用户名: 密码: 验证码:
高致病性猪繁殖与呼吸障碍综合征病毒及其弱毒感染性克隆的构建和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖与呼吸综合征(Porcine reproductive and respiratory syndrome,PRRS)是目前严重危害养猪业的传染病之一,该病是由猪繁殖与呼吸综合征病毒(PRRSV)感染引起的,其主要临床特征是怀孕母猪发生流产、早产和死胎等严重的繁殖障碍;仔猪与育肥猪有明显的呼吸道症状。至今为止,PRRS仍在全球大部分地区流行,是猪主要的传染病之一。2006年5月以来,我国暴发最初称为“高热综合症”的猪病,给我国的养猪业造成很大经济损失。多项研究已表明,变异的北美洲型高致病性猪繁殖与呼吸综合征病毒(HP-PRRSV)是该病的主要病原。但是到目前为止PRRSV毒力增强的机制还不清楚,因此,非常有必要建立高致病性猪繁殖与呼吸综合征病毒(HP-PRRSV)的反向遗传学技术操作平台。本研究分别构建成功了HP-PRRSV HuN4和疫苗株F112的感染性克隆,并且构建了PRRSV的标记疫苗。
     本实验根据高致病性猪繁殖与呼吸综合征病毒HuN4株基因组序列设计并合成PRRSV特异性引物,进而应用RT-PCR技术分6段扩增了PRRSV HuN4株全基因组cDNA。将扩增的各个cDNA重叠片段分别克隆到pG1SK载体上。在扩增5’末端时,引入sp6启动子序列用于后期的体外转录得到病毒的转录本,在基因组3’末段Poly(A)尾引入SwaI酶切位点用于线性化包含HuN4全长cDNA的质粒,将HuN4基因组第14680位的A沉默突变为G产生一个MluI酶切位点作为鉴定拯救病毒的genomic marker。将含HuN4株基因组全长cDNA的质粒线性化后体外转录合成病毒RNA,转染BHK-21C细胞,24h后将细胞液上清接种Macr-145细胞,拯救出病毒。通过间接免疫荧光和检测genomic marker证明病毒拯救成功。比较亲本病毒与拯救病毒的病毒滴度、多步生长曲线,发现病毒学及生物学特性没有显著差异。以上结果表明PRRSV强毒株HuN4株感染性克隆构建成功,为研究PRRSV的分子生物学以及致病机制提供了技术平台。
     根据GeneBank中登陆的高致病性猪繁殖与呼吸综合征病毒HuN4株基因组序列设计并合成特异性引物,在扩增5′末端时引入sp6启动子核心序列,在基因组3′末段Poly(A)尾后引入NotI酶切位点用于线性化包含F112全长cDNA的质粒。应用RT-PCR技术分6段扩增了PRRSV疫苗株F112全基因组cDNA,将扩增的各个cDNA重叠片段胶回收后先通过合适的酶切位点分别克隆到载体pG2SK,再逐一拼接成全长cDNA。将全长cDNA克隆线性化后体外转录合成病毒RNA,转染BHK-21C细胞,24h后将细胞液上清接种Macr-145细胞,拯救出病毒。通过比较亲本病毒与拯救病毒的病毒滴度、多步生长曲线,结果发现病毒学及生物学特性没有显著差异。结果表明F112感染性克隆构建成功,建立PRRSV疫苗株F112的反向遗传学技术平台,为探讨PRRSV的致病机制以及研制有效的标记疫苗奠定了基础。
     PRRSV感染时机体内可以产生滴度很高的针对于NSP2的抗体,许多NSP2的B细胞表位已经被鉴定出来。利用PRRSV疫苗株F112感染性克隆,将NSP2上的B细胞免疫优势表位(第430-454位氨基酸)缺失替换为鼠肝炎病毒S2糖蛋白的优势B细胞表位5B19,构建标记疫苗株。通过体外转录,转染BHK21细胞,在Marc-145细胞上的传代,拯救出了病毒,通过RT-PCR测序和间接免疫荧光试验证明含遗传标记的突变株病毒拯救成功。试验结果表明PRRSV NSP2的B细胞表位(第430-454位氨基酸)对病毒的繁殖来说是非必须的,并且可以在NSP2区域插入外源表位进行表达,对于PRRSV新型疫苗的研制提供了基础数据和思路。
Porcine reproductive and respiratory syndrome (PRRS) has become one of the most common and economically significant infectious diseases in theswine industry worldwide. It is characterized by mild to severe reproductive failure in sows and gilts and respiratory problems in piglets. Since May 2006, atypical PRRS (so-called porcine high fever syndrome (PHFS) in china) was pandemic in china. Several studies have confirmed that the causative agent of this outbreak was highly pathogenic PRRSV (HP-PRRSV), several HP-PRRSV strains were isolated and their reverse genetic systems were developed by different lab. Many questions of PRRSV, such as, the mechanism of the PRRSV virlence determents are still unclear. So it is viry crucial to development reverse genetic systems of PRRSV. In this study, reverse genetic systems of HP-PRRSV HuN4 and vaccine strain HuN4-F112 were developted, and a marker vaccine was developed based on the HuN4-F112 reverse genetic systems.
     A total of six fragments, covering the complete PRRSV HuN4 strain genome, were PCR amplified. All PCR-amplified fragments were gel purified, digested with the proper enzymes, and cloned into the pG1SK vector. The bacteriophage SP6 RNA polymerase promoter was engineered into 5’end of HuN4 genome, SwaI enzyme was engineered downstream of the poly (A) tail for the further linearization of the full-length cDNA. The A at position 14680 was mutated to G by PCR to create a restriction enzyme site MluI as the genetic marker. The completely assembled full-length cDNA clone was confirmed by sequence and enzyme digestion. Capped RNA was transcribed in vitro from a full-length cDNA clone of the viral genome and transfected into BHK-21C cells. The supernatant from transfected monolayers were serially passaged on Marc-145 cells. The virus rescued from this newly assembled cDNA clone was identified by IFA and the detection of the genetic marker. In vitro studies demonstrated that the cloned virus maintained growth properties similar to those of the parental virus. The availability of a full-length cDNA clone of PRRSV HuN4 strain lays a new ground for further investigation of PRRSV virulence and development of new potent vaccine.
     In order to develop a reverse genetic system for the research of PRRSV, a full-length cDNA clone was constructed in this study. A total of six fragments, covering the complete PRRSV HuN4-F112 strain genome, were PCR amplified. All PCR-amplified fragments were gel purified, digested with the proper enzymes, and cloned into the pG2SK vector. The bacteriophage SP6 RNA polymerase promoter was engineered into 5′end of HuN4-F112 genome, NotIenzyme was engineered downstream of the poly (A) tail for the further linearization of the full-length cDNA. The A at position 14680 was mutated to G by PCR to create a restriction enzyme site MluI as the genetic marker. Capped RNA was transcribed in vitro from a full-length cDNA clone of the viral genome and transfected into BHK-21C cells. The supernatant from transfected monolayers were serially passaged on Marc-145 cells. The virus rescued from this newly assembled cDNA clone were indistinguishable from the parental virus. The availability of genome sequence information and infectious cDNA clone of HuN4-F112 lays a new ground for further investigation of PRRSV virulence and development of new potent vaccine.
     Nsp2 protein of PRRSV is an immunogenic protein capable of eliciting specific antibody production during viral infections.The Nsp2 protein was found to contain a large number of linear B-cell epitopes in both the European type and North American type PRRSV strains. Based on the reverse genetic system of PRRSV vaccine strain HuN4-F112, a B-cell epitope of the S2 glycoprotein of murine hepatitis virus (MHV) was inserted in-frame to replace a linear B-cell epitope of nsp2(430-454aa). Recombinant viruses properly expressing the introduced MHV epitope were successfully generated, demonstrating that the B-cell epitopes not only is dispensable for virus replication but also can be replaced by foreign sequences. Our results provide proof of the concept that DIVA PRRSV vaccines can potentially be developed by replace of individual“marker”immunodominant epitopes.
引文
1.郭宝清,陈章水,刘文兴,崔益洙.从疑似PRRS流产胎儿分离PRRSV的研究.中国畜禽传染病, 1996, 2: 3-7.
    2.仇华吉,郭宝清,童光志,于力,刘文兴.猪繁殖-呼吸道综合征病毒(PRRSV)CH-1a株基因型鉴定.中国预防兽医学报,1998,18 (2): 118-121.
    3.杨汉春,黄芳芳,郭鑫,高云,李华,陈声.猪繁殖与呼吸综合征病毒(PRRSV)BJ-4株全基因组序列测定与分析.农业生物技术学报,2001, 9(3): 212-218.
    4.李焕荣,杨汉春,郭鑫,施开创,盖新娜,陈艳红,查振林. PRRSV和PCV2共感染对猪肺泡巨噬细胞细胞因子IL-10、IL-12p40和IFN-γmRNA转录的影响.中国畜牧兽医学报,2007,38 (4) :382-387.
    5.郝晓芳,周艳君,田志军,韦天超,安同庆,彭金美,华荣虹,童光志.高致病性猪繁殖与呼吸综合征病毒RT-PCR鉴别诊断方法的建立.中国预防兽医学报,2007,29(9):704-709.
    6.童光志,周艳君,郝晓芳,田志军,仇华吉,彭金美,安同庆.高致病性猪繁殖与呼吸综合征病毒的分离鉴定及其分子流行病学分析.中国预防兽医学报,2007,29(5):323-327.
    7.汤景元,姜平,蒋文明,马苏,李玉峰. 2005.表达PRRSV M蛋白重组腺病毒的构建及其免疫特性研究.中国病毒学,20(6):618-622.
    8.江云波,方六荣,肖少波,张辉,陈焕春.表达猪繁殖与呼吸综合征病毒修饰GP5M蛋白的重组伪狂犬病毒的构建及其在小鼠的免疫原性.生物工程学报,2005, 21(6):858-864.
    9.郭海龙,童光志,仇华吉,周艳君,兰文生,王云峰,吴东来.应用竞争PCR定量检测猪IFN-γmRNA.中国兽医学报,2003,23(3):278-280.
    10. 10.闫丽萍,周艳君,仇华吉,魏萍,童光志.猪γ干扰素的体外表达及其多克隆抗血清的制备.中国预防兽医学报,2004,26(4):252-255.
    11. Albina E (1997). Porcine reproductive and respiratory syndrome: ten years of experience (1986–1996) with this undesirable viral infection. Veterinary Research 28: 305–352.
    12. Allende R, Kutish GF, Laegreid W, Lu Z, Lewis TL, Rock DL, Friesen J, Galeota JA, Doster AR and Osorio FA (2000). Mutations in the genome of porcine reproductive and respiratory syndrome virus responsible for the attenuation phenotype. Archives of Virology 145: 1149–1161.
    13. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR and Osorio FA (1999). North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. Journal of General Virology 80: 307–315.
    14. Andreyev VG, Wesley RD, Mengeling WL, Vorwald AC and Lager KM (1997). Genetic variation and phylogenetic relationships of 22 porcine reproductive and respiratory syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame 5. Archives of Virology 142: 993– 1001.
    15. Ansari IH, Kwon B, Osorio FA and Pattnaik AK (2006). In?uence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies. Journal of Virology 80: 3994–4004.
    16. Arrese M and Portela A (1996). Serine 3 is critical for phosphorylation at the N-terminal end of the nucleoprotein of in?uenza virus A/Victoria/3/75. Journal of Virology 70: 3385–3391.
    17. Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E and Osorio FA (2002). Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine 21: 21–29.
    18. Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E, Zuckermann F and Osorio FA (2004). Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 22: 467–474.
    19. Bautista EM, Faaberg KS, Mickelson D and McGruder ED (2002). Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus. Virology 298: 258–270.
    20. Bautista EM, Goyal SM, Yoon IJ, Joo HS and Collins JE (1993). Comparison of porcine alveolar macrophages and CL 2621 for the detection of porcine reproductive and respiratory syndrome (PRRS) virus and anti-PRRS antibody. Journal of Veterinary Diagnostic Investigation 5: 163–165.
    21. Bilodeau R, Dea S, Sauvageau RA and Martineau GP (1991).‘Porcine reproductive and respiratory syndrome’in Quebec [letter]. The Veterinary Record 129: 102–103.
    22. Bloemraad M, de Kluijver EP, Petersen A, Burkhardt GE and Wensvoort G (1994). Porcine reproductive and respiratory syndrome: temperature and pH stability of Lelystad virus and its survival in tissue specimens from viraemic pigs. Veterinary Microbiology 42: 361–371.
    23. Braakman I and van Anken E (2000). Folding of viral envelope glycoproteins in the endoplasmic reticulum. Traffic 1: 533–539.
    24. Brierley I (1995). Ribosomal frameshifting viral RNAs. Journal of General Virology 76 (Pt 8): 1885–1892.
    25. Bryant NA, Davis-Poynter N, Vanderplasschen A and Alcami A (2003). Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. The EMBO Journal 22: 833–846.
    26. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D and Chladek D (1992). Characterization of swine infertility and respiratorysyndrome(SIRS)virus(isolateATCCVR-2332). Journal of Veterinary Diagnostic Investigation 4: 127–133.
    27. Beura LK, Sarkar SN, Kwon B, Subramaniam S, Jones K, Pattnaik AK and Osorio FA (2010). Porcine reproductive and respiratory syndrome virus nonstructural protein 1b modulates host innate immune response by antagonizing IRF3 activation. Journal of Virology 84: 1574–1584.
    28. Beyer J, Fichtner D, Schirrmeier H, Polster U, Weiland E and Wege H (2000). Porcine reproductive and respiratory syndrome virus (PRRSV): kinetics of infection in lymphatic organs andlung. Journal of Veterinary Medicine Series B. Infectious Diseases and Veterinary Public Health 47: 9–25.
    29. Cafruny WA, Duman RG, Wong GH, Said S, Ward-Demo P, Rowland RR and Nelson EA (2006). Porcine reproductive and respiratory syndrome virus (PRRSV) infection spreads by cell-to-cell transfer in cultured MARC-145 cells, is dependent on an intact cytoskeleton, and is suppressed by drug-targeting of cell permissiveness to virus infection. Virology Journal 3: 90.
    30. Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG and Welch SK (2007). CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. Journal of Virology 81: 7371– 7379.
    31. Cancel-Tirado SM, Evans RB and Yoon KJ (2004). Monoclonal antibody analysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection. Veterinary Immunology and Immunopathology 102: 249–262.
    32. Cancel-Tirado SM and Yoon KJ (2003). Antibody dependent enhancement of virus infection and disease. ViralImmunology 16: 69–86.
    33. Cavanagh D (1997). Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Archives of Virology 142: 629–633.
    34. Chang HW, Jeng CR, Lin CM, Liu JJ, Chang CC, Tsai YC, ChiaChang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC and Pang VF (2005). Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine
    35. Chen H, Wurm T, Britton P, Brooks G and Hiscox JA (2002). Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. Journal of Virology 76: 5233– 5250.
    36. de Lima M, Ansari IH, Das PB, Ku BJ, Martinez-Lobo FJ, Pattnaik AK and Osorio FA (2009). GP3 is a structural component of the PRRSV type II (US) virion. Virology 390: 31–36.
    37. de Lima M, Kwon B, Ansari IH, Pattnaik AK, Flores EF and Osorio FA (2008). Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes. Vaccine 26: 3594–3600.
    38. de Vries AA, Chirnside ED, Horzinek MC and Rottier PJ (1992). Structural proteins of equine arteritis virus. Journal of Virology 66: 6294–6303.
    39. de Vries AA, Post SM, Raamsman MJ, Horzinek MC and Rottier PJ (1995). The two major envelope proteins of equine arteritis virus associate into disulfide-linked heterodimers. Journal of Virology 69: 4668–4674.
    40. Dea S, Gagnon CA, Mardassi H, Pirzadeh B and Rogan (2000a). Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Archives of Virology 145: 659–688.
    41. DeaS,WilsonL,TherrienDandCornagliaE(2000b).CompetitiveELISAfordetectionofantibodiestoporcinereproductiveandrespiratorysyndromevirususingrecom-binantE.coli-expressednucleocapsidproteinasantigen.JournalofVirologicalMethods87:109–122.
    42. Dee S, Otake S, Oliveira S and Deen J (2009). Evidence of long distance airborne transport ofporcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Veterinary Research 40: 39.
    43. Delputte PL and Nauwynck HJ (2004). Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. Journal of Virology 78: 8094–8101.
    44. Delputte PL, Van Breedam W, Barbe F, Van Reeth and Nauwynck HJ (2007a). IFN-alpha treatment enhances porcine arterivirus infection of monocytes via upregulation of the porcine arterivirus receptor sialoadhesin. Journal of Interferon and Cytokine Research 27: 757– 766.
    45. Delputte PL, Vanderheijden N, Nauwynck HJ and Pensaert MB (2002). Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. Journal of Virology 76: 4312–4320.
    46. den Boon JA, Faaberg KS, Meulenberg JJ, Wassenaar AL, Plagemann PG, Gorbalenya AE and Snijder EJ (1995). Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. Journal of Virology 69: 4500– 4505.
    47. den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC and Spaan WJ (1991). Equine arteritis virus is not a togavirus but belongs to the coronavirus-like superfamily. Journal of Virology 65: 2910–2920.
    48. Denac H, Moser C, Tratschin JD and Hofmann MA (1997). An indirect ELISA for the detection of antibodies against porcine reproductive and respiratory syndrome virus using recombinant nucleocapsid protein as antigen. Journal of Virological Methods 65: 169–181.
    49. Doan DN and Dokland T (2003b). Structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus. Structure (Cambridge) 11: 1445–1451.
    50. Doms RW, Lamb RA, Rose JK and Helenius A (1993). Folding and assembly of viral membrane proteins. Virology 193: 545–562.
    51. D respiratory syndrome virus isolates in the UK. Veterinary Microbiology 55: 209–221. Drew TW, Meulenberg JJ, Sands JJ and Paton DJ (1995). Production, characterization and reactivity of monoclonal antibodies to porcine reproductive and respiratory syndrome virus. Journal of General Virology 76: 1361–1369.
    52. Du Y, Zuckermann FA and Yoo D (2010). Myristoylation of the small envelope protein of porcine reproductive and respiratory syndrome virus is non-essential for virus infectivity but promotes its growth. Virus Research 147: 294–299.
    53. Duan X, Nauwynck HJ, Favoreel HW and Pensaert MB (1998). Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages. Journal of Virology 72: 4520–4523.
    54. Fang Y, Kim DY, Ropp S, Steen P, Christopher-Hennings J, Nelson EA and Rowland RR (2004). Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Research 100: 229–235.
    55. Faaberg KS, Even C, Palmer GA and Plagemann PG (1995a). Disulfide bonds between two envelope proteins of lactate dehydrogenase-elevating virus are essential for viral infectivity. Journal ofVirology 69: 613–617.
    56. Faaberg KS, Palmer GA, Even C, Anderson GW and Plagemann PG (1995b). Differential glycosylation of the ectodomain of the primary envelope glycoprotein of two strains of lactate dehydrogenase-elevating virus that differ in neuropathogenicity. Virus Research 39: 331–340.
    57. Faaberg KS and Plagemann PG (1995). The envelope proteins of lactate dehydrogenase-elevating virus and their membrane topography. Virology 212: 512–525.
    58. Fang Y, Rowland RR, Roof M, Lunney JK, Christopher-Hennings J and Nelson EA (2006). A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: expression of green ?uorescent protein in the Nsp2 region. Journal of Virology 80: 11447– 11455.
    59. Fernandez A, Suarez P, Castro JM, Tabares E and Diaz-Guerra M (2002). Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death. Virus Research 83: 103–118.
    60. Forsberg R (2005). Divergence time of porcine reproductive and respiratory syndrome virus sub-types. Molecular Biology and Evolution 11: 2131–2134.
    61. Forsberg R, Oleksiewicz MB, Petersen AM, Hein J, Botner A and Storgaard T (2001). A molecular clock dates the common ancestor of European-type porcine reproductive and respiratory syndrome virus at more than 10 years before the emergence of disease. Virology 289: 174–179.
    62. Forsberg R, Storgaard T, Nielsen HS, Oleksiewicz MB, Cordioli P, Sala G, Hein J and Botner A (2002). The genetic diversity of European type PRRSV is similar to that of the North American type but is geographically skewed within Europe. Virology 299: 38–47.
    63. Gagnon CA and Dea S (1998). Differentiation between porcine reproductive and respiratory syndrome virus isolates by restriction fragment length polymorphism of their ORFs 6 and 7 genes. Canadian Journal of Veterinary Research 62: 110–116.
    64. Gagnon CA, Lachapelle G, Langelier Y, Massie B and Dea S (2003). Adenoviral-expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions. Archives of Virology 148: 951–957.
    65. Goldberg TL, Lowe JF, Milburn SM and Firkins LD (2003). Quasispecies variation of porcine reproductive and respiratory syndrome virus during natural infection. Virology 317: 197–207.
    66. Gonin P, Mardassi H, Gagnon CA, Massie B and Dea S (1998). A nonstructural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus. Archives of Virology 143: 1927– 1940.
    67. Gonin P, Pirzadeh B, Gagnon CA and Dea S (1999). Seroneutralization of porcine reproductive and respiratory syndrome virus correlates with antibody response to the GP5 major envelope glycoprotein. Journal of Veterinary Diagnostic Investigation 11: 20–26.
    68. Gorbalenya AE, Enjuanes L, Ziebuhr J and Snijder EJ (2006). Nidovirales: evolving the largest RNA virus genome. Virus Research 117: 17–37.
    69. Gorbalenya AE, Koonin EV, Donchenko AP and Blinov VM (1989). Coronavirus genome:prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Research 17: 4847–4861.
    70. Hedges JF, Balasuriya UB and MacLachlan NJ (1999). The open reading frame 3 of equine arteritis virus encodes an immunogenic glycosylated, integral membrane protein. Virology 264: 92–98.
    71. Helenius A (1994). How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Molecular Biology of the Cell 5: 253–265.
    72. Helenius A and Aebi M (2001). Intracellular functions of N-linked glycans. Science 291: 2364–2369.
    73. Helenius A and Aebi M (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry 73: 1019–1049.
    74. Herold J, Siddell S and Ziebuhr J (1996). Characterization of coronavirus RNA polymerase gene products. Methods in Enzymology 275: 68–89.
    75. Hiscox JA (2003). The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. Virus Research 95: 13–22.
    76. Hiscox JA (2007). RNA viruses: hijacking the dynamic nucleolus. Nature Reviews Microbiology 5: 119–127.
    77. Jiang W, Jiang P, Li Y, Tang J, Wang X and Ma S (2006a). Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Veterinary Immunology and Immunopathology 113: 169–180.
    78. Jiang W, Jiang P, Wang X, Li Y and Du Y (2008). Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus. Virus Research 136: 50–57.
    79. Jiang Y, Xiao S, Fang L, Yu X, Song Y, Niu C and Chen H (2006b). DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine 24: 2869–2879.
    80. Johnson CR, Yu W and Murtaugh MP (2007). Cross-reactive antibody responses to nsp1 and nsp2 of porcine reproductive and respiratory syndrome virus. Journal of General Virology 88: 1184–1195.
    81. Johnson WE, Lifson JD, Lang SM, Johnson RP and Desrosiers RC (2003). Importance of B-cell responses for immunological control of variant strains of simian immunodeficiency virus. Journal of Virology 77: 375–381.
    82. Kapur V, Elam MR, Pawlovich TM and Murtaugh MP (1996). Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the midwestern United States. Journal of General Virology 277: 1271–1276.
    83. Key KF, Haqshenas G, Guenette DK, Swenson SL, Toth TE and Meng XJ (2001). Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates. Veterinary Microbiology 83: 249–263.
    84. Kheyar A, Jabrane A, Zhu C, Cleroux P, Massie B, Dea S and Gagnon CA (2005). Alternativecodon usage of PRRS virus ORF5 gene increases eucaryotic expression of GP(5) glycoprotein and improves immune response in challenged pigs. Vaccine 23: 4016–4022.
    85. Kim DY, Calvert JG, Chang KO, Horlen K, Kerrigan M and Rowland RR (2007). Expression and stability of foreign tags inserted into nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Research 128: 106–114.
    86. Kim HS, Kwang J, Yoon IJ, Joo HS and Frey ML (1993). Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Archives of Virology 133: 477– 483.
    87. Kim JK, Fahad AM, Shanmukhappa K and Kapil S (2006). Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. Journal of Virology 80: 689–696.
    88. Kim TS, Benfield DA and Rowland RR (2002). Porcine reproductive and respiratory syndrome virus-induced cell death exhibits features consistent with a nontypical form of apoptosis. Virus Research 85: 133–140.
    89. Kim WI and Yoon KJ (2008). Molecular assessment of the role of envelope-associated structural proteins in cross neutralization among different PRRS viruses. Virus Genes 37: 380– 391.
    90. Kimman TG, Cornelissen LA, Moormann RJ, Rebel JM and Stockhofe-Zurwieden N (2009). Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 27: 3704–3718.
    91. Kiss I, Sami L, Kecskemeti S and Hanada K (2006). Genetic variation of the prevailing porcine respiratory and reproductive syndrome viruses occurring on a pig farm upon vaccination. Archives of Virology 151: 2269–2276.
    92. Kreutz LC and Ackermann MR (1996). Porcine reproductive and respiratory syndrome virus enters cells through a low pH-dependent endocytic pathway. Virus Research 42: 137–147.
    93. Kroese MV, Zevenhoven-Dobbe JC, Bos-de Ruijter JN, Peeters BP, Meulenberg JJ, Cornelissen LA and Snijder EJ (2008). The nsp1alpha and nsp1 papain-like autoproteinases are essential for porcine reproductive and respiratory syndrome virus RNA synthesis. Journal of General Virology 89: 494–499.
    94. Kwang J, Kim HS and Joo HS (1994). Cloning, expression, and sequence analysis of the ORF4 gene of the porcine reproductive and respiratory syndrome virus MN-1b. Journal of Veterinary Diagnostic Investigation 6: 293–296.
    95. Labarque G, Van Gucht S, Nauwynck H, Van Reeth K and Pensaert M (2003). Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines. Veterinary Research 34: 249–260.
    96. Laude H, Godet M, Bernard S, Gelfi J, Duarte M and Delmas B (1995). Functional domains in the spike protein of transmissible gastroenteritis virus. Advances in Experimental Medicine and Biology 380: 299–304.
    97. Lee C, Bachand A, Murtaugh MP and Yoo D (2004). Differential host cell gene expression regulated by the porcine reproductive and respiratory syndrome virus GP4 and GP5 glycoproteins.Veterinary Immunology and Immunopathology 102: 189–198.
    98. Lee C, Calvert JG, Welch SK and Yoo D (2005). A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology 331: 47–62.
    99. Lee C, Hodgins D, Calvert JG, Welch SK, Jolie R and Yoo D (2006a). Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology 346: 238–250.
    100. Lee C and Yoo D (2005). Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity. Journal of General Virology 86: 3091–3096.
    101. Lee C and Yoo D (2006). The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. Virology 355: 30–43.
    102. Li Y, Wang X, Bo K, Tang B, Yang B, Jiang W and Jiang P (2007). Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Veterinary Journal 174: 577–584.
    103. L.Zhou. J. L. Zhang, J W. Zeng, S. Yin, Y. H. Li, L. Y. Zheng, X. Guo, X. N. Ge and H. C. Yang. 2009. The 30 amino acids deletion in Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emergence in China is not related to its virulence. J.Virol.83: 5156-5167.
    104. Liao Y, Lescar J, Tam JP and Liu DX (2004). Expression of SARScoronavirus envelope protein in Escherichia coli cells alters membrane permeability. Biochemical and Biophysical Research Communication 325: 374–380.
    105. Loemba HD, Mounir S, Mardassi H, Archambault D and Dea S (1996). Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus. Archives of Virology 141: 751–761.
    106. Mardassi H, Gonin P, Gagnon CA, Massie B and Dea S (1998). A subset of porcine reproductive and respiratory syndrome virus GP3 glycoprotein is released into the culture medium of cells as a non-virion-associated and membrane-free (soluble) form. Journal of Virology 72: 6298–6306.
    107. Madan V, Garcia MdeJ, Sanz MA and Carrasco L (2005). Viroporin activity of murine hepatitis virus E protein. FEBS Letters 579: 3607–3612.
    108. Madsen KG, Hansen CM, Madsen ES, Strandbygaard B, Botner A and Sorensen KJ (1998). Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds. Archives of Virology 143: 1683–1700.
    109. Magar R, Larochelle R, Robinson Y and Dubuc C (1993). Immunohistochemical detection of porcine reproductive and respiratory syndrome virus using colloidal gold. Canadian Journal of Veterinary Research 57: 300–304.
    110. Mardassi H, Mounir S and Dea S (1994a). Identification of major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus. Journal of General Virology 75: 681–685.
    111. Maroto B, Ramirez JC and Almendral JM (2000). Phosphorylation status of the parvovirus minute virus of mice particle: mapping and biological relevance of the major phosphorylation sites. Journal of Virology 74: 10892–10902.
    112. Mateu E, Diaz I, Darwich L, Casal J, Martin M and Pujols J (2006). Evolution of ORF5 of Spanish porcine reproductive and respiratory syndrome virus strains from 1991 to 2005. Virus Research 115: 198–206.
    113. McNabb DS and Courtney RJ (1992). Posttranslational modification and subcellular localization of the p12 capsid protein of herpes simplex virus type 1. Journal of Virology 66: 4839–4847.
    114. Meng XJ (2000). Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Veterinary Microbiology 74: 309–329.
    115. Meng XJ, Paul PS, Halbur PG and Lum MA (1995a). Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe. Archives of Virology 140: 745–755.
    116. Meng XJ, Paul PS, Halbur PG and Morozov I (1995b). Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus. Journal of General Virology 76: 3181–3188.
    117. Meulenberg JJ (2000). PRRSV, the virus. Veterinary Research 31: 11–21.
    118. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL and Zimmerman JJ (2005). Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Journal of the American Veterinary Medical Association 227: 385–392.
    119. Nielsen HS, Storgaard T and Oleksiewicz MB (2000). Analysis of ORF 1 in european porcine reproductive and respiratory syndrome virus by long RT-PCR and restriction fragment length polymorphism (RFLP) analysis. Veterinary Microbiology 76: 221–228.
    120. Oleksiewicz MB, Botner A and Normann P (2001a). Semen from boars infected with porcine reproductive and respiratory syndrome virus (PRRSV) contains antibodies against structural as well as nonstructural viral proteins. Veterinary Microbiology 81: 109–125.
    121. Oleksiewicz MB, Botner A and Normann P (2002). Porcine B-cells recognize epitopes that are conserved between the structural proteins of American-and European-type porcine reproductive and respiratory syndrome virus. Journal of General Virology 83: 1407–1418.
    122. Oleksiewicz MB, Botner A, Toft P, Grubbe T, Nielsen J, Kamstrup S and Storgaard T (2000). Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein. Virology 267: 135–140.
    123. Oleksiewicz MB, Botner A, Toft P, Normann P and Storgaard T (2001b). Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicasepolyprotein contains a cluster of B-cell epitopes. Journal of Virology 75: 3277–3290.
    124. Oleksiewicz MB, Snijder EJ and Normann P (2004). Phage display of the Equine arteritis virus nsp1 ZF domain and examination of its metal interactions. Journal of Virological Methods 119: 159–169.
    125. Oleksiewicz MB, Stadejek T, Mackiewicz Z, Porowski M and Pejsak Z (2005). Discriminating between serological responses to European-genotype live vaccine and European-genotype field strains of porcine reproductive and respiratory syndrome virus (PRRSV) by peptide ELISA. Journal of Virological Methods 129: 134–144.
    126. Osorio FA, Galeota JA, Nelson E, Brodersen B, Doster A, Wills R, Zuckermann F and Laegreid WW (2002). Passive transfer of virus-specific antibodies confers protection against reproductive failure induced by a virulent strain of porcine reproductive and respiratory syndrome virus and establishes sterilizing immunity. Virology 302: 9–20.
    127. Ostrowski M, Galeota JA, Jar AM, Platt KB, Osorio FA and Lopez OJ (2002). Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. Journal of Virology 76: 4241–4250.
    128. Pei Y, Hodgins DC, Lee C, Calvert JG, Welch SK, Jolie R, Keith M and Yoo D (2008). Functional mapping of the porcine reproductive and respiratory syndrome virus capsid protein nuclear localization signal and its pathogenic association. Virus Research 135: 107–114.
    129. Pirzadeh B and Dea S (1997). Monoclonal antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define linear neutralizing determinants. Journal of General Virology 78: 1867–1873.
    130. Pirzadeh B and Dea S (1998). Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. Journal of General Virology 79: 989–999.
    131. Pirzadeh B, Gagnon CA and Dea S (1998). Genomic and antigenic variations of porcine reproductive and respiratory syndrome virus major envelope GP5 glycoprotein. Canadian Journal of Veterinary Research 62: 170–177.
    132. Plagemann PG (2003). Porcine reproductive and respiratory syndrome virus: origin hypothesis. Emerging infectious Diseases 9: 903–908.
    133. Plagemann PG (2004). GP5 ectodomain epitope of porcine reproductive and respiratory syndrome virus, strain Lelystad virus. Virus Research 102: 225–230.
    134. Plagemann PG (2006). Neutralizing antibody formation in swine infected with seven strains of porcine reproductive and respiratory syndrome virus as measured by indirect ELISA with peptides containing the GP5 neutralization epitope. Viral Immunology 19: 285–293.
    135. Plagemann PG, Rowland RR and Faaberg KS (2002). The primary neutralization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is located in the middle of the GP5 ectodomain. Archives of Virology 147: 2327– 2347.
    136. Plagemann PGW (1996). Lactate dehydrogenase elevating virus and related viruses. In: Fields BN, Knipe DM and Howley PM (eds) Field’s Virology. Philadelphia: Lippincott-Raven, pp. 1105–1120.
    137. Plana-Duran J, Bastons M, Urniza A, Vayreda M, Vila X and Mane H (1997a). Efficacy of aninactivated vaccine for prevention of reproductive failure induced by porcine reproductive and respiratory syndrome virus. Veterinary Microbiology .55: 361–370.
    138. Plana Duran J, Climent I, Sarraseca J, Urniza A, Cortes E, Vela C and Casal JI (1997b). Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection. Virus Genes 14: 19–29.
    139. Pol JM, van Dijk JE, Wensvoort G and Terpstra C (1991). Pathological, ultrastructural, and immunohistochemical changes caused by Lelystad virus in experimentally induced infections of mystery swine disease (synonym: porcine epidemic abortion and respiratory syndrome (PEARS)). The Veterinary Quarterly 13: 137–143.
    140. Reitter JN and Desrosiers RC (1998). Identification of replication-competent strains of simian immunodeficiency virus lacking multiple attachment sites for N-linked carbohydrates in variable regions 1 and 2 of the surface envelope protein. Journal of Virology 72: 5399–5407.
    141. Rodriguez MJ, Sarraseca J, Garcia J, Sanz A, Plana-Duran J and Ignacio Casal J (1997). Epitope mapping of the nucleocapsid protein of European and North American isolates of porcine reproductive and respiratory syndrome virus. Journal of General Virology 78: 2269–2278.
    142. Rowland RR, Kervin R, Kuckleburg C, Sperlich A and Benfield DA (1999). The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Research 64: 1–12.
    143. Rowland RR, Schneider P, Fang Y, Wootton S, Yoo D and Benfield DA (2003). Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus. Virology 316: 135–145.
    144. Rowland RR and Yoo D (2003). Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Resarch 95: 23–33.
    145. Shanmukhappa K, Kim JK and Kapil S (2007). Role of CD151, a tetraspanin, in porcine reproductive and respiratory syndrome virus infection. Virology Journal 4: 62.
    146. Shen S, Kwang J, Liu W and Liu DX (2000). Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Archives of Virology 145: 871–883.
    147. Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR and Ashman LK (1999). PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. Journal of Cell Science 112: 833–844.
    148. Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M, Wilson IA and Wiley DC (1984). A carbohydrate side chain on hemagglutinins of Hong Kong in?uenza viruses inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America 81: 1779–1783.
    149. Snijder E, Wassenaar AL, Den Boon JA and Spaan WJ (1995a). Proteolytic processing of thearterivirus replicase. Advances in Experimental Medicine and Biology 380: 443–451.
    150. Snijder EJ (1998). The arterivirus replicase. The road from RNA to protein(s), and back again. Advances in Experimental Medicine and Biology 440: 97–108.
    151. Snijder EJ, Wassenaar AL and Spaan WJ (1993). Proteolytic processing of the N-terminal region of the equine arteritis virus replicase. Advances in Experimental Medicine and Biology 342: 227–232.
    152. Snijder EJ, Wassenaar AL and Spaan WJ (1994). Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. Journal of Virology 68: 5755–5764.
    153. Spilman MS, Welbon C, Nelson E and Dokland T (2009). Cryoelectron tomography of porcine reproductive and respiratory syndrome virus: organization of the nucleocapsid. Journal of General Virology 90: 527–535.
    154. Stadejek T, Stankevicius A, Storgaard T, Oleksiewicz MB, Belak S, Drew TW and Pejsak Z (2002). Identification of radically different variants of porcine reproductive and respiratory syndrome virus in Eastern Europe: towards a common ancestor for European and American viruses. Journal of General Virology 83: 1861–1873.
    155. Snijder EJ and Meulenberg JJ (1998). The molecular biology of arteriviruses. Journal of General Virology 79: 961–979.
    156. Snijder EJ, van Tol H, Pedersen KW, Raamsman MJ and de Vries AA (1999). Identification of a novel structural protein of arteriviruses. Journal of Virology 73: 6335–6345.
    157. Snijder EJ, van Tol H, Roos N and Pedersen KW (2001). Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. Journal of General Virology 82: 985–994.
    158. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J and Gao GF (2007). Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE 2: e526.
    159. Tijms MA, Nedialkova DD, Zevenhoven-Dobbe JC, Gorbalenya AE and Snijder EJ (2007). Arterivirus subgenomic mRNA synthesis and virion biogenesis depend on the multifunctional nsp1 autoprotease. Journal of Virology 81: 10496–10505.
    160. Tijms MA and Snijder EJ (2003). Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription cofactor p100. Journal of General Virology 84: 2317–2322.
    161. Tijms MA, van der Meer Y and Snijder EJ (2002). Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. Journal of General Virology 83: 795–800.
    162. Tijms MA, van Dinten LC, Gorbalenya AE and Snijder EJ (2001). A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proceedings of the National Academy of Sciences of the United States of America 98: 1889–1894.163. van Aken D, Benckhuijsen WE, Drijfhout JW, Wassenaar AL, Gorbalenya AE and Snijder EJ (2006a). Expression, purification, and in vitro activity of an arterivirus main proteinase. Virus Research 120: 97–106.
    164. van Aken D, Snijder EJ and Gorbalenya AE (2006b). Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing. Journal of Virology 80: 3428–3437.
    165. van Aken D, Zevenhoven-Dobbe J, Gorbalenya AE and Snijder EJ (2006c). Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. Journal of General Virology 87: 3473– 3482.
    166. van Dinten LC, den Boon JA, Wassenaar AL, Spaan WJ and Snijder EJ (1997). An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proceedings of the National Academy of Sciences of the United States of America 94: 991–996.
    167. van Dinten LC, Rensen S, Gorbalenya AE and Snijder EJ (1999). Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and Is essential for virus replication. Journal of Virology 73: 2027–2037.
    168. van Dinten LC, Wassenaar ALM, Gorbalenya AE, Spaan WJM and Snijder EJ (1996). Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. Journal of Virology 70: 6625–6633.
    169. Van Gorp H, Van Breedam W, Delputte PL and Nauwynck HJ (2008). Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus. Journal of General Virology 89: 2943–2953.
    170. van Marle G, van Dinten LC, Spaan WJ, Luytjes W and Snijder EJ (1999). Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. Journal of Virology 73: 5274–5281.
    171. van Nieuwstadt AP, Meulenberg JJ, van Essen-Zanbergen A, Petersen-den Besten A, Bende RJ, Moormann RJ and Wensvoort G (1996). Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus (Arteriviridae) are structural proteins of the virion. Journal of Virology 70: 4767–4772.
    172. Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ and Rottier PJ (1996). Nucleocapsid-independent assembly of coronavirus-like particles by coexpression of viral envelope protein genes. The EMBO Journal 15: 2020–2028.
    173. Voicu IL, Silim A, Morin M and Elazhary MA (1994). Interaction of porcine reproductive and respiratory syndrome virus with swine monocytes. The Veterinary Record 134: 422– 423.
    174. Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ and Clark GJ (2003). RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. The Journal of Biological Chemistry 278: 28045–28051.
    175. Wang Y, Liang Y, Han J, Burkhart KM, Vaughn EM, Roof MB and Faaberg KS (2008). Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimericconstruction with vaccine sequence. Virology 371: 418–429.
    176. Wassenaar AL, Spaan WJ, Gorbalenya AE and Snijder EJ (1997). Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. Journal of Virology 71: 9313–9322.
    177. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD and Shaw GM (2003). Antibody neutralization and escape by HIV-1. Nature 42: 307–312.
    178. Weidman MK, Sharma R, Raychaudhuri S, Kundu P, Tsai W and Dasgupta A (2003). The interaction of cytoplasmic RNA viruses with the nucleus. Virus Research 95: 75–85.
    179. Wurm T, Chen H, Hodgson T, Britton P, Brooks G and Hiscox JA (2001). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. Journal of Virology 75: 9345–9356.
    180. Xue Q, Zhao YG, Zhou YJ, Qiu HJ, Wang YF, Wu DL, Tian ZJ and Tong GZ (2004). Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFNgamma. Veterinary Immunology and Immunopathology 102: 291–298.
    181. Yang L, Frey ML, Yoon KJ, Zimmerman JJ and Platt KB (2000). Categorization of North American porcine reproductive and respiratory syndrome viruses: epitopic profiles of the N, M, GP5 and GP3 proteins and susceptibility to neutralization. Archives of Virology 145: 1599–1619.
    182. Yang SX, Kwang J and Laegreid W (1998). Comparative sequence analysis of open reading frames 2 to 7 of the modified live vaccine virus and other North American isolates of the porcine reproductive and respiratory syndrome virus. Archives of Virology 143: 601–612.
    183. Yang Y and Zhang J (1999). An experimental study on the endurance of immunologic memory of intradermal microinjection with rabies vaccine and boosting immune effect. Journal of Epidemiology 9: 209–215.
    184. Yoo D, Wootton SK, Li G, Song C and Rowland RR (2003). Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin. Journal of Virology 77: 12173–12183.
    185. Yoon KJ, Zimmerman JJ, Swenson SL, McGinley MJ, Eernisse KA, Brevik A, Rhinehart LL, Frey ML, Hill HT and Platt KB (1995). Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection. Journal of Veterinary Diagnostic Investigation 7: 305–312.
    186. Yoshii M, Kaku Y, Murakami Y, Shimizu M, Kato K and Ikeda H (2005). Genetic variation and geographic distribution of porcine reproductive and respiratory syndrome virus in Japan. Archives of Virology 150: 2313–2324.
    187. Yoshii M, Okinaga T, Miyazaki A, Kato K, Ikeda H and Tsunemitsu H (2008). Genetic polymorphism of the nsp2 gene in North American type porcine reproductive and respiratory syndrome virus. Archives of Virology 153: 1323– 1334.
    188. Yuan S, Murtaugh MP and Faaberg KS (2000). Heteroclite subgenomic RNAs are produced in porcine reproductive and respiratory syndrome virus infection. Virology 275: 158–169.
    189. Yuan S, Murtaugh MP, Schumann FA, Mickelson D and Faaberg KS (2004). Characterization of heteroclite sub-genomic RNAs associated with PRRSV infection. Virus Research 105: 75–87.
    190. Yuan S, Wei Z. 2008. Construction of infectious cDNA clones of PRRSV: separation of coding regions for nonstructural and structural proteins. sci China C Life Sci 51, 271–279.
    191. Zeegers JJ, Van der Zeijst BA and Horzinek MC (1976). The structural proteins of equine arteritis virus. Virology 73: 200–205.
    192. Zhang Y, Sharma RD and Paul PS (1998). Monoclonal antibodies against conformationally dependent epitopes on porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 63: 125–136.
    193. Zhou L, Zhang J, Zeng J, Yin S, Li Y, Zheng L, Guo X, Ge X and Yang H (2009). The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. Journal of Virology 83: 5156–5167.
    194. Zhou YJ, An TQ, He YX, Liu JX, Qiu HJ, Wang YF and Tong G (2006). Antigenic structure analysis of glycosylated protein 3 of porcine reproductive and respiratory syndrome virus. Virus Research 118: 98–104.
    195. Zhou YJ, Hao XF, Tian ZJ, Tong GZ, Yoo D, An TQ, Zhou T, Li GX, Qiu HJ, Wei TC and Yuan XF (2008). Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transboundary and Emerging Diseases 55: 152–164.
    196. Ziebuhr J, Snijder EJ and Gorbalenya AE (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology 81: 853–879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700