Mima 0. Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan. Plant Ecology,1997, 133:191-200.
    198. Nichol L., Lee C.M. Urban vegetation monitoring in Hong Kong using high resolution multispectral images. International Journal of Remote Sensing,2005,26 (5):903-918.
    199. Ostendorf B., Reynolds J. F. A model of arctic tundra vegetation derived from topographic gradients. Landscape Ecology,1998,13:187-202.
    200. Ostendorf B., Reynolds J. F. A model of arctic tundra vegetation derived from topographic gradients. Landscape Ecology,1998, (13):187-202.
    201. Peterson A. T., Cohoon K. P. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling,1999,117:159-164.
    202.Poulos H. M., Camp A.E., Richard G. A hierarchical approach for scaling forest inventory and fuels data from local to landscape scales in the Davis Mountains, Texas, USA. Forest Ecology and Management,2007,244:1-15.
    203. Qiu Bingwen, Chi Tianhe, Wang Qinmin. Fruit tree suitability assessment using GIS and multicriteria valuation. Transactions of the Chinese Society of Agricultural Engineering,2005,21(6):96-100.
    204. Quinn P. F., Beven K., Chevallier P. and Planchon 0. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models//Beven, K. J. and Moore, I. D., (eds.). Terrain analysis and Distributed Modelling in Hydeology, Chichester, UK:John Willy & Sons,1991,63-83.
    205. Robertson M. P., Peter C.I., Villet M. H., et al. Comparing models for predicting species'potential distributions:a case study using correlative and mechanistic predictive modelling techniques. Ecological Modelling,2003,164:153-167.
    206. Rossi G. Relationships between plant communities and late snow melting on Mount Prado (Northern Apennines, Italy). Vegetatio,1995,120:49-58.
    207.Scheiewe J., Tufte L., and Ehlers M. Potential and problems of multi-scale segmentation methods in remote sensing. GeoBIT/GIS,2001,6:34-39.
    208.Skidmore A. K. Terrain positions mapped from a grided digital elevation model. International Journal of Geographical Information Systems,1990,4(1):33-49.
    209. Stocontrol plotwell D.R. B., Noble I.R. Induction of sets of rules from animal distribution data:a robust and informative method of data analysis. Mathematics and Computers in Simulation,1992,33:385-390.
    210. Swansond F. J., Kratz T.K., Cane N. Landform effects on ecosystem patterns and processes. BioScience,1988,38:92-98.
    211.Swets J. A. Measuring the accuracy of diagnostic systems. Science,1988,240: 1285-1293.
    212. Tang G. A. A research on the accuracy of digital elevation models. New York:Science Press,2000
    213. Tappeiner U., Tasser E., Tappeiner G. Modelling vegetation patterns using natural and anthropogenic influence factors:preliminary experience with a GIS based model applied to an Alpine area, Ecological Modelling,1998,113:225-237.
    214. Tarboton D. G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research,1997,32 (2):309-319.
    215. Tatsuhara S., Antatsu Y. Predicting the spatial distribution of the abundance of Siebold's beech in a montane cool-temperate region based on environmental factors. Journal of Forest Research,2007,12:442-451.
    216.Urban D. L., Miller C., Halpin P. N., et al. Forest gradient response in Sierran landscapes:the physical template. Landscape Ecology,2000,15:603-620.
    217. Van D. R., Hazelhoff, L., Blom C. Vegetation zonation in a former tidal area:a vegetation-type response model based on DCA and logistic regression using GIS. Journal of Vegetation Science,1996,7:505-518.
    218. Van Diepen C. A., Van K. H., Wolf J., et al. Land evaluation:from intuition to quantification. In:B. A. Stewart (Editor), Advances in Soil Science, Springer, New York,1991.
    219. Van Lanen H. A. J., Woperies F. A. Computer-captured expert knowledge to evaluate possibilities for injection of slurry from animal manure in the Netherlands. Geoderma, 1992,54:107-124.
    220. Wandahwa P., van Ranst E. Qualitative land suitability assessment for pyrethrum cultivation in west Kenya based upon computer-captured expert knowledge and GIS. Agriculture, Ecosystem and Environment,1996,56:187-202.
    221. Wang L., Sousa W. P., Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing,2004,25 (24):5655-5668.
    222. Weiss A.2001. Topographic Position and Landforms Analysis. Poster presentation, ESRI User Conference, San Diego, CA.
    223. Yang Xin, Tang Guoan, Xiao Chenchao, et al. Terrain revised model for air temperature in mountainous area based on DEMs:A case study in Yaoxian County. Journal of Geographical Sciences,2007,17(4):399-408.
    224.Yee T. W., Mitchell N. D. Generalized linear models in plant ecology. Journal of Vegetation Science,1991,2,587-602.
    225. Zimmermann N. E., Kienast F. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science,1999,10: 469-482.
    226. Zhao Zhengyong, Thien L. C., Herb W. R., et al. Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture,2009, 65(1):39-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700