用户名: 密码: 验证码:
沙芥属植物种子萌发的生态学适应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙芥属(Puionium Gaertn.)蔬菜植物属于十字花科(Cruciferae),为二年生草本植物,是亚洲中部蒙古高原沙地的特有属。沙芥(P. cornutum(L.)Gaertn.)和斧翅沙芥(P. dolabratum Maxim.)是沙芥属的两个种,生长于流动和半流动沙丘。通常此种生境下,具有高温、干旱、日夜温差大等特点,且多有盐分的积累,因此本试验从温度、不同沙埋深度和室内贮藏方式及NaCl和等渗PEG对沙芥和斧翅沙芥种子萌发的影响等方面,研究了沙芥属植物种子萌发的生态学适应。得出以下结论:
     1、在黑暗10~40℃恒温条件下,室内贮藏1年和2年的沙芥和斧翅沙芥种子在15~35℃范围内均可萌发,其种子分别在25℃和30℃达到最佳的萌发响应;在20~35℃下斧翅沙芥种子的萌发要优于沙芥种子,在此条件下斧翅沙芥种子的萌发特性优于沙芥种子。在黑暗变温条件下,沙芥和斧翅沙芥种子在20/30℃达到最佳的萌发响应,此处理下的萌发率高于其各自最佳恒温处理下的萌发率,其萌发后幼苗的下胚轴和胚根的长度较最佳恒温处理有明显的下降,但它们的干重却差异较小,说明变温处理有利于沙芥属植物种子的萌发和形成强壮的幼苗。在以上所有温度处理下,贮藏2年的沙芥和斧翅沙芥种子萌发均优于贮藏1年的种子。
     综上所述,沙芥和斧翅沙芥种子在黑暗条件下的20/30℃变温处理是种子的最佳萌发条件,并有利于种子萌发后幼苗建成。
     2、野外原生境下,0 cm、1 cm、2 cm和5 cm埋藏6个月和室内5℃恒温贮藏15个月的沙芥种子与室温贮藏2年的种子活力相当;所有室内贮藏种子的处理中,沙芥种子寿命均在2年以上;野外埋藏沙芥种子在50 cm埋藏处理下,种子库寿命最长也在2年以上,其次是0 cm埋藏处理种子库寿命可达15个月,在1~10 cm埋藏处理下沙芥种子库的寿命只有6个月。
     3、斧翅沙芥种子的综合耐盐性强于沙芥种子;沙芥和斧翅沙芥种子均在20/30℃下的耐盐性最强,种子最高能忍耐300 mmol?L-1的NaCl溶液,沙芥和斧翅沙芥种子在各温度下的耐盐强弱顺序为:20/30℃>25/35℃>15/25℃>10/20℃。
     沙芥和斧翅沙芥种子经各浓度的NaCl溶液前处理后,种子均在经200 mmol?L-1NaCl前处理时达到萌发率和萌发速率的最大值;而且在15/25℃、20/30℃和25/35℃下经200 mmol?L-1NaCl前处理后,种子的恢复萌发率的均超过90%,恢复萌发速率的均超过80,说明以上温度下种子恢复萌发快速而且整齐度高。
     4、斧翅沙芥种子的综合耐渗透胁迫的能力强于沙芥种子;其中沙芥和斧翅沙芥种子均在20/30℃处理下的耐渗透胁迫能力最强,种子最高能忍耐-1.0 MPa PEG;沙芥和斧翅沙芥种子在各温度下的耐渗透胁迫能力的强弱顺序为:20/30℃>15/25℃>25/35℃>10/20℃。
     沙芥和斧翅沙芥种子经不同PEG渗透势前处理后,种子均在经-1.0 MPa PEG前处理时达到萌发率和萌发速率的最大值;在20/30℃下经-1.0 MPa PEG前处理后,种子的恢复萌发率均能达到100%,恢复萌发速率均超过90,说明种子恢复萌发快速而且整齐度高。
     5、斧翅沙芥种子的抗氧化酶活性高于沙芥种子;NaCl前处理有提高沙芥属植物种子抗氧化酶活性的作用;其产生的离子效应和渗透调节效应可提高种子内APX、SOD和POD酶的活性,由PEG产生的单纯渗透效应也有提高种子内POD酶的活性和减少膜脂过氧化的作用。
Pugionium Gaerten. is a very important shrub species for sandy vegetable inhabilitation in Inner Mongolia of Inner Mongolia Autonomous Region China for its high ecological and economic values. P. cornutum (L.) Gaertn. and P. dolabratum Maxim. is its two species. They grew up in mobile and semi-mobile dunes. Usually in this habitat, there is a high temperature, drought, temperature difference between day and night and salt accumulation. Controlled experiments were conducted to investigate on seed germination of P. cornutum and its congeners P. dolabratum, for this experiment, the temperature, different sand burial depth and indoor storage means and osmotic NaCl and isotonic PEG, to better understanding how they adapt to desert habitats at seed germination stage. The results indicate:
     1. At constant incubating temperature and darkness, Storage for 1 and 2 years seed of P. cornutum and P. dolabratum can germinate at gradients from 15 to 35°C, and the germination percentages of P. cornutum were significantly higher than those of P. dolabratum at 15°C and 35°C respectively. The optimal germination temperature for P. cornutum and P. dolabratum were 25°C and 30°C respectively. Under alternating temperature and darkness conditions, the optimal temperature for seed germination of two congeners was both occurring at 20/30°C. Percentages of seed germination were higher at 20/30°C than their respective optimal constant temperatures of both species; In addition, seedling hypocotyl and radicel length of both species developed at 20/30°C were shorter than that at 25°C and 30°C respectively, but their dry weight were not obviously declined. Indicating alternating temperature has advantages for seed germination and seedling development of two congeners. In these temperature treatments, P. cornutum and P. dolabratum seeds were stored for 2 years than 1 year of seed storage.
     In summary, darkness and 20/30°C daily alternating temperatures are the favorable conditions for seed germination and seedling establishment of these two desert species.
     2. The original wild habitats, 0 cm, 1 cm, 2 cm and 5 cm buried for 6 months and 5°C room temperature storage for 15 months at room temperature storage of P. cornutum seeds and seed vigor quite 2 years; All indoor storage of seed processing, seed longevity this species were more than 2 years; Wild seeds buried 50 cm of treatments, P. cornutum seed was also the longest seed bank longevity expectancy more than 2 years, followed by the 0 cm burial treatment seed bank longevity were 15 months, in 1~10 cm burial treatment P. cornutum seed bank longevity span of only 6 months.
     3. P. dolabratum seeds had stronger salt tolerance than P. cornutum; Seeds had the strongest salt tolerance at 20/30°C, seeds could furthest tolerate 300 mmol·L-1 of NaCl solution. Salt tolerance in descending order of P. cornutum and P. dolabratum seeds was: 20/30°C >25/35°C >15/25°C >10/20°C. Seed of P. cornutum and P. dolabratum were the germination and germination rate reached the maximum by 200 mmol·L-1NaCl pre-treatment at 15/25°C, 20/30°C and 25/35°C; Seed recovery of germination rate was more than 90%, and germination rate of recovery was more than 80. In summary, NaCl pre-treatment seed germination of recovery was rapid and orderly in the temperature.
     4. The ability of resistance to osmotic stress of P. dolabratum seeds was stronger than that of P. cornutum seeds; the ability of P. cornutum and P. dolabratum seed germination were strongest at 20/30°C, Seeds were patient of -1.0 MPa PEG furthest; the descending order of capacity of osmotic adjustment in the temperature-resistant of P. cornutum and P. dolabratum seeds was: 20/30°C >15/25°C >25/35°C >10/20°C. Seed of P. cornutum and P. dolabratum were the germination and germination rate reached the maximum by -1.0 MPa PEG pre-treatment at 15/25°C, 20/30°C and 25/35°C; Seed recovery of germination rate was more than 90%, and germination rate of recovery was more than 80. In summary, PEG pre-treatment seed germination of recovery was rapid and orderly in the temperature.
     5. Antioxidant enzyme activity of P. dolabratum seeds was higher than P. cornutum seeds; NaCl pre-treatment had increased Pugionium Gaerten. plant seeds antioxidant enzyme system capacity; The resulting effect of ionic effects and osmotic adjustment increased APX , SOD and POD enzyme activity in seeds. Simply osmotic adjustment generated by the PEG had been improved POD enzyme activity and reduced the lipid peroxidation in seeds.
引文
1 Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview[J]. Australian Journal of Experimental Agricultural, 2002, 42: 351-361.
    2 Szabolcs I. Salt-Affected Soils[M]. Boca Raton, FL: CRC Press, 1989.
    3 FAO. FAO Land and Plant Nutrition Management Service[M]. http://www. fao. org/ ag/ agl /agll /spush, 2008.
    4 Munns R and Tester K. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
    5 Munns R. Genes and salt tolerance: bringing them together[J]. New Phytologist, 2005, 167: 645-663.
    6 Garthwaite A J, von Bothmer R and Colmer T D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl? into the shoots[J]. Journal of Experimental Botany, 2005, 56: 2365-2378.
    7 Aslam M, Qureshi R H, Ahmed N. A rapid screening technique for salt tolerance in rice (Oryza sativa L.)[J]. Plant Soil, 1993, 150: 99-107.
    8 Colmer T D, Munns R, Flowers T J. Improving salt tolerance of wheat and barley: future prospects [J]. Australian Journal of Experimental Agricultural, 2005, 45: 1425-1443.
    9 L?uchli A. Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions [M]. New York: Wiley, 1984, 171-187.
    10 Kapulnik Y, Tueber L R, Phillips D A. Lucerne (Medicago sativa L.) selected for vigor in a nonsaline environment maintained growth under salt stress [J]. Australian Journal Agricultural Research, 1989, 40: 1253-1259.
    11 Aslam Z, Jeschke W D, Barrett-Lennard E G, Greenway H, Setter T L, Watkin E. Effects of external NaCl on the growth of Atriplex amnicola and the ion relations and carbohydrate status of the leaves[J]. Plant Cell Environmental, 1986, 9: 571-580.
    12 Flowers T J, Troke P F, Yeo A R. The mechanism of salt tolerance in halophytes [J]. Annual Review of Plant Physiology, 1977, 28: 89-121.
    13 Cramer G R. Response of abscisic acid mutants of Arabidopsis to salinity [J]. Functional Plant Biology, 2002, 29: 561-567.
    14 Sickler C M, Edwards G E, Kiirats O, Gao Z, Loescher W. Response of mannitol-producing Arabidopsis thaliana to abiotic stress [J]. Functional Plant Biology, 2007, 34: 382-391.
    56 Khan M A, Ungar I A. The effect of salinity and temperature on germination of polymorphic seeds and growth of Atriplex triangularis Willd [J]. American Journal of Botany, 1984, 71: 481-489.
    57 Khan M A and Rizvi Y. Effect of salinity, temperature, and growth regulators on the germination and early seedling growth of Atriplex griffithii var. stocksii [J]. Canadian Journal of Botany, 1994, 72: 475-479.
    58 Naidoo G and Naicker K. Seed germination in the coastal halophytes Triglochin bulbosa and Triglochin striata [J]. Aquat. Bot. 1992, 42: 217–229.
    59 Gutterman Y, Kamenetsky R and Van Rooyen M. A comparative study of seed germination of two Allium species from different habitats in the Negev desert highlands[J]. Journal of Arid Environments, 1995, 29: 305-315.
    60 Sheikh K H and Mahmood K. Some studies on field distribution and seed germination of Suaeda fruticosa and Sporobolus arabicus with reference to salinity and sodicity of the medium [J]. Plant Soil, 1986, 94: 333-340.
    61 Ungar I A. Influence of salinity and temperature on seed germination[J]. The Ohio Journal of Science, 1967, 67: 120-123.
    62 Springfield H W. Germination of fourwing saltbush seeds at different levels of moisture stress [J]. Agronomy Journal, 1966, 58: 149-150.
    63 Malcolm C V. Effects of salt, temperature and seed scarification on germination of two varieties of Arthrocnemum halocnemoides [J]. Journal of the Royal Society of Western Australia, 1964, 47: 72-74.
    64 Sabahat Z and Khan M A. Effect of light, salinity, and temperature on seed germination of Limonium stocksii [J]. Canadian Journal of Botany, 2004, 82: 151-157.
    65 Hasegawa P M, Zhu J K, Bohnert H J and Bressan R A. Plant cellular and molecular response to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 463-499.
    66 Desikan R, A-H-Mackerness S, Hancock J T and Neill S J. Regulation of the Arabidopsis transcriptome by oxidative stress [J]. Plant Physiology, 2001, 127: 159-172.
    67 Bowler C, Van Montagu M, InzéD. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116.
    68 Khan M H, Panda S K. Induction of oxidative stress in roots of Oryza sativa L. in response to salt stress [J]. Biologia Plantarum, 2002, 45: 625-627.
    69 Hendry G A F. Oxygen, free radical processes and seed longevity [J]. Seed Science Research, 1993, 3, 141-153.
    70 Gidrol X, Lin W S, Degousee N, Yip SF, Kush A. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds [J]. European Journal of Biochemistry, 1994, 224, 21-28.
    71 Schopfer P, Plachy C, Frahry G. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid [J]. Plant Physiology, 2001, 125, 1591-1602.
    72郑炳松.现代植物生理生化研究技术[M].北京:气象出版社. 2006, 269-270.
    73 Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic arid metabolism [J]. Planta, 1976, 133: 21-25.
    74 Noctor C, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249-279.
    75 Pitcher L H, Brennan E, Hurley A, Dunsmuir P, Tepperman J M and Zilinskas BA. Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco [J]. Plant Physiology, 1991, 97: 452-455.
    76 Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, and Galun E. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases[J]. Theoretical and Applied Genetics, 1993, 85: 568-576.
    77 Kozi A. Ascorbate peroxidase a hydrogen peroxide scavenging enzyme in plants [J]. Physiologia Plantarum, 1992, 85: 235-241.
    78孙卫红,王伟青,孟庆伟.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J].植物生理学通讯, 2005, 41(2): 43-47.
    79 Raven E L.Understanding functional diversity and substrate specificity in haem peroxidases: what can we learn from ascorbate peroxidase [J]? Natural Product Reports, 2003, 20: 367-381.
    80 Miyake C, Asada K. Inactivation of mechanism of ascorbate peroxidase at low concentrations of ascorbate: hydrogen peroxide decomposes compound I of ascorbate peroxidase [J]. Plant & Cell Physiology, 1996, 37: 423-430.
    81 Amako K, Chen G X, Asada K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants [J]. Plant & Cell Physiology, 1994, 35: 497-504.
    82 Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their Functions [J]. Plant Physiology, 2006, 141: 391-396.
    83 Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus[J]. Planta, 1997, 203(4): 460-469.
    84 Yoshimura K, Yabuta Y, Ishikawa T and Shigeoka S. Identification of a ciselement for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants [J]. The Journal of Biological Chemistry, 2002, 277: 40623-40632.
    85 Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K and Kobayashi. A recessive arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxificantion [J]. Plant Cell, 1999, 11(7): 1195-1206.
    86刘萍,李明军.植物生理学实验技术[M].北京:科学出版社. 2007, 147-150.
    87 Smirnoff N. Plant resistance to environment stress [J].Current Opinion in Biotechnology, 1998, 9(2): 214-219.
    88全先庆,高文.盐生植物活性氧的酶促清除机制[J].安徽农业科学, 2003, 31(2): 320- 322.
    89王林嵩.生物化学实验技术[M].北京:科学出版社. 2007, 71-73.
    90张立军,樊金娟.植物生理学实验教程[M].北京:中国农业大学出版社. 2007, 103-104.
    91 Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G. Plant glutathione peroxidases [J]. Physiology Plant, 1997, 100, 234-240.
    92 Depege N, Varenne M, Boyer N. Induction of oxidative stress and GPX-like protein activation in tomato plants after mechanical stimulation [J]. Physiology Plant, 2000, 110, 209-214.
    93刘萍,李明军.植物生理学实验技术[M].北京:科学出版社. 2007, 150-152.
    94王学奎.植物生理生化实验原理与技术[M].北京:高等教育出版社. 2006, 280-281.
    95 Baskin C C, Baskin J M. Seeds: ecology, biogeography, and evolution of dormancy and germination [M]. San Diego: Academic Press, 1998. 212-534.
    96 Ungar I A. Population ecology of halophyte seeds [J]. The Botanical Review, 1987, 53: 301-344.
    97 Haper J L. Population biology of plants [M]. New York: Academic Press. 1977.
    98 Roberts H A, Neilson J E. Seed survival and periodicity of seedling emergence in some species of Atriplex, Chenopodium, Polygonum and Rumex [J]. Annals of Applied Biology, 1980, 94: 111-120.
    99 Boucaud J, Ungar I A. The role of hormones controlling the mechanically induced dormancy of Suaeda spp [J]. Physiology Plant, 1973, 37: 143-148.
    100 Ungar I A. Ecophysiology of vascular halophytes [M]. Boca Raton: CRC Press, 1991.
    101 Badger K S, Ungar I A. The effects of salinity and temperature on the germination of the inland halophyte Hordeum jubatum [J]. Canadian Journal of Botany, 1989, 67: 1420-1425.
    102 Badger K S, Ungar I A. Life history and population dynamics of Hordeum jubatumalong a soil salinity gradient[J]. Canadian Journal of Botany, 1991, 69: 384-393.
    103黄振英,张新时, Gutterman Y,郑光华.光照、温度和盐分对梭梭种子萌发的影响[J].植物生理学报, 2001, 27(3): 275-280.
    104赵一之.沙芥属的分类校正及其区系分析[J].内蒙古大学学报(自然科学版), 1999, 30(2): 197-199.
    105郝丽珍,翟胜,贾晋.沙芥营养生长规律及叶片解剖结构的研究[J].华北农学报, 2004, 19(4): 66-69.
    106张卫华,郝丽珍,王彦华,张凤兰,王萍,赵清岩,刘杰才.沙芥种子吸水和发芽过程中几种贮藏物质的含量变化[J].植物生理学通讯, 2005, 41(4): 528-530.
    107赵一之.内蒙古珍稀濒危植物图谱[M].北京:中国农业科技出版社, 1992. 30.
    108漆建忠.中国飞播治沙[M].北京:中国科学出版社, 1998. 185-195.
    109徐世才,张治科,李延清,齐龙.不同温度和不同浸种时间对沙芥种子萌发的影响[J].种子, 2007, 26(1): 9-11.
    110赵文智,荔克让,何欣东.我国不同地带沙地盐分特征研究[J].地理科学, 1995, 15(4): 315-320.
    111 Taleisnik E, Perez H, Cordoba A, et al. Salinity effects on the early development stages of Panicum coloratum: Cultivar differences[J]. Grass and Forage Science, 1998, 53: 270-278.
    112 Khan M A, Gulzar S. Light, salinity and temperature effects on the seed germination of perennial grasses[J]. American Journal of Botany, 2003, 90: 131-134.
    113 Tlig T, Gorai M, Neffati M. Germination responses of Diplotaxis harrato temperature and salinity[J]. Flora, 2008, 203: 421-428.
    114 Khalid M N, Iqbal H F, Tahir A, et al. Germination potential of Chickpeas (Cicer arietinum L. ) under saline conditions[J]. Pakistan Journal of Biological Sciences, 2001, 4: 395-396.
    115 Khan M A, Ungar I A. Effect of light, salinity and thermoperiod on the seed germination of halophytes[J]. Canadian Journal of Botany, 1997, 75: 835-841.
    116 Gulzar S, Khan M A. Seed germination of a halophytic grass Aeluropus lagopoides[J]. Annals of Botany, 2001, 87: 319-324.
    117王志春,梁正伟.植物耐盐研究概况与展望[J].生态环境, 2003, 12(1): 106-109.
    118王淑芬,王文成,杜卫军,等.不同浓度盐胁迫对转基因饲用甜菜种子萌发及幼苗生长的影响[J].华北农学报, 2007, 22(增刊): 25-28.
    119张洁明,孙景宽,刘宝玉,等.盐胁迫对荆条、白蜡、沙枣种子萌发的影响[J].植物研究, 2006, 26 (5): 595-599.
    120 Ma H, Guo R, Li H. Study on salinity tolerance of tomatoes during seed germination under different salt stress conditions[J]. Agricultural Science & Technology, 2008, 9(4): 4-7.
    121 Baker K S, Steadman K J, Plummer J A and Dixon K W. Seed dormancy and germination responses of nine Australian fire ephemerals[J]. Plant and Soil, 2005, 277, 345-358.
    122 Carl A T. Some factors affecting germination of celery seed[J]. Plant Physiology, 1948, 5: 93-102.
    123 Ueno K. Effect of desiccation and a change in temperature on germination of immature grains of wheat (Triticum aestivum L.) [J]. Euphytica. 2002, 126: 107-113.
    124 Ueno K and Miyoshi K. Different of optimum germination temperature of seeds of intact and dehusked iaponica rice during seed development[J]. Euphytica. 2005, 143: 271-275.
    125 Song J, Feng G and Zhang F. Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kaliolium foliatum and Halocnemum strobilaceum [J]. Plant and Soil 2006, 279: 201-207.
    126 ISTA. International rules for seed testing 1996[M]. China Agricultural Press, Beijing, 1999, China.
    127 Carter C T, Brown L S and Vngar I A. Effect of temperature regimes on germination of dimorphic seeds of Atriplex protrata[J]. Biologia Plantarum. 2003, 47: 269-272.
    128 Br?ndel M. Effect of temperature on dormancy and germination in three species in the Lamiaceae occurring in northern wetlands[J]. Wetlands Ecology and Management. 2006, 14: 11-28.
    129 Kepczyński J and Bihum M. Induction of secondary dormancy on Amaranthas caudatus seeds[J]. Plant Growth Regulation. 2002, 38: 135-140.
    130 Timson J. New method of recording germination data [J]. Nature. 1965, 207: 216-217.
    131 Mokhberdoran F, Kalat S M N and Haghpghi R S. Effect of temperature,iso-osmotic concentration of NaCl and PEG agents on germination and some seedling growth yield components in rice(Oryza sativa L.)[J]. Asian journal of plant sciences, 2009, 8(6):409-416.
    132 Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000[J]. Plant Physiology, 1973, 51: 914-916.
    133 Bair N B, Meyer S E and Allen P S. A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L.[J]. Seed Science Research. 2006, 16: 17-28.
    134 Bewley J D. Seed germination and dormancy[J]. Plant Cell. 1997, 9: 1055-1066.
    135 Kucera B, Cohn M A and Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Science Research. 2005, 15: 281-307.
    136 Leubner-Metzger G. Functions and regulation ofβ-1, 3-glucanase during seed germination, dormancy release and after-ripening[J]. Seed Science Research. 2003, 13: 17-34.
    137 Probert R J. The role of temperature in the regulation of seed dormancy and germination [M]. Wallingford, UK, 2000, 261-292.
    138 Baskin C. C. and Baskin J. M. Seeds, ecology, biogeography and evolution of dormancy and germination [M]. San Diego: ACADEMIC PRESS, 1998. 27-574.
    139 Downs M P and Cavers P B. Effects of wetting and drying on seed germination and seedling emergence of bull thistle Cirsium vulgare (Savi) Ten [J]. Canadian Journal of Botany, 2000, 78(12): 1545-1551.
    140 Khan M A, Gul B, Weber D J. In?uence of salinity and temperature on the germination of Kochia scoparia[J]. Wetlands Ecology and Management, 2001, 9: 483-489.
    141 Qu X X, Huang Z Y, Baskin J M, Baskin C C. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum[J]. Annals of Botany, 2008, 101: 293-299.
    142 Lotschert W. Keimung, Transpiration, Wasser-und Ioneaufnahme bei Glycophyten und Halophyten[J]. Oecologia Plant, 1970, 5: 287-300.
    143 Ungar I A. Seed banks and seed population dynamics of halophytes[J]. Wetlands Ecology and Management, 2001, 9: 499-510.
    144 Ungar I A. Influence of salinity on seed germination in succulent halophytes[J]. Ecology, 1962, 43: 763-764.
    145 Ungar I A. Inland halophytes of the United States in Ecology of halophytes [M]. Academic Press, 1974, 235-305.
    146 Ungar I A and Binet P. Factors influencing seed dormancy in Spergularia media (L.) C. Presl [J]. Aquatic Botany, 1975, 1: 45-55.
    147 Huang Z Y, Zhang X S, Zheng G H, Gutterman Y. In?uence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron[J]. Journal of Arid Environments, 2003, 55: 453-464.
    148 Gul B, Weber D J. Effect of salinity, light and temperature on germination in Allenrolfea occidentalis[J]. Canadian Journal of Botany, 1999, 77: 240-246.
    149 Khan M A, Gul B, Weber D J. Germination responses of Salicornia rubra to temperature and salinity[J]. Journal of Arid Environments, 2000, 45: 207-214.
    150 Khan M A, Ungar I A. Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions[J]. American Journal of Botany, 1997, 84: 279-283.
    151 Younis A F and Hatata M A. Studies on the effects of certain salts on germination, on growth of root, and on metabolism. I. Effects of chlorides and sulphates of sodium, potassium, and magnesium on germination of wheat grains[J]. Plant and Soil, 1971, 13: 183-200.
    152 Freeman C E. Some germination responses of Lechguilla (Agavelecheguilla Torr.).[J] Southwestern Natural, 1973, 18: 125-134.
    153 Freeman C E. Germination responses of a Texas population of Ocotillo (Pouqueria splendens Engelm.) to constant temperature, water stress, pH and salinity[J]. The American midland naturalist, 1973, 89: 252-256.
    154 Strogonov B P. Physiological basis of salt tolerance of plants[M]. Israel Program Science, 1964.
    155 Strogonov B P. Structure and function of plant cells in saline habitats[M]. New York: John Wiley and Sons, 1974.
    156 Redmann R E. Osmotic and specific ion effects on the germination of alfalfa[J]. Canadian Journal of Botany, 1974, 52: 803-808.
    157 Choudhuri G N. Effect of soil salinity on germination and survival of some steppe plants in Washington[J]. Ecology, 1968, 49: 465-471.
    158 Ryan J, Miyamoto S and Stroehlen J L. Salt and specific ion effects on the germination of four grasses[J]. Journal Range Management, 1975, 28: 61-64.
    159 Mooring M T, Cooper A W and Seneca E D. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina[J]. American journal of botany, 1971, 58: 48-55.
    160黄振英, Gutterman Y,胡正海,张新时.白沙蒿种子萌发特性的研究II.环境因素的影响[J].植物生态学报, 2001, 25(2): 240-246.
    161张勇,薛林贵,高天鹏,晋玲,安黎哲.荒漠植物种子萌发研究进展[J].中国沙漠, 2005, 25(1): 106-112.
    162 Heschel M S, Selby J, Butler C, Whitelam G C, Sharrock R A, Donohue K. A new role for phytochromes in temperature-dependent germination[J]. New Phytologist, 2007, 1: 1-7.
    163 Sherry R A, Zhou X, Gu S, Arnone III J A, Schimel D S, Verburg P S, Wallace L L, Luo Y. Divergence of reproductive phenology under climate warming[J]. PNAS, 2007, 104: 198-202.
    164朱雅娟,董鸣,黄振英.沙埋和种子大小对固沙禾草沙鞭的种子萌发与幼苗出土的影响[J].植物生态学报, 2005, 29(5): 730-739.
    165 McWilliam, J R and Phillips P J. Effect of osmotic and matric potentials on the availability of water for seed germination[J]. Australian Journal of Biological Sciences, 1971, 24: 423-431.
    166 Chatterton N J and McKell C M. Atriplex polycarpa. I. Germination and growth as affected by sodium chloride in water cultures[J]. Agronomy Journal, 1969, 61: 448-450.
    167 Keren A and Evanari M. Some ecological aspects of distribution and germination of Pancratium maritirnum L.[J]. Israel Journal Botany, 1974, 23: 202-215.
    168 Chapman V J. Salt marshes and salt deserts of the world[M]. New Jersey: Stechert- Macmillan, Pennsauken, 1974.
    169 Katembe W J, Ungar I A and John P M. Effect of salinity on germination and seedling growth of two Atriplex species[J]. Annals of botany, 1998, 82: 167-175.
    170 Zheng Y, Xie, Z, Gao Y, Jiang L, Xing X, Shimizu H, Rimmington G M. Effect of light, temperature and water stress on germination of Artemisia sphaerocephala[J]. Annals of Applied Biology, 2005, 146: 327-335.
    171 Huang Z Y, Dong M, Gutterman Y. Factors influencing seed dormancy and germination in sand, and seedling survival under desiccation, of Psammochloa villosa (Poaceae), inhabiting the moving sand dunes of Ordos, China. Plant and Soil, 2004, 259: 213-241.
    172 Zhu Y J, Dong M, Huang Z Y. Effect of sand burial and seed size on seed germination and seedling emergence of Psammochloa villosa. Acta Plytoecologica Sinica, 2005, 29(5): 730-739.
    173 Li Q Y, Zhao W Z, Fang H Y. Effects of sand burial depth and seed mass on seedling emergence and growth of Nitraria sphaerocarpa. Plant Ecology, 2006, 185: 191-198.
    174 Liu Z, Yan Q, Baskin C C, Ma J. Burial of canopy-stored seeds in the annual psammophyte Agriophyllum squarrosum Moq. (Chenopodiaceae) and its ecological significance. Plant Soil, 2006, 288: 71-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700