用户名: 密码: 验证码:
青海省柴木铁路冻土低温热棒应用条件和效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏铁路建设实践证明,“冷却地基”是保证多年冻土区路基工程稳定性的有效方法和关键技术,热棒路基可以作为冻土区铁路路基一种有效的工程结构应用。柴木多年冻土区未进行过任何热棒路基工程的试验研究工作,相关研究文章鲜见报道。由于冻土环境地质条件对热棒路基的工程效果影响不尽相同,因此青藏铁路对热棒制冷效果的研究只是一种借鉴,更多的问题应该结合柴木地方铁路具体环境条件进行针对性研究,才能保证这种结构形式的合理性和科学性,为长期可靠运营提供可靠的技术支撑。
     本文在柴木铁路连续两年冻土区气候环境和多年冻土地温监测数据的基础上,分析了该区的寒区环境和冻土条件,通过现场试验和分析计算,研究了热棒应用技术的各项参数、热棒冷却地基效果、柴木铁路热棒路基的长期冷却效果及填土路基潜在病害温度场及其应对措施等各项内容,取得了如下创新性成果:
     (1)通过柴木地区气候环境和多年冻土地温数据分析,发现该地区有较强的年过余冻结能力和冻结数,接近甚至超过了青藏铁路沿线部分地区;寒季较深土层地温(热棒蒸发段主要埋设深度)高于柴木多年冻土区气温,具备热棒应用条件;
     (2)通过热棒现场试验研究,发现单支热棒对周围冻土具有较好的冷却效果;在热棒路基各路肩孔地表以下1.0m及更深土层负积温总量远远大于天然孔处天然地表的负积温值,热棒路基结构起到了冷却、储冷的作用;
     (3)在最大融化季节,热棒实验断面坡脚孔相同深度地温较无热棒断面低,而热棒对路基的冷却作用不明显;与各自断面天然孔比较,热棒断面浅层地表各钻孔地温相对较低,体现了热棒制冷作用,而无热棒断面各位置钻孔与天然孔地温非常接近,甚至高于天然孔地温;
     (4)通过对热棒实验断面的变形监测及数据分析,发现无热棒断面路基变形随着时间推移具有较大的波动性,其最大变形量可达236mm,热棒断面的路基变形相对较小,也较为稳定,其最大变形量均值仅为53mm,说明热棒路基具有更佳的稳定性;
     (5)考虑年平均气温为-5.3℃,未来50年气温升高2.6℃条件下,数值分析了普通路基与热棒路基未来50年的地温场变化规律,结果显示,通过热棒与非热棒路基左、右坡脚和路基中心地温对比可知,在未来50年,热棒对冻土路基起到了很好的降温效果,冻土地温有明显下降,最大融化深度有所抬升;
     (6)在考虑年平均气温为-5.3℃,每年气温升高0.052℃的条件下,对3m高度填土路基进行温度场模拟分析,在未来20年里,路基基底均存在不对称分布的融化盘,可能会造成填土路基纵向断裂病害的发生;热棒路基运行第4年,热棒路基基底不对称融化盘消失,而填土路基融化盘仍然存在,说明热棒的埋设能够较好的减少不对称融化盘的存在时间,热棒的埋设能够较大的减小路基融沉断裂的风险。
The construction of Qinghai-Tibet Railway has proved that cooling foundation is the key technology ensuring the stability of embankment in permafrost regions, and heat pipe embankment can be applied to railway embankment in permafrost regions as an effective engineering structures. Research about heat pipe engineering structure in the regions has not been in any progress and research articles related to them has still rare appeared. Due to different geological conditions and permafrost environment on the application technical parameters of heat pipe and engineering effect, investigations on heat pipe during Qinghai-Tibet Railway construction can be referenced for the Chaidaer-Muli Railways, but More issues about heat pipe in the local railway should be combined with specific environmental conditions, and rational and scientific structure can be ensured, then long-term reliable technical support for operation can be provided.
     Climatic environment and permafrost conditions of Muli region are analysed in this paper, based on climate and permafrost temperature data during two years, through field test analysis and calculation, technology and embankment parameters of heat pipe are investigated. The cooling effect on embankment is studied, and the long-term cooling effect on embankment is discussed, then potential failure temperature field of filling embankment is discovered and at the same time response measures are proposed by numerical simulation. Innovative results obtained are as follows:
     (1) Freezing capacity and frost number in Chaidaer-Muli regionis is close to and even exceeded those in some areas along the Qinghai-Tibet Railway by analysing climate and permafrost temperature data in the region. Temperature of deep soil layer in winter season is higher than the climatic temperature in the permafrost regions. Heat pipe can operate well on the conditions.
     (2)A single heat pipe has a good cooling effect on surrounding permafrost, the total of accumulated negative temperature of over 1.0m soil layer below surface at embankment shoulder is much larger than the corresponding layer temperature below natural surface,and heat pipe play a cooling and cold storage role, by field test.
     (3) In the greatest thawing season, the same soil layer temperature of slope toe at heat pipe section is lower than the non-heat-pipe section, while cooling effect of heat pipe on embankment is not obvious. Shallow soil layer temperature of heat pipe embankment is lower than the respective natural soil layer temperature, while temperature of non-heat-pipe embankment is very close to and even higher than the natural temperature. That prove cooling effect.
     (4) The maximum deformation of 53mm of heat pipe embankment is more lower than 236mm of non-heat-pipe embankment by deformation monitoring and data analysis, and deformation amount of non-heat-pipe embankment has a greater fluctuation with the seasons, showing that heat pipe embankment has a better stability.
     (5) In conditions of the annual average climatic temperature of-5.3℃and global warming in the next 50 years, geothermal field characteristics of heat pipe and non-heat-pipe is analysed by numerical analysis, the results show that heat pipe has a good cooling effect on embankment, ground temperature is lowered obviously and the maximum thawing depth is uplifted by comparing temperature of left, right slope toe and center of heat pipe embankment with those of non-heat-pipe.
     (6) In conditions of the annual average temperature of-5.3℃and increasing of 0.052℃very year in the next 20 years, there will be an asymmetric distribution of thawbowl under 3m high embankment, which is main reason to produce vertical fracture. In the next 4 years, the elimination of thawbowl under embankment shows heat pipe can shorten existing time of thawbowl and reduce risk of thawing and fracture largely.
引文
[1]周幼吾,郭东信,邱国庆,程国栋,李树德.中国冻土[M].北京:科学出版社.2002.
    [2]秦大河(总主编),丁一江(主编).中国西部环境演变评估(第二卷).中国西部环境变化的预测[M].北京:科学出版社.2002.
    [3]张鲁新.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响[J].中国铁道科学,2000,21(1):36-47.
    [4]程国栋.我国高海拔多年冻土地带性规律之探讨[J].地理学报,1984,39(2):230-239.
    [5]周幼吾,王银学,高兴旺,等.我国东北部冻土温度和分布与气候变暖[J].冰川冻土.Vol.18(增刊),1996.
    [6]程国栋,李培基,张祥松,等.气候变化对中国积雪、冰川和冻土的影响评估[M].兰州:甘肃文化出版社.1997:56-62.
    [7]王小军,曾辉辉,等.青藏铁路多年冻土区次生不良冻土现象的调查分析[J].铁道工程学报,2003,(增刊):1-4.
    [8]Douglas J. Goering. ACE and thermosyphon design features Loftus Road Extension Project[R]. Alaska Department of Transportation and public facilities.2001,11.
    [9]章金钊,霍明,陈建兵.多年冻土地区公路路基稳定性技术问题与对策[M].北京:人民交通出版社.2008.
    [10]丁靖康.多年冻土的工程性质和工程施工[R].兰州中铁西北科学研究院.2001.
    [11]冉理.青藏高原铁路的设计与研究[A].青藏铁路学术研讨会论文集.2001
    [12]臧恩穆,吴紫汪,朱林楠.多年冻土退化与道路工程[M].兰州:兰州大学出版社.1999.
    [13]吴青柏,童长江.冻土变化与青藏公路的稳定性问题[J].冰川冻土,1995,4(12):270-279.
    [14]吴青柏,李新,李文君.全球气候变化下青藏公路沿线冻土变化响应模型的研究[J].冰川冻土,2001,23(1):1-6.
    [15]Ding Yongjian. Recent degradation of permafrost in China and the response to climate warming[A]. Proceedings of the 7th International Conference on permafrost, Yellowknife, Canada, University Laval.1998,225-230.
    [16]王绍令.冻土退化与青藏高原冻土环境问题探讨[A].见:第五届全国冰川冻土学大会论文集(上册).兰州:甘肃文化出版社,1996.11-17.
    [17]吴青柏,程国栋,马巍.多年冻土变化对青藏铁路工程的影响[J].中国科学D辑,2003,33(增):115-122.
    [18]Nan Z T, Gao Z S, Li S X, Wu T H. Permafrost changes in the northern limit of permafrost on the Qinghai-Tibet plateau in the last 30 years[J]. Acta Geographica Sinica,2003,58(6):817-823.
    [19]Wu T W, Li S X, Cheng G D, Nan Z T. Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau[J].Cold Regions Science and Technology,2005, 41:211-219.
    [20]李述训,程国栋.气候变暖条件下青藏高原高温冻土热状况变化趋势的数值模拟[J].冰川冻土,1996,增刊:323-330.
    [21]李东庆,吴紫汪,等.多年冻土退化的数值模拟计算[A].第五届全国冰川冻土学大会论文集(下册),兰州:甘肃文化出版社.1999,1230-1238.
    [22]C.C.维亚洛夫.利用热棒人为地使土冷却[M].童伯良等译自
    [23]程国栋,何平.多年冻土地区线性工程建设[J].冰川冻土,2001,23(3):213-217.
    [24]程国栋.用冷却地基的方法修建青藏铁路[J].中国铁道科学,2003,23(3):35-41.
    [25]马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究[J].冰川冻土,2002,24(5):579-587.
    [26]Jahns H O.1984. Pipelines thermal considerations [A]. Final proceedings of Fourth Int. Conf. on Permatronst,100-105.
    [27]Johnston G H. Permafrost Engineering Design and Construction[M]. John Wiley & Sons, Toronto,1981.
    [28]Zarling J P.Thermosyphon Applications in Cold Regions[A]. Proceedings of 4th international Symposium on Thermal Engineering & Science for Cold Regions, CRREL, Hanonver, New Hampshire, USA.1993,24-35.
    [29]Ryokai K, Fukuda M, Tsuchiya F. Mochizuki M.Low Temperature Storage by the means of heat pipe[J]. Cold Region Technology Conference,1987,25 (3):22-26.
    [30]Heuer C E, Long E L, and Zarling J P. Passive techniques for ground temperature control. Thermal Considerations in Frozen Ground Engineering[J]. Monograph Series by ASCE Technical Council on Cold Regions Engineering, New York,1985,72-78.
    [31]Biyanov G F et. Characteristic of construction of frozen dams in western yakutiya[A]. Proceedings of 3rd Int. Conf. on Permafrost,1978,280-284.
    [32]Ferrians O J. Pipelines in the Northern U. S. S. R[A]. Final Proceeding of Fourth Int. Conf. on Permafrost,1984,98-99.
    [33]Ding Jingkang et al. Application of thermolplple to culvert engineering in permafrost region[A]. Proceedings of 6th Int.Conf. on Permafrost,1993,138-142.
    [34]Smith L B, Graham J P, Nixon J F, Washuta A S. Thermal analysis of force-air and thermosyphon cooling system for the Inuvik airport expansion[J]. Can. Geothch. J.1991,28:399-409.
    [35]Anna F, Long E L, Zarling J P, Knutsson S. Thermosyphon cooling of Chena Hot Springs Road[J]. Cold Regions Engineering,2002,33(5):645-655.
    [36]Z arling J P, Connor B, and Goering D J. Air duct systems for roadway stabilization over permafrost areas. Alaska Department of Transportation and Public Facilities[R]. Report No. FHWA-AK-RD-84-10.1984, 37-48.
    [37]KEARY A C, BO WEN R J. Analytical study of the effect of natural convection on cryogenic pipe freezing[J].International Journal of Heat Mass Transfer.1998,41(10):1129-1138.
    [38]Casas A J, Ovejero A M L. Numerical analysis of a closed-loop thermosyphon including the soret effect[J]. Applied Mathematics and Computation,2001,124(4):289-298.
    [39]Ishihara I, Fukui T, Matsumoto R. Natural convection in a vertical rectangular enclosure with symmetrically localized heating and cooling zones[J]. International journal of heat and fluid flow 2002,23(3):366-372.
    [40]Wadowski T, Akbarzadeh A and Johnson P. Characteristics of a gravity-assisted heat pipe-based heat exchanger[J]. Heat Recovery Systems& CHP,1991,11 (1):69-77.
    [41]Minhas H, Lock G S H and Mu M. Flow characteristics of an air-filled bayonet tube under laminar conditions[J]. International Journal of Heat and Fluid Flow,1995,16(3):186-193.
    [42]Jiang Y Y, Shoji M. Thermal convection in a porous toroidal thermosyphon[J]. International journal of heat and mass transfer,2002,45(16):3459-3470.
    [43]Fan C, Wu C, Qiao Q, Niu L, Liu B. Application of thermosypnons to stabilize foundations of electric power equipment in cold regions[C]. American society of mechanical engineering (paper),95-WA/HT-45, 1995,3-10.
    [44]Zarling J P andBraley W A. Geotechnical thermal analysis Embankment design and construction in cold regions[J]. Technical Council on Cold Regions Engineering, ASCE, New York, NY,1988,35-42.
    [45]Denhartog S L. A thermosyphnon for horizontal applications[J]. Cold Regions Science and Technology. 1988,15(5):319-321.
    [46]McFadden T, et al. Bethel airport thermosyphon study final report[R]. State of Alaska Department of Transportation and Public Facilities Statewide Research.1989,1.
    [47]Long E, Misterek P, Zarling J. Project name:Highway stabilization with thermosyphon[R].1998.
    [48]Project name:HAARP Antemma[R]. Location:Gakona,Alaska Owner:US Navy,1989.
    [49]Edward Y, Elizabetrh Jr., Phillips C. Operation and maintenance of the frozen barrier at the HRE Pond[R].1991.
    [50]Mobley A K F and Barlow B L J. Analysis of flooding effects on a landfill permafrost containment system[M]. Phillips M, Springman S M, Arenson,2003:146-152.
    [51]Heuer C E. The Appilcation of Heat pipes on the Trans-Alaska Pipeline[R].CRREL Special Report, 1979,79:26-27.
    [52]Mckenna J K and Biggar K W. The rehabilitation of a passive-ventilated slab on grade foundation using horizontal thermosyphons[J]. Can. Geotech. Journal,1998,35:684-691.
    [53]McFadden T. Interim Report on the Performance of the thermosyphon-protected Highway Section at Bethel, Alaska[R]. Alaska Department of Transportation and public facilities.1992.2
    [54]Leong W U A and Hornby R P. The application of a CFD code (ASTEC) and a network code (Penheat) in analyzing the thermosyphonic behavior of argon gas in a long vertical annulus[J]. Applied Mathematical Modelling,1996,3:136-145.
    [55]Smith L B, Graham J P, Nixon J F. Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, Abstracts,1992,29(2):117-126.
    [56]Bradley G P, Yamark E. Passive thermal stabilization of the Bethel Runway-A construction view[J]. Alberta,Canada,1984,16(1):34-41.
    [57]Zarling J P, Connor B, and Goering D J. Air duct systems for roadway stabilization over permafrost areas[R]. Alaska Department of Transportation and Public Facilities. Report No. FHWA-AK-RD-84-10. 37,1984.
    [58]铁道第一勘察设计院,中铁西北科学研究院.青藏铁路试验工程科研项目阶段成果报告:路基新结构试验研究—热棒路基试验研究[R].2002.12.
    [59]吴存真,孙志坚,潘阳.应用热棒技术解决寒区地基冻胀问题的理论研究.浙江大学学报(自然科学版),2002,24(3):305-311.
    [60]庄骏,张红.热棒技术及其工程应用[M].北京:化学工业出版社,2000.
    [61]潘卫东,赵肃昌.热棒技术加强高原多年冻土区路基稳定性的应用研究[J].冰川冻土,2003,25(4):433-438.
    [62]曹元平.热棒技术在青藏铁路试验段中的应用[J].铁道工程学报,2003,增刊:478-483.
    [63]铁道部科学研究院西北研究所.冻土地区热桩技术的应用[R].铁道部科学研究院研究报告,1990.
    [64]江苏中圣石化有限公司.加固青藏铁路冻土路基用低温热棒的技术条件[R],2003.2
    [65]中铁西北科学研究院,航天科工哈尔滨风华有限公司.研究报告:青藏铁路冻土热棒的传热分析[R].2003.7.
    [66]潘阳.热棒解决土体冻胀问题的数值分析及应用研究[J].华东交通大学学报,1998,15(4):386-394.
    [67]吴青柏、梁素云、高兴旺.热桩与空气间的对流换热规律研究[J].冰川冻土,1996,18(1):37-42.
    [68]庄骏.热棒技术应用研究[R].SINOPEC第二届传热研究与换热设备开发交流会.1991.
    [69]Li Xiulun, Wen Jiaping, Shan Yankun. Condensing heat transfer in an advanced two-phase closed thermosyphon[J]. Chinese Journal of Chemical Engineering,1996,4(1):85-89.
    [70]杨永平.热棒(桩)冷却多年冻土地基效果的分析研究[D].北京:北京交通大学,2006.
    [71]青藏铁路公司.青藏铁路公司热棒技术规格和验收标准(暂行稿)[S].2003.9.
    [72]Gaugler R S. Heat transfer device[Z]. U. S. Patent,2350348. Dec.21,1942, June 6,1944.
    [73]Grover G M, Cotter T P and Erikson G F. Structure of very high thermal conductance[J]. Appl. Phys. 1964,35(6):466-475.
    [74]Edward A F. Heat transfer characteristics of the two-phase closed thermosyphon (wichless heat pipe) including direct flow observation[D]. Arizona State University.1980.
    [75]Lock G S H, Fu J. Performance of a right-angled, evaporative thermosyphon[A]. Proceedings of the International offshore Mechanics and Arctic Engineering symposium. Arctic/Polar Technology,1992,4: 145-148.
    [76]Payakaruk T, Terdtoon P, Ritthidech S. Correlations to predict heat transfer characteristics of an inclined two-phase thermosypnon at normal operating conditions[J]. Applied thermal engineering,2000,20(6): 781-790.
    [77]Lock G S H and Kirchner J D. Some characteristics of the inclined, closed tube thermosyphon under low Rayleigh number conditions[J]. International Journal of Heat and Mass Transfer,1992,35(1):165-173.
    [78]Lock G S H, Chong K, Dyckerhoff A, Huyer J. On the design of wind-augmented thermosyphons. Cold Regions Science and Technology[J].1989,16(1):11-23.
    [79]Gholami M M. Investigation of effect of inclination angle on the transport behavior of a two-phase thermosyphon[J]. Journal of Cold Region Science and Technology,2003,30(2):123-132.
    [80]Bernier M A, Baliga B R. 1d/2-d model and experimental results for a closed-loop thermosyphon with vertical heat transfer sections[J]. International Journal of heat and mass Transfer,1992,35(11):2969-2982.
    [81]Zuo Z J, Gunnerson F S. Effect of thermosyphon size reduction on heat transfer performance[A]. Proceedings of the ASME-JSME Thermal Engineering Joint Conference,1995,2:51-59.
    [82]Chen SHYH-JOU. Reflux condensation and operating limits of the two-phase closed thermosyphon [D].University of California, Berkeley.1984.
    [83]Lavine A G. A Three dimensional analysis of natural convection in a toroidal loop (thermosyphon)[D]. University of California Berkeley.1984.
    [84]Niro,Alfonso;Beretta,Gian Paolo. Evaluation of the liquid charge for a closed two-phase thermosyphon[J]. American Society of Mechanical Engineers,Heat Transfer Division. Heat pipes and Thermosyphons, 1992,1:29-36.
    [85]Monde,Masanori;Mihara,Schinichi;Inoue,Toshiaki.Analytical study of critical heat of a two-phase thermosyphon.Nippon Kikai Gakkai Ronbunshu[R].B Hen/Transactions of the Japan Society of Mechanical Engineers, I993,4:Part B.
    [86]Randy Clarksean. Experimental analysis of natural convection within a thermosyphon[J]. Experimental thermal and fluid science,1993,7(2):133-143.
    [87]Zhou X and Collins RE. Measurement of condensation heat transfer in a thermosyphon[J]. International Journal of Heat and Mass Transfer,1991,34(2):369-376.
    [88]Zhou X & Collions R E. Condensation in a gas-loaded thermosyphon[J]. International Journal of Heat & Mass Transfer,1995,38(9):1605-1617.
    [89]Wadowski T, Akbarzadeh A and Johnson P. Characteristics of a gravity-assisted heat pipe-based heat exchanger[J]. Heat Recovery Systems and CHP,1991,11(1):69-77.
    [90]KEARY A C, BO WEN R J. Analytical study of the effect of natural convection on cryogenic pipe freezing[J].International Journal of Heat Mass Transfer.1998,41(10):1129-1138.
    [91]Angela Jimenez Casas, Alfonso Matias Lozano Ovejero. Numerical analysis of a closed-loop thermosyphon including the soret effect[J]. applied mathematics and computation,2001,124(3):289-298.
    [92]Ishihara I, Fukui T, Matsumoto R. Natural convection in a vertical rectangular enclosure with symmetrically localized heating and cooling zones[J]. International journal of heat and fluid flow,2002,23(3):366-372.
    [93]Jiang Y Y, Shoji M. Thermal convection in a porous toroidal thermosyphon[J]. International journal of heat and mass transfer,2002,45(16):3459-3470.
    [94]Edward A F. Heat transfer characteristics of the two-phase closed thermosyphon (wichless heat pipe) including direct flow observation[D]. Arizona State University.1980.
    [95]Charles V, Kok C J, Jim B W. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon[J]. International Journal of Heat and Mass Transfer,1992,35(6): 1419-1426.
    [96]Hichem F, Joly J L, Miscevic M P, Nathalie M. An experimental and theoretical investigation of the transient behavior of a two-phase closed thermosyphon[J]. Applied thermal Engineering,2003, 23(15):1895-1902.
    [97]Haynes F D and Zarling J P. Heat transfer performance of commercial thermosyphons with inclined evaporator sections[A]. Proceedings of the Seventh International Conference on Offshore Mechanics and Arctic Engineering,1988,4:275-280.
    [98]Zarling J P, Haynes F D and Gagnon J J. Thermal stabilization of permafrost with thermosyphons[A]. ASME 9th International Conference on Offshore Mechanics and Arctic Engineering, Houston,1990, Ⅳ: 323-328.
    [99]Haynes F D, Zarling J P, Gooch G E, Zabilansky L. Laboratory tests with a 37-m thermosyphon in soil[C]. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, Arctic/Polar Technology,1992,563-574.
    [100]Paterson,Lincoin;Schlanger,Harry.P.Convection in a porous thermosyphon imbedded in a conducting medium[J].International Journal of Heat and Mass Transfer,1992,35(4):877-886.
    [101]Yau Y H. Theoretical determination of effectiveness for heat pipe heat exchangers operating in naturally ventilated tropical buildings[C].Proceedings of the Institution of Mechancal Engineers, Part A:Journal of Power and Energy,2001.
    [102]潘阳,吴存真.饱和水土体冻结过程中与热棒耦合传热的数值分析[J].江西科学.1998,16(3):223-230.
    [103]Denhartog S L. A thermosyphnon for horizontal applications[J]. Cold Regions Science and Technology. 1988,15(4):319-321.
    [104]Yarmak Jr E and Long E L. Recent developments in thermosyphon technology [A]. Cold Regions Engineering, Cold Regions impacts on Transportation and Infrastructure. Proceedings of the Eleventy International Conference, May,2002.
    [105]Λ.Λ.瓦西里耶夫,Λ.П.格拉科维奇,B.П.科瓦利科夫.用倾斜热棒冻结土的效果[M].童伯良译自俄“地基基础与力学”1983.20-21.
    [106]Mobley A K F and Barlow B L J. Analysis of flooding effects on a landfill permafrost containment system[J].Phillips M, Springman S M, Arenson,2003,32(3):345-352..
    [107]Terry McFadden.Using soil temperatures to monitor thermosyphon performance[J]. Journal of cold regions engineering,1987,1(4):145-157.
    [108]廖胜明.治理冻土病害热棒路基技术及其在青藏高原铁路中的应用[J].中国科技成果,2009,10(9):9-10,14
    [109]孙立平.青藏铁路多年冻土区热棒的施工技术[J].冰川冻土,2007,29(1):39-44.
    [110]李永强.青藏铁路多年冻土区热棒路基的设计计算[J].铁道工程学报,2007,0(11):1006-1012.
    [111]严朝阳.热棒技术在青藏铁路多年冻土地段路基中的应用[J].铁道建筑,2005,0(9):70-71.
    [112]李永强,吴志坚,王引生,孙军杰.青藏铁路冻土路基热棒应用效果试验研究[J].中国铁道科学,2008,29(6):6-11.
    [113]李宁,魏庆朝,葛建军.青藏铁路热棒路基结构形式及工作状态分析[J].北京交通大学学报(自然科学版),2006,30(4):22-25,30.
    [114]盛煜,温智,马巍,吴基春.青藏铁路多年冻土区热棒路基温度场三维非线性分析[J].铁道学报,2006,28(6):125-130.
    [115]温智,盛煜,马巍,吴基春.青藏铁路保温板热棒复合结构路基保护冻土效果数值分析[J].兰州大学学报:自然科学版,2006,42(3):14-19.
    [116]潘卫东,贾海锋.青藏高原风火山试验路基地温场演化规律研究[A].青藏铁路学术研讨会论文集.2001.
    [117]徐兵魁,熊治文.青藏高原多年冻土区热棒路基设计计算[J].中国铁道科学,2006,27(5):17-22.
    [118]青藏铁路公司.热棒设计研究与工程应用[M].重庆:科学技术文献出版社重庆分社,1981.
    [119]程红彬,青藏铁路冻土区低温热管应用关键技术研究[D].北京:中国科学院研究生院,2007.
    [120]谢应钦.青藏高原多年冻土发育的气候条件[A].第二届全国冻土学术会议论文选集.兰州:甘肃人民出版社.1983.
    [121]王绍令,赵秀锋,郭东信,等.青藏高原冻土对气候变化的响应[J].冰川冻土,1996,18(增刊)157-165.
    [122]铁道部科学研究院西北分院等.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响研究报告[R].2000.
    [123]Zuo Z J, Gunnerson F S. Numerical modeling of the steady-state two-phase closed thermosyphon [J]. International Journal of Heat Mass Transfer,1994,37(17):2715-2722.
    [124]Alfonso N, Paolo B G. Evaluation of the liquid charge for a closed two-phase thermosyphon[R]. American Society of Mechanical Engineers, Heat Transfer Division, Heat pipes and Thermosyphons, 1992.
    [125]Masanori M, Shinichi M, Toshiaki I. Analytical study of critical heat flux of a two-phase thermosyphon. Nippon Kikai Gakkai Ronbunshu[A]. B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,1993,59:1258-1264.
    [126]Clarksean R. Experimental analysis of natural convection within a thermosyphon[J]. Experimental thermal and fluid science,1993,7(2):133-143.
    [127]Li H, Akbarzadeh A, Johnson P. Thermal characteristics of a closed two-phase thermosyphon at low temperature difference[J]. Heat Recovery System & CHP,1991,11(6):533-540.
    [128]郭宽良.计算传热学[M].北京:中国科学技术大学出版社,1989.
    [129]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [130]侯宪军.多年冻土区热棒路基工作原理与施工技术[J].山西建筑,2008,34(4):285-286.
    [131]郭赞,廖胜明.高原高温冻土区铁路路基的热稳定性模拟分析[J].路基工程,2008,0(2):1003-1007.
    [132]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [133]Tomasz Kozlowski. Soil freezing point as obtained on melting[J]. Cold Regions Science and Technology,2004,38(2/3):93-101.
    [134]Lincoin P and Harry S P. Convection in a porous thermosyphon imbedded in a conducting medium[J]. International Journal of Heat and Mass Transfer,1992,35 (4):877-886.
    [135]#12
    [136]童伯良,李树德.青藏高原多年冻土的某些特征及其影响因素[A].青藏冻土研究论文集.北京:科学出版社,1983,1-11.
    [137]铁道第一勘查设计院.新建铁路青藏线格尔木至拉萨段西大滩至安多多年冻土区综合地质报告[R].兰州,2001.
    [138]张鲁新.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响[J].中国铁道科学,2000,21(1):36-41.
    [139]程国栋,江灏,王可丽,等.冻土路基表面的融化指数与冻结指数[J].冰川冻土,2003,25(6):603-607.
    [140]吴紫汪.高原多年冻土地区地温曲线的基本类型与工程应用地温参数的计算方法[A].青藏冻土研究论文集.北京:科学出版社.1983.
    [141]孙全平,曹鑫杰.碳钢-萘热棒的试验研究[A].全国第三届热棒会议论文集.1985.
    [142]勒明聪,陈远国.热棒及热棒换热器[M].重庆:重庆大学出版社,1986.
    [143]Nelson F E, Anisimov O A, and Shiklomanov N I. Subsidence risk from thawing permafrost[J]. Nature, 2001,410,889-890.
    [144]米维军,贾燕.确定热棒制冷影响范围的新方法[J].路基工程,2007,0(1):20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700