用户名: 密码: 验证码:
日粮脂肪和能量水平对奶牛氧化应激、生产性能的影响及抗氧化剂添加效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饲料中的油脂在加工、贮存和饲喂过程中无时不存在被氧化的危险,脂质氧化是导致机体氧化应激的重要原因。本研究分三部分共五个试验,首先从日粮脂肪和奶牛机体的氧化潜在性着手,分析了奶牛场常用饲料原料的稳定性,评价了抗氧化剂(AOX)对油脂的保护效果(试验一);调查了围产期中国荷斯坦奶牛脂质氧化状态以及脂质代谢和氧化应激相关性(试验二)。在此基础上选取两种稳定性差别较大的不同饱和度的脂肪酸饲喂高产奶牛,评估其对生产性能和抗氧化状态的影响及AOX的添加效果(试验三),并从对瘤胃抗氧化状态和微生物区系变化方面进行深入研究(试验四)。基于围产期奶牛脂质代谢和氧化应激的相关性,通过能量饲喂水平及添加AOX调控围产期奶牛脂质代谢和抗氧化状态(试验五)。
     第一部分日粮脂肪和奶牛机体的潜在氧化特性研究(试验一和试验二)
     试验一选取奶牛场常用的高脂饲料原料,分别添加0或500ppm的AOX。采用活性氧法(AOM)测定了其室温下的过氧化物值(POV),脂肪氧化测定仪测定其100℃时的诱导时间。试验结果:以籽实的形式存在的脂肪其POV较低,籽实中POV值最高的DDGS为2.27meq/kg,POV值最低的膨化大豆为0.67 meq/kg。依据日粮不同,AOX降低籽实中的POV值32%-68%。不饱和脂肪酸钙的POV较高,而饱和脂肪粉的值较低(33.13 vs 4.53)。不饱和脂肪酸钙的诱导时间显著低于脂肪粉,添加AOX的脂肪酸钙其稳定性提高至原来的3倍,而饱和脂肪粉添加AOX仅提高50%左右。AOX可延长饲用油脂诱导时间,其中对棉籽中脂肪的诱导时间延长幅度最大,可提高其稳定性7-8倍以上。这提示AOX可显著提高脂肪的稳定性,尤其是不饱和脂肪酸含量高的脂肪。
     为揭示奶牛机体脂质氧化的潜在性,试验二调查了围产期奶牛的脂质代谢及与氧化应激状态的相关性。选取10头具有相近体况(BCS=3)、胎次(3-5胎)预产期(±2天)的经产中国荷斯坦奶牛,从产前3周至产后3周,每周尾静脉采血分离血浆检测脂质代谢与氧化应激指标;另选取10头处于泌乳后期的健康、正常体况牛作为对照组(泌乳量低于20kg/d)。结果发现:整个围产期奶牛血浆葡萄糖的浓度显著高于对照组,分娩后葡萄糖的浓度比分娩前降低32.6%(2.58 vs3.83)。产前3周至产后3周,血浆游离脂肪酸(NEFA)浓度先上升后下降,在分娩当天和产后1周达到最大峰值,与其他各组差异显著(p<0.05)。而甘油三酯的浓度在分娩后与对照组相似,均显著低于分娩前的水平(p<0.05)。围产期奶牛血浆超氧化物歧化酶(SOD)的活性均低于对照组,分娩前后1周和分娩时达到最低值,与对照组差异显著(p<0.05)。分娩后1周,血浆丙二醛(MDA)浓度达到最高峰,同时清除活性氧的能力降至最低(p<0.05)。在所检测的代谢指标中,NEFA与氧化应激指标相关性最大,其与MDA浓度的相关系数达0.74,而与清除活性氧能力及总抗氧化能力呈负相关,相关系数分别为-0.61和-0.56。这些试验结果表明围产期奶牛同样存在脂质过氧化的现象,围产期奶牛能量负平衡可导致机体脂肪动员的增加,脂质过氧化物生成增多,而分娩后血浆SOD、清除活性氧能力降至最低,氧化应激的发生与脂质代谢有很强的相关性。
     第二部分饲喂不同饱和度的脂肪及添加抗氧化剂对奶牛生产性能、抗氧化状态和瘤胃发酵的影响(试验三和试验四)
     试验三的目的是研究不同饱和度脂肪酸添加AOX对奶牛生产性能和血液代谢的影响。低饱和脂肪酸以53.9%饱和度的美加力形式与精料均匀混合,高饱和脂肪酸以88.6%饱和度的棕榈酸脂肪粉的形式补充,AOX的添加浓度为0或0.025%。试验结果:脂肪酸类型及AOX处理对奶牛的干物质采食量(DMI)无显著影响。补充不饱和脂肪酸的奶牛乳产量与4%校正乳产量显著低于补充饱和脂肪酸组(P<0.05);乳脂及乳蛋白含量不受脂肪酸类型和AOX处理的影响。AOX添加显著提高了LS组奶牛的乳产量和4%校正乳产量(P<0.05),而对HS组没有显著影响(P>0.05)。不考虑AOX的效应,与补充饱和脂肪酸的奶牛相比,补充不饱和脂肪酸奶牛血浆SOD的活性显著降低,MDA含量显著升高,而血浆葡萄糖浓度有降低的趋势(P≦0.10)。AOX添加降低了奶牛血浆NEFA和H202含量,同时提高了奶牛的总抗氧化能力。不饱和脂肪酸补充提高了奶牛红细胞膜C12:0,C18:0,cis-9 C18:1,trans-11 C18:1,C18:2, C20:5和C22:6的比例,同时降低了C14:0,C16:0和C16:1的比例。AOX添加显著提高奶牛红细胞膜中链脂肪酸,如C14:0,C14:1和C16:1比例,减少长链脂肪酸中C18:0,cis-9 C18:1,C20:5和C22:6比例。补充不饱和脂肪酸显著增加奶牛乳中cis-9 C18:1, trans-10, cis-12 C18:2比例同时降低乳C18:0的比例,AOX添加显著增加乳中cis-9 C18:1比例,降低乳中C12:0,C16:0和trans-10, cis-12C18:2的比例。以上结果表明补充不饱和脂肪酸的奶牛生产性能及血液代谢要劣于饱和脂肪酸组;AOX一定程度上可改善不饱和脂肪酸对奶牛的生产性能及血液代谢的副作用,而对饱和脂肪酸添加效果不显著。
     试验四利用体外产气法分别评估了高饱和脂肪酸及低饱和脂肪酸添加AOX(0或500 ppm)对湖羊瘤胃体外发酵参数的影响。试验结果:脂肪酸类型不影响瘤胃发酵参数和抗氧化状态(P>0.05);与饱和脂肪酸相比,补充低饱和脂肪酸可显著降低瘤胃液中产琥珀酸丝状杆菌相对于总菌的比例(P<0.05)、显著提高原虫比例(P<0.05)。添加AOX可提高体外24h产气量和有机物消化率(P<0.05),并有减少乙酸摩尔比、增加丙酸摩尔比的趋势(P<0.10),同时AOX添加也有降低瘤胃液中MDA浓度、提高SOD活性的趋势(P<0.10)。AOX对黄色瘤胃球菌和白色瘤胃球菌的影响依赖于脂肪酸的类型,低饱和脂肪酸添加AOX可显著提高黄色瘤胃球菌和白色瘤胃球菌相对于总菌的比例,而高饱和脂肪酸添加无显著效果。这说明日粮添加不饱和脂肪酸不利于纤维分解菌的生长,添加AOX可改善不饱和脂肪酸对瘤胃微生物的不利影响,而对饱和脂肪酸影响较小。
     第三部分产前能量水平对围产期奶牛脂质代谢和氧化应激的影响及抗氧化添加效果研究(试验五)
     本试验研究了产前能量水平和AOX添加对围产期奶牛脂质代谢和氧化应激状态的调控。产前3周,40头经产中国荷斯坦奶牛按照胎次、体况、预产期和上泌乳期产奶量一致原则随机分入4个组,每组10头。试验采用2×2因子设计,处理因素包括AOX (0或5g/d per cow)和产前能量水平(1.43或1.28 Mcal/kg DM)。产后所有牛饲喂相同的泌乳日粮,AOX添加至产后3周。试验结果显示:产前饲喂高能日粮显著降低奶牛产前及产后的DMI(P<0.05)。能量水平和AOX处理不影响奶牛的能量平衡和胎牛初生重(P>0.05)。与低能日粮相比,产前高能日粮饲喂降低了奶牛产后3周的乳产量,围产期添加AOX有提高泌乳早期乳产量的趋势(P<0.10)。产前高能饲喂增加整个围产期奶牛血浆葡萄糖和β-羟丁酸的浓度,而AOX添加显著降低围产期血浆β-羟丁酸浓度(P<0.05)。处理与时间之间对谷胱甘肽过氧化物酶(GSH-Px)活性和MDA浓度的影响有交互作用,即在某些特定时间点,如产前3d,产前高能日粮饲喂显著提高奶牛血浆GSH-Px的活性和MDA的浓度,而AOX添加显著降低产前10d和3d血浆GSH-Px浓度,同时显著降低奶牛分娩时血浆MDA的浓度(P<0.05)。产前能量水平显著影响奶牛红细胞膜中脂肪酸含量(P<0.05)。产前采食高能日粮的奶牛产后3d红细胞膜脂肪酸的含量显著高于采食低能组,而AOX添加组奶牛红细胞膜脂肪酸含量仅在数值上有提高,但与未添加组差异不显著(P>0.05)。能量水平和AOX对红细胞膜中饱和脂肪酸和不饱和脂肪酸比例影响不显著(P>0.05)。产前饲喂不同能量水平的日粮可导致奶牛产后红细胞膜的组成显著不同,而AOX添加仅增加cis-9,trans-11C18:2的比例。与低能日粮相比,产前高能日粮显著提高了奶牛产后3d红细胞膜的流动性(1.51 vs 1.41,P<0.05),但AOX对红细胞膜的流动性影响不显著。以上结果提示产前低能饲喂更有利于产后采食量的恢复和生产性能的提高。添加AOX可以提高脂质代谢和抗氧化能力从而改善血液代谢,提高生产性能。
     综上所述,高脂饲料原料和动物机体的脂质都存在被氧化的潜在危险,机体氧化应激的发生与脂质代谢有很强的相关性。补充不饱和脂肪酸的奶牛生产性能及血液代谢要劣于饱和脂肪酸,这可能与不饱和脂肪酸对瘤胃纤维分解菌的抑制有关。AOX一定程度上改善不饱和脂肪酸对瘤胃微生物的不利影响,提高瘤胃抗氧化状态和有机物的消化率,而对饱和脂肪酸效果不显著。产前高能饲喂不利于奶牛采食量和产后生产性能的提高,同时不利于奶牛的血浆脂质代谢和抗氧化应激状态。添加AOX可通过提高脂质代谢和抗氧化能力在一定程度上改善奶牛的健康状况和生产性能。
Dietary fat is susceptible to oxidation during any stage of processing, storage and feeding. Lipid oxidation also often occurs in animal body when the production of free radicals exceeds the capacity of antioxidant system. This study contained three parts including five experiments. In the first part, the stability of different ingredients rich in fat was evaluated, in the absence or presence of antioxidant (AOX) (Expt.1). To evaluate the potential oxidation of lipid in dairy cows, the lipid metabolism character and its correlation to anti-oxidative status was investigated in Chinese Holstein cows (Expt.2). Then, in the second part, two types of fatty acids that differ in stability and saturated degree were selected to evaluate their effects on performance and anti-oxidative status in high lactating cows, in the absence or presence of antioxidant (AOX) (Expt.3). An in vitro gas test trial was carried out to investigate the effect of different rumen inert fatty acids with a dietary antioxidant on rumen fermentation, anti-oxidative status and microflora (Expt.4). In the last part, two pre-partum diets with different energy density were formulated to study the effect of energy level on lipid metabolism and anti-oxidative status, in the absence or presence of AOX (Expt. 5).
     Part one:Evaluation of stability in the diets rich in fat and lipid oxidation in dairy cows (Expt.1 and 2).
     In Expt.1, Ingredients that rich in fat were selected and mixed with 0 or 500 ppm antioxidant (AOX). Peroxide values (POV) in the room temperature were determined by active oxygen method (AOM), and induction time was determined by ML OXIPRESTM at 100℃. The POV value in the whole seed was lower, ranging from 0.67meq/kg in extruded soybean to 2.27meq/kg in DDGS. Addition of AOX decreased the POV by 32 to 68% based on the ingredients. However, the POV was higher in unsaturated calcium salt of long chain fatty acids, compared with saturated fatty acid (33.13 vs 4.53 meq/kg), while the induction time showed the opposite results. The AOX could improve the stability of unsaturated calcium salt of long chain fatty acids by 3 times, but only 50% improvement was found in saturated fatty acid. The stability of cotton seed with AOX was 7-8 times of that without AOX. It is indicated that AOX could improve the stability of the diets, especially when polyunsaturated fatty acids were included in the diets.
     The objective of Expt.2 was to evaluate the potential oxidation of lipid in dairy cows. The lipid metabolism and its correlation to oxidative status were investigated in Chinese Holstein cows during transition period. Ten cows with similar parity, expected calving date, and body condition score were selected and blood samples collected weekly by coccygeal vein from-3 to 3 weeks relative to calving. Another ten cows in late-lactating were selected as control. The concentration of plasma glucose was higher in transition cows, compared to late-lactating cows. After calving, plasma glucose decreased to a lower level, compared to that at calving and prepartum (2.58 at 1 week postpartum vs 3.83 mmol/L at calving). The nonesterified fatty acid (NEFA) peaked 1 week postpartum, significantly higher than that in prepartum and control cows. Similar to the control, plasma triglyceride postpartum was lower than that prepartum. Activity of superoxide dismutase (SOD) in transition cows was lower than late-lactating cows, especially 0 and 1 week relative to calving. Meanwhile, malondialchehyche (MDA) reached to the highest level 1 week postpartum, contrasting with activity of antisuperoxide anion free radical (ASAFR), which decreased to the lowest level. Concentration of NEFA was related to most of anti-oxidative parameters (R= 0.74,-0.61 and-0.56 for MDA, ASAFR and TAOC, respectively). In summary, transition cows are susceptible to oxidative stress, indicated by lower SOD and ASAFR activity after calving. The increased requirement to glucose during the initial step of lactation cows will make cows mobilize adipose tissues. The oxidative status may have a close relationship with lipid metabolism.
     Part two:Effect of diets supplemented with fatty acids of different degrees of saturation, in the absence or presence of AOX, on lactation performance and rumen fermentation in dairy cows (Expt.3 and 4).
     The objective of Expt.3 was to evaluate the effect of diets supplemented with fatty acids of different degrees of saturation, in the absence or presence of AOX, on lactation performance of dairy cow. Calcium salt of long-chain fatty acids was supplemented as a source of lower saturation fatty acid (LS,53.9% SFA), and palmitic acid was supplemented as the higher saturation fatty acid source (HS,88.6% SFA). The AOX was added at 0.025% in the ration. Neither fatty acid type nor AOX supplementation showed significant effect on dry matter intake (DMI) during the study. Compared with those in HS, yield of milk and 4% FCM were lower in the LS-fed cows. Milk fat and milk protein concentrations were not affected by fatty acid type or AOX supplementation. Adding AOX increased the yield of milk and 4% FCM in the LS-fed cows, but did not affect those fed HS. Plasma SOD activity was significantly lower, plasma glucose tended to be lower, and plasma MD A was higher in the LS-fed animals, compared with those fed HS. Addition of AOX decreased both plasma NEFA and H2O2 contents and increased TAOC activity across the fatty acid types. Composition of C12:0, C18:0, cis-9 C18:1, trans-11 C18:1, C18:2, C20:5 and C22:6 in the erythrocyte membrane was higher, while C14:0, C16:0 and C16:1 was lower for cows fed diets supplemented with LS, compared with those with HS. Addition of AOX increased C14:0, C14:1 and C16:1 and decreased C18:0, cis-9 C18:1, C20:5 and C22:6-composition in the erythrocyte membrane. Cows fed LS had higher cis-9 C18:1 and trans-10, cis-12 C18:2 in milk at the expense of C18:0, whereas AOX addition increased milk cis-9 C18:1 at the expense of milk C12:0, C16:0, and trans-10, cis-12 C18:2. It is inferred that dietary inclusion of unsaturated fatty acids resulted in inferior lactation performance. Whereas, these negative effects may be partially alleviated by the addition of antioxidant.
     Experiment 4 was carried out to evaluate the effect of LS and HS supplementation on rumen fermentation in vitro, in the absence or presence of AOX. The experiment was carried out in a 2×2 factorial design, with fatty acids type as one factor and AOX as another one. Fermentation patterns and anti-oxidative status were not affected by different fatty acids supplementation. Supplementation of LS significantly increased the populations of protozoa relative to total bacterial 16S rDNA, but showed negative effect on fibrobacter succinogenes. Addition of AOX significantly increased gas production at 24h incubation. Molar proportion of propionate tended to increase at the expense of acetate due to AOX addition. AOX tended to decrease MDA value and increase SOD activity. An interaction between AOX and fat type was observed on ruminococcus flavefaciens and ruminococcus albus. Inclusion of AOX increased these two bacteria in LS group, but not in HS. It is concluded that unsaturated fatty acids inclusion in the diets may result in inferior effect on cellulolytic bacteria in the rumen, while these negative effects may be partially alleviated by the addition of antioxidant.
     Part three:Effect of energy density prepartum on performance and anti-oxidative status in transition cows, in the absence or presence of antioxidant (Expt.5)
     In Expt.5, a 2 x 2 factorial design trial was conducted to evaluate the effect of dietary antioxidant and energy density on performance and anti-oxidative status in transition cows. Forty cows were randomly allocated to 4 dietary treatments. High or low energy density diets prepartum (1.43 or 1.28 Mcal NEL/kg DM, respectively) were formulated with or without AOX (0 or 5 g/d per cow). These diets were fed to cows for 21 days pre-partum. During the post-partum period, all cows were fed the same lactation diets, and AOX treatment followed as for the pre-partum period. Feeding a high energy diet depressed the DMI, milk yield, and 4% FCM of cows. However, AOX inclusion in the diet improved the milk and 4% FCM yields. There was an interaction of energy density by AOX on milk protein, milk fat and total solids contents. Feeding a high energy diet pre-partum significantly increased plasma glucose andβ-hydroxybutyrate (P<0.05), whereas dietary AOX significantly decreased plasmaβ-hydroxybutyrate value during the transition period (P<0.05) There were also interactions between time and treatment for plasma glutathione peroxidase activity and MDA content during the study. Cows fed high energy diets pre-partum had higher plasma glutathione peroxidase activity 3 days prior to parturition, compared with those on low energy diets. Inclusion of AOX in diets' decreased plasma glutathione peroxidase activity in cows 3 and 10 days pre-partum. Addition of AOX significantly decreased MDA values at calving (P<0.05). Energy density induced marginal changes in fatty acid composition in the erythrocyte membrane 3 days post-partum, while AOX only significantly increased cis-9, trans-11 C18:2 conjugated linoleic acid composition. The increase in fluidity of the erythrocyte membrane was only observed in the high energy treatment. The above results indicated that feeding low energy density prepertum could improve the postpartum DMI and lactation performance. The addition of AOX is beneficial to the lactation performance by improving the lipid metabolism and antioxidative status.
     In summary, both the fat in the diet and lipid in the body are potentially oxidized, which could induce oxidative stress in dairy cows. The oxidative status may have a close relationship with energy metabolism. Feeding unsaturated fatty acids may result in inferior lactation performance, which is associated with inferior effect on rumen cellulolytic bacteria. Whereas, these negative effects may be partially alleviated by the addition of AOX. The effect of AOX depends on types of fatty acids. When unsaturated fatty acids were included in the diets, a significant benefit is shown by addition of AOX, but this is not the case with saturated fatty acid inclusion. A diet containing high energy density pre-partum may negatively affect the anti-oxidative status, DMI and subsequent performance. Addition of AOX may improve the anti-oxidative status and lipid metabolism, eventually resulting in improved lactation performance.
引文
Agenas, S., E. Burstedt, and K. Holtenius.2003. Effects of feeding intensity during the dry period.1. Feed intake, body weight, and milk production. J. Dairy Sci. 86:870-882.
    Aitken, S. L., E. L. Karcher, P. Rezamand, J. C. Gandy, M. J. VandeHaar, A. V. Capuco, and L. M. Sordillo.2009. Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period. J. Dairy Sci.92:589-598.
    Andersen, J. B., C. Ridder, and T. Larsen.2008. Priming the cow for mobilization in the periparturient eriod:effects of supplementing the dry cow with saturated fat or linseed. J. Dairy Sci.91:1029-1043.
    Andrews, J., M. Vazquez-Anon, and G. Bowman.2006. Fat stability and preservation of fatty acids with AGRADO(?) antioxidant in feed ingredients used in ruminant rations. J. Dairy Sci.89:(Suppl.1):60 (Abstr.).
    AOAC.1990. Official Methods of Analysis.15th ed. Vol.1. Assoc. Offic. Anal. Chem., Arlington, VA.
    Arechiga, C. F., A. D. Ealy, and P. J. Hansen.1994. Efficacy of vitamin E and glutathione for thermoprotection of murine morulae. Theriogenol.41:1545-1553.
    Armstrong, D., and R. Browne.1994. The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv. Exp. Med. Biol.366:43-58.
    Barber, M. C., R. J. Ward, S. E. Richards, A. M. Salter, P. J. Buttery, R. G. Vemon, and M. T. Travers.2000. Ovine adipose tissue monounsaturated fat content is correlated to depot-specific expression of the stearoyl-CoA desaturase gene. J. Anim. Sci.76:62-68.
    Bauman, D. E., and J. M. Griinari.2003. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr.23:203-227.
    Bendich, A.1990. Antioxidant vitamins and their functions in immune responses. Page 33 in Antioxidant Nutrients and Immune Functions. A. Bendich, M. Phillips, and R. P. Tengerdy, ed. Plenum Press, New York, NY.
    Berman. A.2005. Estimates of heat stress relief needs for Holstein cows. J. Anim. Sci. 83:1377-1384.
    Bernabucci, U., B. Ronchi, N. Lacetera, and A. Nardone.2002. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci.85:2173-2179.
    Bernabucci, U., B. Ronchi, N. Lacetera, and A. Nardone.2005. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci.88:2017-2026.
    Bernard, J. K., and A. F. Kertz.2009. Performance and metabolic measures of lactating dairy cows fed diets supplemented with-either mostly saturated or more unsaturated fatty acids. J. Anim. Sci.87 (Suppl.2):460 (Abstr.).
    Block, S. S., W. R. Butler, R. A. Ehrhardt, A. W. Bell, M. E. Van Amburgh, and Y. R. Boisclair.2001. Decreased concentrations of plasma leptin in periparturient dairy cows is caused by negative energy balance. J. Endocrinol.171:339-348.
    Bouwstra, R. J., R. M. A. Goselink, P. Dobbelaar, M. Nielen, J. R. Newbold, and T. Van Werven.2008. The relationship between oxidative damage and vitamin E concentration in blood, milk, and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers. J. Dairy Sci.91:977-987.
    Bradford, M. M.1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem. 72:248-254.
    Bremmer, D. R., L. D. Ruppert, J. H. Clark, and J. K. Drackley.1998. Effects of chain length and unsaturation of fatty acid mixtures infused into the abomasum of lactating dairy cows. J. Dairy Sci.81:176-188.
    Brioukhanov, A. L., and A. I. Netrusov.2004. Catalase and superoxide dismutase: Distribution, properties, and physiological role in cells of strict anaerobes. Biochemi. (Moscow) 69:949-962
    Broster, W. H.1971. The effect on milk yield of the cow of the level of feeding before calving. Dairy Sci. Abstr.33:253-270.
    Brzezinska-Slebodzinska, E., J. K. Miller, J. D. Quigley, J. R. Moore, and F. C. Madson.1994. Antioxidant status of dairy cows supplemented prepartum with vitamin E and selenium. J. Dairy Sci.77:3087-3095.
    Buckley, F., K. O'Sullivan, J. F. Mee, R. D. Evans, and P. Dillon.2003. Relationships among milk yield, body condition, cow weight, and reproduction in spring-calved Holstein-Friesians. J. Dairy Sci.86:2308-2319.
    Carlson, D. B., M. S. Laubach, W. L. Keller, and C. S. Park. Effect of prepartum compensatory nutrition regimen on metabolism and performance of dairy cows. 2006. Livest. Sci.101:251-261.
    Castillo, C., J. Hernandez, A. Bravo, M. Lopez-Alonso, V. Pereira, and J.L. Benedito. 2005. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J.169:286-292.
    Chalupa, W., B. Vecchiarelli, A. E. Elser, and D. S. Kronfeld.1986. Ruminal fermentation in vivo as influenced by long-chain fatty acids. J. Dairy Sci.69:1293.
    Chinese National Station of Animal Production and Health (CNSAPH).2000. Nutrient Requirements and Feeding Standards of Dairy Cattle.2nd rev. China Agriculture University Press, Beijing, China.
    Chouinard, P. Y., V. Girard, and G. J. Brisson.1998. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J. Dairy Sci.81:471-481.
    Colitti, M., and B. Stefanon.2006. Effect of natural antioxidants on superoxide dismutase and glutathione peroxidase mRNA expression in leukocytes from periparturient dairy cows. Vet. Res. Commun.30:19-27.
    Coppock, C. E., and D. L. Wilks.1991. Supplemental fat in high-producing rations for lactating cows:effect on intake, digestion, milk yield, and composition. J. Anim. Sci.69:3826.
    Couderc, R., J. Peynet, M. Cambillaud, F. Tallet, C. Cosson, G. Lefevre, and V. Atger. 1998. Effects of postprandial hyperlipemia on the vitamin E content of lipoproteins. Clin. Chim. Acta.277:141-152.
    Craig, W. J.1999. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 70(Suppl.3):491S-499S.
    Czauderna, M., J. Kowalczyk, K. M. Niedzwiedzka, I. Wasowska, and B. Pastuszewska.2004. Conjugated linoleic acid (CLA) content and fatty acids composition of muscle in rats fed isomers of CLA and selenium. J. Anim. Feed Sci. 13:183-196.
    Dandona, P., A. Aljada, and A. Bandyopadhyay.2004. Inflammation:the link between insulin resistance, and obesity and diabetes. Trends Immunol.25:4-7.
    Dann, H. M., N. B. Litherland, J. P. Underwood, M. Bionaz, A. D. Angelo, J. W. McFadden, and J. K. Drackley.2006. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. J. Dairy Sci. 89:3563-3577.
    DeFrain, J. M., A. R. Hippen, K. F. Kalscheur, and P. W. Jardon.2004. Feeding glycerol to transition dairy cows:effects on blood metabolites and lactation performance. J. Dairy Sci.87:4195-4206.
    Denman, S. E., and C. S. McSweeney.2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations with in the rumen. FEMS Microbiol Ecol,58:572-582.
    Devendra, C., and D. Lewis.1974. The interaction between dietary lipids and fibre in the sheep. Anim. Prod.19:67.
    Dhiman, T. R., L. D. Satter, and M. W. Pariza.2000. Conjugated linoleic acid content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci. 83:1016-1027.
    Dibner, J. J., C. A. Atwell, M. L. Kitchell, W. D. Shermer, and F. J. Ivey.1996. Feeding of oxidized fats to broilers and swine:Effects on enterocyte turnover, hepatocyte proliferation and the gut associated lymphoid tissue. Anim. Feed Sci. Technol.62:1-13.
    Dodge, J. T., C. Mitchell, D. J. Hanahan.1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys.100:119-130.
    Doepel, L., H. Lapierre, and J. J. Kennelly.2002. Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake. J. Dairy Sci.85:2315-2334.
    Domecq, J. J., A. L. Skidmore, J. W. Lloyd, and J. B. Kaneene.1997. Relationship between body condition scores and milk yield in a large herd of high yielding Holstein cows. J. Dairy Sci.80:101-112.
    Douglas, G. N., T. R. Overton, H. G. Bateman II, H. M. Dann, and J. K. Drackley. 2006. Prepartal plane of nutrition, regardless of dietary energy source, affect periparturient metabolism and dry matter intake. J. Dairy Sci.89:2141-2157.
    Drackley, J. K.1999. Biology of dairy cows during the transition period:The final frontier? J. Dairy Sci.82:2259-2273.
    Duffield, T.2000. Subclinical ketosis in lactating dairy cattle. Vet. Clin. North Am. Food Anim. Pract.16:231-253.
    Ford, J. A., C. S. Park.2001. Nutritionally directed compensatory growth enhances heifer development and lactation potential. J. Dairy Sci.84:1669-1678.
    Frankel, E. N.2005. Antioxidants. Pages 209-258 in Lipid Oxidation.2nd ed. E. N. Frankel. The Oily Press, Bridgwater, UK.
    Gaal, T., P. Ribiczeyne-Szabo, K. Stadler, J. Jakus, J. Reiczigel, Pal Kover, M. Mezes, and L. Sumeghy.2006. Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp. Biochem. Physiol. PT. B.143:391-396.
    Gannon, D. E., J. Varani, S. H. Phan, J. H. Ward, J. Kaplan, G. O.Till, R. H. Simon, U. S. Ryan, and P. A. Ward.1987. Source of iron in neutrophil-mediated killing of endothelial cells. Lab. Invest.57:37-44.
    Goff, J. P., and R. L. Horst.1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci.80:1260-1268.
    Grummer, R. R., P. C. Hoffman, M. L. Luck, and S. J. Bertics.1995. Effect of prepartum and postpartum dietary energy on growth and lactation of primiparous cows J. Dairy Sci.78:172-180.
    Grummer, R. R., D. G. Mashek, and A. H. Hayirli.2004. Dry matter intake and energy balance in the transition period. Vet. Clin. North Am. Food Anim. Pract. 20:447-470.
    Guo, J., R. R. Peters, and R. A. Kohn.2007. Effect of a Transition Diet on Production Performance and Metabolism in Periparturient Dairy Cows. J. Dairy Sci. 90:5247-5258.
    Han, H., H. S. Hussein, H. A. Glimp, D. H. Saylor, and L. W. Greene.2002. Carbohydrate fermentation and nitrogen metabolism of a finishing beef diet by ruminal microbes in continuous cultures as affected by ethoxyquin and (or) supplementation of monensin and tylosin. J. Anim. Sci.80:1117-1123.
    Havemose, M. S., M. R. Weisbjerg, W. L. P. Bredie, H. D. Poulsen, and J. H. Nielsen. 2006. Oxidative stability of milk influenced by fatty acids, antioxidants, and copper derived from feed. J. Dairy Sci.89:1970-1980.
    Higdon, J. V., and B. Frei.2003. Obesity and oxidative stress. A direct link to CVD? Arterioscler. Thromb. Vasc. Biol.23:365-367.
    Hino, T., N. Andoh, and H. Ohgi.1993. Effects of β-carotene and a-tocopherol on rumen bacteria in the utilization of long-chain fatty acids and cellulose. J. Dairy Sci. 76:600-605.
    Holcomb, C. S., H. H. Van Horn, H. H. Head, M. B. Hall, and C. J. Wilcox.2001. Effects of prepartum dry matter intake and forage percentage on postpartum performance of lactating dairy cows. J. Dairy Sci.84:2051-2058.
    Holtenius, K., S. Agenas, C. Delavaud, and Y. Chilliard.2003. Effects of feeding intensity during the dry period.2. Metabolic and hormonal responses. J. Dairy Sci. 86:883-891.
    Ikwegbu, O. A., and J. D. Sutton.1982. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr.48:365.
    Ingvartsen, K. L., A. Danfaer, P. H. Andersen, and J. Foldager.1996. Prepartum feeding of dairy cattle:a review of the effect on periparturient metabolism, feed intake, production and health. Stocarstvo 50,401-409.
    Ingvartsen, K. L., R. J. Dewhurst, and N. C. Friggens.2003. On the relationship between lactational performance and health:is it yield or metabolic imbalance that cause production disease in dairy cattle? A position paper. Livest. Prod. Sci. 83:277-308.
    Ingvartsen, K. L., and Y. R. Boisclair.2001. Leptin and the regulation of food intake, energy homeostasis and immunity with special focus on periparturient ruminants. Domest. Anim. Endocrinol.21:215-250.
    Ingvartsen, K. L.2006. Feeding and management-related diseases in the transition cows-Physiological adaptions around calving and strategies to reduce feeding-related disease. Anim. Feed Sci. Technol.126:175-213.
    Jenkins, T. C., and B. F. Jenny.1989. Effect of hydrogenated fat on feed intake, nutrient digestion and lactation performance of dairy cows. J. Dairy Sci. 72:2316-2324.
    Jenkins, T. C., and D. L. Palmquist.1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci.67:978-986.
    Johnson, R. B.1955. The treatment of ketosis with glycerol and propylene glycol. Cornell Vet.44:6-21.
    Kelly, J. M.1977. Changes in serum β-hydroxybutyrate concentrations in dairy cows kept under commercial farm conditions. Vet. Rec.101:499-501.
    Laporte, M. F., and P. Paquin.1999. Near-infrared analysis of fat, rotein, and casein in cow's milk. J. Agric. Food Chem.47:2600-2605.
    Lauzon, K., X. Zhao, A. Bouetard, L. Delbecchi, B. Paquette, and P. Lacasse.2005. Antioxidants to prevent bovine neutrophil-induced mammary epithelial cell damage. J. Dairy Sci.88:4295-4303.
    Lindi, C., P. Marciani, F. Omodeo-Sale.1993. Age related changes in functions and physicochemical properties of rat jejunal brush border membrane after chronic ethanol administration. Comp. Biochem. Physiol.104C:263-268.
    Lohrke, B., T. Viergutz, W. Kanitz, B. Losand, D. G. Weiss, and M. Simko.2005. Short communication:Hydroperoxides in circulating lipids from dairy cows: Implications for bioactivity of endogenous-oxidized lipids. J. Dairy Sci. 88:1708-1710.
    Loor, J. J., and J. H. Herbein.2001. Alterations in blood plasma and milk fatty acid profiles of lactating Holstein cows in response to ruminal infusion of a conjugate linoleic acid mixture. Anim. Res.51:119-134.
    Loor, J. J., H. M. Dann, R. E. Everts, R. Oliveira, C. A. Green, N. A. J. Guretzky, S. L. Rodriguez-Zas, H. A. Lewin, and J. K. Drackley.2005. Temporal gene expression profiling of liver from periparturient dairy cows reveals complex adaptive mechanism in hepatic function. Physiol. Genomics.23:217-226.
    Lopes, N., A. B. Scarpa, B. I. Cappellozza, R. F. Cooke, and J. L. M. Vasconcelos. 2009. J. Anim. Sci.87:3935-3943.
    Lucy, M. C., J. D. Savio, L. Badingal, R. L. Delasota, and W. W. Thatcher.1992. Factors that affect ovarian follicular dynamics in cattle. J. Anim. Sci. 70:3615-3626.
    Lundy, F. P., E. Block, W. C. Bridges, J. A. Bertrand, and T. C. Jenkins.2004. Ruminal biohydrogenation in Holstein cows fed soybean fatty acids as amides or calcium salts. J. Dairy Sci.87:1038-1046.
    Mandebvu, P., C. S. Ballard, C. J. Sniffen, M.P. Carter, H. W. Wolford, T. Sato, Y. Yabuuchi, E. Block, and D. L. Palmquist.2003. Effect of feeding calcium salts of long-chain fatty acids, from palm fatty acid distillate or soybean oil, to high producing dairy cows on milk yield and composition, and on selected blood and reproductive parameters. Anim. Feed Sci. Technol.108:25-41.
    Marcos, E., A. Mazur, P. Cardot, and Y. Rayssiguier.1990. Serum apolipoproteins B and A-I and naturally occurring fatty liver in dairy cows. Lipids.25:575-577.
    Mashek, D.G., K. L. Ingvartsen, J. B. Andersen, M. Vestergaard, and T. Larsen.2001. Effects of a four-day hyperinsulinemic-euglycemic clamp in early and mid-lactation dairy cows on plasma concentrations of metabolites, hormones, and binding proteins. Domest. Anim. Endocrinol.21:169-185.
    McBride, K. W.2000. Influence of dietary ethoxyquin on performance, health status, antioxidant capacity, and ammonia emissions from manure of feedlot steers. M. S. thesis. West Texas A&M Univ., Canyon.
    McCutcheon, S. N., and D. E. Bauman.1986. Effect of chronic growth hormone treatment on responses to epinephrine and thyrotropin-releasing hormone in lactating cows. J. Dairy Sci.69:44-51.
    McNamara, S., F. P. O'Mara, M. Rath, and J. J. Murphy.2003. Effects of different transition diets on dry matter intake, milk production, and milk composition in dairy cows. J Dairy Sci.86:2397-2408.
    McNamara, S., T. Butler, D. P.Ryan, J. F. Mee, P. Dillon, F. P. O'Mara, S. T. Bulter, D. Anglesey, M. Rath, and J. J. Murphy.2003. Effect of offering rumen-protected fat supplements on fertility and performance in spring-calving Holstein-Friesian cows. Anim. Reprod. Sci.79:45-56.
    Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider.1979. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. J Agric Sci,93:317-222.
    Meydani, S. N., M. P. Barklund, and S. Liu.1990. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am. J. Clin. Nutr. 52:557.
    Miller, J. K., and E. Brezeinska-Slebodizinska.1993. Oxidative stress, antioxidants, and animal function. J. Dairy Sci.76:2812-2823.
    Minor, D. J., S. L. Trower, B. D. Strang, R. D. Shaver, and R. R. Grummer.1998. Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows. J. Dairy Sci.81:189-200.
    Morales, M. Sol, D. L. Palmquist, and W. P. Weiss.2000. Effects of fat source and copper on unsaturation of blood and milk triacylglycerol fatty acids in Holstein and Jersey cows. J. Dairy Sci.83:2105-2111.
    Morrow, J. D.2003. Is oxidant stress a connection between obesity and atherosclerosis? Arterioscler. Thromb. Vasc. Biol.23:368-370.
    Noble, R. C., J. C. O'Kelly, and J. H. Moore.1976. Observations on changes in lipid composition and lecitin-cholesterol-acyl transferase reaction of bovine plasma induced by heat exposure. Lipids.8:216-223.
    NRC.2001. Nutrient Requirements of Dairy Cattle.7th ed. Natl. Acad. Sci., Washington, DC.
    Obel, A. L.1953. On a nutritive liver disease in pigs:so-callled toxic liver dystrophy. Schweiz Z Pathol Bakteriol.16:619-623.
    O'Boyle, N., C. M. Corl,J. C. Gandy; and L. M. Sordillo.2006. Relationship of body condition score and oxidant stress to tumor necrosis factor expression in dairy cattle. Vet. Immunol. Immunopathol.113:297-304.
    O'Farrell, S., and M. J. Jackson.1997. Dietary polyunsaturated fatty acids, vitamin E and hypoxia/reoxygenation-induced damage to cardiac tissue. Clin. Chim. Acta. 267:197-211.
    Olsson, G., M. Emanuelsson, H. Wiktorsson.1997. Effects on milk production and health of dairy cows by feeding different ratios of concentrate/forage and additional fat before calving. Acta Agric. Scand., A Anim. Sci.47:91-105.
    Onetti, S. G., R. D. Shaver, M. A. McGuire, and R. R. Grummer.2001. Effect of type and level of dietary fat on rumen fermentation and performance of dairy cows fed corn silage-based diets. J. Dairy Sci.84:2751-2759.
    Oviedo-Boyso, J., J. J. Valdez-Alarcon, M. Cajero-Juarez, A.Ochoa-Zarzosa, J. E. Lopez-Meza, A. Bravo-Patino, and V. M. Baizabal-Aguirre.2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect.54:399-409.
    Palmquist, D. L., N. St-Pierre, and K. E. McClure.2004. Tissue fatty acid profiles can be used to quantify endogenous rumenic acid synthesis in lambs. J. Nutr. 134:2407-2414.
    Piccione, G., M. Borruso, C. Giannetto, M. Morgante, and E. Giudice.2007. Assessment of oxidative stress in dry and lactating cows. Acta Agric. Scand. A Anim. Sci.57:101-104.
    Pottier, J., M. Focant, C. Debier, G. De Buysser, C. Goffe, E. Mignolet, E. Froidmont, and Y. Larondelle.2006. Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. J. Dairy Sci. 89:685-692.
    Relling, A. E., and C. K. Reynolds.2007. Feeding rumen-inert fats differing in their degree of saturation decreases intake and increases plasma concentrations of gut peptides in lactating dairy cows. J. Dairy Sci.90:1506-1515.
    Rukkwamsuk, T., T. Wensing, and M. J. H. Geelen.1999. Effect of overfeeding during the dry period on the rate of esterification in adipose tissue of dairy cows during the periparturient period. J. Dairy Sci.82:1164-1169.
    SAS Institute.2000. SAS User's Guide. Statistics. Version 8.01. SAS Inst., Inc., Cary, NC.
    Sechen, S. J., F. R. Dunshea, and D. E. Bauman.1990. Somatotropin in lactating cows-effect on response to epinephrine and insulin. Am. J. Physiol. 258:E582-E588.
    Sgorlon, S., G. Stradaioli, G. Gabai, and B. Stefanon.2008. Variation of starch and fat in the diet affects metabolic status and oxidative stress in ewes. Small Rumin. Res.. 74:123-129.
    Shaver, R. D.1997. Nutritional risk factors in the ethiology of left displaced abomasum in dairy cows:a review. J. Dairy Sci.80:2449-2453.
    Shiota, M., H. Konishi and K. Tatsumi.1999. Oxidative stability of fish oil blended with butter. J Dairy Sci.82:1877-1881.
    Sies, H., W. Stahl, and A. Sevanian.2005. Nutritional, dietary and postprandial oxidative stress. J. Nutr.135:969-972.
    Skidmore, A. L., K. A. M. Peeters, C. J. Sniffen, and A. Brand.2001. Monitoring dry period management. In:A. Brand, J. P. T. M. Noordhuizen, and Y. H. Schukken (Eds.), Herd Health and Production Management in Dairy Practice.Wageningen Press, pp.171-201.
    Smith, J. L., L. G. Sheffield, and D. Saylor.2002. Impact of ethoxyquinon productivity of dairy cattle. J. Dairy Sci.85:(Suppl.1):358 (Abstr.).
    Smith, W. A., and B. Harris, Jr.1993. The influence of type of forage on the production response of lactation dairy cows supplemented with different types of fat. Prof. Anim. Sci.8:7-21.
    Snitynskyj, V. V., H. L. Antoniak, and V. I. Bershadskyi.1996. The age-related changes in the antioxidant system enzymes of the erythroid cells of swine at the early stages of postnatal development. Fiziol. Zh.42,19-25.
    Sordillo, L. M., and S. Aitken.2009. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol.128:104-109.
    Sordillo, L. M., N. O'Boyle, J. C. Gandy, C. M. Corl, and E. Hamilton.2007. Shifts in thioredoxin reductase activity and oxidant status in mononuclear cells obtained from transition dairy cattle. J. Dairy Sci.90:1186-1192.
    Staprans, I., X. M. Pan, J. H. Rapp, and K. R. Feingold.1998. Oxidized cholesterol in the diet accelerates the development of aortic atherosclerosis in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol.18:977-983.
    Stefanon, B., M. Colitti, G. Gabai, C. H. Knight, and C. J. Wilde.2002.Mammary apoptosis and lactation persistency in dairy animals. J. Dairy Res.69:37-52.
    Stokes, S. R., and J. P. Goff.2001. Evaluation of calcium propionate and propylene glycol administered into the esophagus at calving. Prof. Anim. Sci. 17:115-122.
    Tesfa, A. T., M. Tuori, L. Syrjala-Qvist, R. Poso, H. Saloniemi, K. Heinonen, K. Kivilahti, T. Saukko, and L. A. Lindberg.1999. The influence of dry period feeding on liver fat and postpartum performance of dairy cows. Anim. Feed Sci. Technol. 76:275-295.
    Thatcher, W. W., and C. R. Steples.2000. Effect of dietary fat supplementation on reproduction in lactating cows. Adv. Dairy Technol.12:213-232.
    Trevisan, M., R. Browne, M. Ram, P. Muti, J. Freudenheim, A. N. Carosella, and D. Armstrong.2001. Correlates of markers of oxidative status in the general population. Am. J. Epidemiol.154:348-356.
    Trout, J. P., L. E. Mcdowell, and P. J. Hansen.1998. Characteristics of the estrous cycle and antioxidant status of lactating Holstein cows exposed to heat stress. J. Dairy Sci.81:1244-1250.
    Turk, R., D. Juretic, D. Geres, A. Svetina, N. Turk, and Z. Flegar-Mestric.2008. Influence of oxidative stress and metabolism adaptation on PON1 activity and MDA level in transition dairy cows. Anim. Reprod. Sci.108:98-106.
    Tuzun, A., A. Erdil, V. Inal, A. Aydm, S. Bagci, Z. Ye(?)ilova, A. Sayal, N.Karaeren, and K. Dagalp.2002. Oxidative stress and antioxidant capacity in patient with inflammatory bowel disease. Clin. Biochem.35:569-572.
    Vandehaar, M. J., G. Yousif, B. K. Sharma, T. H. Herdt, R. S. Emery, M. S. Allen, and J. S. Liesman.1999. Effect of energy and protein density of prepartum diets on fat and protein metabolism of dairy cattle in the periparturient period. J. Dairy Sci. 82:1282-1295.
    Van Soest, P. J., J. B. Bobertson, and B. A. Lewis.1991. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci.74:3583-3597.
    Vazquez-Anon, M., S. Bertic, M. Luck, R. R. Grummer, and J. Pinheiro.1994. Peripartum liver triglyceride and plasma metabolites in dairy cows. J. Dairy Sci. 77:1521-1528.
    Vazquez-Anon, M. and T. Jenkins.2007.-Effects of-feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen, and fatty acid metabolism. J. Dairy Sci.90:4361-4867.
    Vazquez-Anon, M., J. Nocek, G. Bowman, T. Hampton, C. Atwell, P. Vazquez,.and T. Jenkins.2008. Effects of feeding a dietary-antioxidant in diets with oxidized fat on lactation performance and antioxidant status of the cow. J. Dairy Sci. 91:3165-3172.
    Vecera, R., N. Skottova, P. Vana, L. Kazdova, Z. Chmela, Z. Svagera, D. Walterova, J. Ulrichova, and V. Simanek.2003. Antioxidant status, lipoprotein profile and liver lipids in rats fed on high-cholesterol diet containing currant oil rich in n-3 and n-6 polyunsaturated fatty acids. Physiol. Res.52:177-187.
    Veth, M. J. de, S. K. Gulati, N. D. Luchini, and D. E. Bauman.2005. Comparison of calcium salts and formaldehyde-protected conjugated linoleic acid in inducing milk fat depression. J. Dairy Sci.88:1685-1693.
    Visser, B. M., J. G. Linn, S. M. Godden, and M. L. Raeth-Knight.2002. Effects of prefresh diet and post parturition drenching on early lactation performance of multiparous Holstein cows. J. Dairy Sci.85 (Suppl.1):186. (Abstr.)
    Warntjes, J. L., P. H. Robinson, E. Galo, E. J. Depeters, and D. Howes.2008. Effects of feeding supplemental palmitic acid (C16:0) on performance and milk fatty acid profile of lactating dairy cows under summer heat. Anim. Feed Tech.140:241-257.
    Wolfenson, D., W. W. Thatcher, L. Badinga, J. D. Savio, R. Meidan, B. J. Lew, R. Braw-Tal, and A. Berman.1995. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod.52:1106-1113.
    Yarru, L. P., R. S. Settivari, E. Antoniou, D. R. Ledoux, and G. E. Rottinghaus.2008. Effects of aflatoxin, curcumin, and their combination on the expression of liver antioxidant, immune and biotransformation genes in broiler chicks. Poultry Sci. (Suppl.1)87:170 (Abstr.).
    Ye, J. A., C. Wang, H. F. Wang, H. W. Ye, B. X. Wang, H. Y. Liu, Y. M. Wang, Z. Q. Yang, and J. X. Liu.2009. Milk production and fatty acid profile of dairy cows supplemented with flaxseed oil, soybean oil, or extruded soybeans. Acta Agric. Scand. A Anim. Sci.59:121-129.
    Yeom, K. H., J.T. Schonewille, and A.C. Beynen.2005. Fatty acid composition of plasma lipids and erythrocytes in adult goats in positive energy balance fed diets containing either olive or corn oil. Small Rumin. Res.58:25-32.
    Young, J. F., K. R. Rosenvold, J. Stagsted, J. H. Nielsen, and H. J. Andersen.2005. Significance of vitamin E supplementation, dietary content of polyunsaturated fatty acids, and preslaughter stress on oxidative stress in pig as reflected in cell integrity and antioxidative enzyme activities in porcine muscle. J. Agric. Food Chem. 53:745-749.
    Yu, B. P.1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev.74:139-162.
    Zhang, X. Y., Y. L. Tan, L. Y. Cao, G. Y. Wu, Q. Xu, Y. Shen, and D. F. Zhou.2006. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res.81:291-300.
    Zoetendal, E.G., A. D. L. Akkermans, W. M. de Vos.1998. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol.64:3854-3859.
    蔡亚非,杜娟,张利军,等.2005.热应激奶牛外周血淋巴细胞凋亡相关基因表达及血液学分析.动物学报.51:286-293.
    陈小连,王佳堃,刘建新,等.2008.实时荧光定量PCR对瘤胃纤维分解菌定量方法的构建.中国畜牧杂志.44:36-40.
    方允中,郑荣梁.自由基生物学的理论与应用.2002.科学出版社:北京.
    冯番,甄二英,许晴.2007.奶牛围产期营养与产后病.饲料博览.7:36-37.
    侯志高,王振勇,柴同杰,等.2008.不同精粗比日粮对奶牛机体氧化应激和瘤胃内环境稳定性的影响.畜牧兽医学报.39:455-459.
    黄益民,赵辉,虞欣,等.1997.自由基损伤红细胞膜分子的机理研究.生物物理学报.13:315-323.
    李红梅,李艳飞,夏成,等.2005.不同能量摄入对奶牛肝脏PC和PEPCKmRNA 表达水平的影响.中国农业科学.38:2515-2519.
    李宏强,许善锦,李燕,等.1994.活性氧与蛋白多样的作用及损伤的蛋白多糖对矿化过程的影响.生物化学与生物物理学报.26:303-308.
    李静,刘班,刘成玉.2006.红细胞膜脂质过氧化损伤及其作用机制.青岛大学医学院学报.42:90-94.
    刘仕军,王加启,卜登攀,等.2007.日粮添加植物油籽对乳脂脂肪酸的影响.中国农业科学.40:1248-1253.
    刘艳琴,高洁,高玉红,等.1999.炎热夏季奶牛日粮中添加脂肪酸钙对热应激影响的研究.草食家畜.105:37-39.
    滕佳伍,高玉鹏,穆淑琴,等.2005.过瘤胃脂肪在反刍动物中的应用研究.中国畜牧兽医.32:3-5.
    熊一力,邬堂春.1995.高温对大鼠热应激蛋白的影响.中华航空医学杂志.6:202-204.
    徐遂伟,郭赛华.2001.饲料中抗氧化剂抗氧化能力的测定.饲料博览.4:25-26.
    杨凤.主编.动物营养学.2000.中国农业出版社:北京.
    于玲玲,朱晓萍,岳春旺,等.2008.硒和脂肪酸对绵羊血浆和红细胞膜脂肪酸组成及抗氧化的影响.中国农业科学.41:564-569.
    张春梅.2008.植物油及十八碳不饱和脂肪酸对瘤胃甲烷生成和微生态的影响.浙江大学博士学位论文.
    张德莉,朱圣姬,罗光富,等.2004.自由基与DNA氧化损伤的研究进展.三峡大学学报.26:563-567.
    钟丽.2006.自由基及抗氧化添加剂的研究.广东饲料.15:18-20.
    周庆安,李云甫,张君慧,等.2002.保护性脂肪在反刍动物营养中的应用.中国油脂.27:77-79.
    祝兴林,王哲,夏成,等.2006.胰岛素受体mRNA在新生犊牛组织中的表达.中国兽医科技.35:786-789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700