用户名: 密码: 验证码:
钢筋混凝土结构易损性分析与地震风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是地壳板块释放能量的自然现象,随着印度洋板块不断的北移挤压欧亚板块,未来在我国中西部地区发生高强度地震的风险仍然较高,对此我们需要保持高度的警惕。因此如何评估这一地区未来可能的地震对该地区生命线工程造成的损伤风险,进而避免人民生命财产的损失,就是一个非常值得深入探讨并且非常紧迫的战略性课题。
     在地震灾害发生过后,建筑物的损害评估扮演重要的角色,影响人民居住安全,但这种评估方式都只仅限于震后的救灾,如何在灾害发生前就可以做出事先的灾害评估,甚至可以避免重大的损失,又会是另一种对地震灾害的思考方式,也就是地震危害损失评估。
     针对某一具体地区的地震损失评估模型的构建不仅有利于预测地震发生后对该地区经济社会人口所造成的影响,同时也有助于降低和缓解灾害发生时的风险,我们可以参考这样一个损失模型来构建我们生存的环境和设计建造重要的生命线工程。对不同类型的结构是否进行维护加固决策也可以提供有价值的参考性意见。
     结构的易损性能研究实际上是基于性能的设计思想的重要一部分,是基于性能的设计思想的必然延续。
     利用地震风险性分析所得结果以及强震测站所得资料建立了我国中西部地区风险性概率反应谱,并考虑反应谱的频率内涵及随机相位角后采用编制的程序拟合产生了非稳态初始人工地震波,再通过与规范反应谱进行比较后将优化后的人工地震波作为结构损伤评估的外在输入。
     对钢筋混凝土框架结构的损伤参数进行了系统的总结,通过建立典型三层钢筋混凝土非延性和延性框架样本结构进行了动力非线性分析计算,通过将其它损伤参数与本文提出的建议易损性参数进行对比,证明了建议易损性参数完全可以较准确的反映出结构的实际损伤水平。
     对我国规范与目前重要的地震风险评估软件HAZUS2003系统关于建筑物的分类进行了比较,并列举出国外对钢筋混凝土结构进行损伤限值分级的物理描述以及对应于层间位移角的限值损伤水平值,在此基础上本文提出了针对我国中西部地区的钢筋混凝土结构损伤水平定义表和限值损伤建议值。
     通过实地调查选取了我国中西部地区典型四、六和八层钢筋混凝土框架结构,在假设材料统计量、部分重力荷载服从正态概率分布的前提下,选取120条人工地震时程记录并结合一部分实际发生的代表性地震记录,形成1800个结构体系-地震动样本,分别运用增量动力方法和动力时程方法对此类结构进行了详细的抗震性能和动力损伤计算分析并得到了该类型结构的分析易损性曲线;同时针对原型结构采用了基础隔震加固措施,计算得到了对应的隔震结构的分析易损性曲线,进一步分析比较了原型结构与对应的隔震结构的损伤概率。
     对我国中西部地区的典型框剪结构、大型钢筋混凝土排架结构工业厂房的易损性运用同样的方法也进行了详细的动力时程分析计算,在国内首次得到了该类结构的分析易损性曲线。
     对我国的地震保险概况进行了论述,在国内率先计算得到了依据我国典型结构分析易损性曲线的该类型结构保险费率,为分析易损性曲线的实际应用扩展了领域,并将计算得到的基于地震烈度的房屋损失价值率和保险费率与08年汶川地震后地震灾区同类型房屋的损伤情况进行了对比,从而间接验证了本文计算得到的分析易损性曲线具有较好的理论指导价值。
     对目前比较常见的软钢斜撑消能加固旧钢筋混凝土框架结构与层间隔震结构的抗震易损性能,本文也选择了相应代表性结构对其进行了简略的非线性动力分析计算其易损性,并与前面的典型结构分析易损性曲线进行了比较分析。
With Indian plate moved to north continuously and squeezed Asian plate, Wenchuan earthquake was happened in May,12,2008, at the same time many thousands people's life were been taken away and the whole West China economy also been destroyed deeply. Now people are still anxious that high risk of the same large earthquake in the region of West China is not decreased after two years. So how to evaluate reliability and vulnerability of the lifeline systems for future earthquake in the area and search reasonable design practice of seismic strengthening of these buildings is urgent mission.
     Vulnerability assessment of buildings act important role when a region injured by earthquake, but the job is generally been carried out post earthquake, How to put out vulnerability assessment before natural disaster occurred and even avoid huge loss is another thinking about earthquake. and this is seismic fragility and disaster risk analysis.
     Earthquake loss evaluation model (ELEM) of a given region be created is not only forecast influence about economy and society post natural disaster but also reduce seismic risk, we can make up lifeline systems based the ELEM and moreover result of seismic vulnerability can guide whether to be worth in carried out seismic strengthening such an based-isolated technology for the injured buildings.
     The seismic vulnerability research is actual important part of perform based seismic design (PBSD), and the research work is inevitably lasting along perform based seismic design theory.
     The representative response spectrum of West China is been built and fit unsteady initial stochastic record in consideration of characteristic of frequency and random angle of phase position. The actual applied stochastic wave is be created after initial wave optimized with code spectrum.
     System conclusion about vulnerability parameter through two kind of classical sample RC buildings dynamic inelastic analysis, the result in contrast of others vulnerability index revealed that proposed vulnerability index (PPI) in article is absolutely response fragility level of buildings.
     Buildings catalogue also been compared between China code and HAZUS2003 from Federal Emergency Management Agency (FEMA), at the same time list physical describe of damage level and limit states overseas research, the article titled damage level catalogue table and limit states to aim at West China on the basis of the result.
     The representative four, six and eight storey RC building on the basis of a lot of survey in region of West and Central China are been selected, and assuming material character and part of load abbey of normal distribution in premise,90 stochastic records compatible with the response spectrum of China seismic code and several famous earthquake records also been selected to represent the variability in ground motion. So forming 1350 frame system-earthquake records, Increment dynamic analysis and dynamic history analysis are been used separately and seismic performance and inelastic damage deformation have been found out, analytical vulnerability curve have been also obtained including not only original buildings but also seismic strengthening buildings.
     The representative RC-shear wall buildings and industrial buildings are been selected and seismic vulnerability analysis been made based dynamic history method, the analytical vulnerability curves are been obtained firstly in homeland.
     The seismic performance and vulnerability of strengthen old structures with mild steel diagonal bracing damper and mid-story seismic isolation and reduction were also been analysed, seismic capacity and vulnerability of after strength and original building were been compared.
     Discussion of earthquake insurance of homeland is going on and contrasting with overseas, the specific ratio of earthquake insurance is been taken the lead in accordance with computed analytical vulnerability curves in homeland, the value of the loss based theoretical vulnerability analysis and actual site survey post Wenchuan earthquake were been compared and result is fitted very well each other and demonstrated computed analytical vulnerability curve of classical buildings in West China is correct and have significant theoretical guidance.
引文
[1]国家减灾委员会及科技部抗震救灾专家组.汶川地震灾害综合分析与评估[M].科学出版社.2008,12
    [2]建设部.工程抗震设计规范(GB50011-2001)[S].北京.中国建工出版社.2002
    [3]Safar, M. Ghobarah, A. A simplified Deformation-Based Seismic Vulnerability Assessment Approach[C],First European Conference Earthquake Engineering and Seismology, Geneva, Switzerland,2006,pp.11
    [4]Safar, M. Ghobarah, A. Inelastic Response Spectrum for Simplified Deformation-Based Seismic Vulnerability Assessment [J], Journal of Earthquake Engineering,2007,4:
    [5]SEAOC. Vision 2000,Performance Based Seismic Engineering of Buildings Conceptual Framework[S]. Volumes:Ⅰ and Ⅱ,Structural Engineers Association of California, Sacramento, California.1995
    [6]FEMA273.Guidelines for the Seismic Rehabilitation of Buildings[S]. Federal Emergency Management Agency, Washington, D.C.1997
    [7]Applied Technology Council(ATC-40). Seismic Evaluation and Retrofit of Concrete Buildings[S].Vol 1.California Seismic Safty Commission, Redwoood City.CA.1996,Nov
    [8]FEMA. HAZUS99 Technical Manual[S]. Federal Emergency Management Agency, Washington, DC, U.S.A.1999
    [9]HAZUS-MH MR1. Multi-Hazard Loss Estimation Methodology:Earthquake Model, Department of Homeland Security, FEMA, Washington D.C.,2003
    [10]Huang, T.H. Scribner, C.F. Reinforced ConcreteMember Cyclic Response during Various Loadings[J].Jounal of the Structural Division, ASCE,1984,116:477-487
    [11]Stephens, J.E. Yao, J.T.P. Damage Assessment Using Response Measurement.Journal of Structural Engineering[J], ASCE,1987,113(4):787-801
    [12]YJ.Park, H.S.Ang. Mechanistic Seismic Damage Model for Reinforced Concrete[J].Jounal of Structural Engineering, ASCE,1985, 111(4):722-739
    [13]Park, Y. Reinhorn, A.and Kunnath, S. Inelastic damage analysis of reinforced concrete frame shear-wall structures[R]. National Center for Earthquake Engineering Research.State University of New York.Buffalo.NY,1987
    [14]Kunnath,S. Reinhorn, A.and Park,Y. Analytical Modeling of Inelastic Seismic Response of RC Structures[J]. Journal of Structural Engineering,1990,116(4):996-1017
    [15]Bracci, J.M. Reinhorn, A.M. and Mander, J.B. Deterministic Model for Seismic Damage Evaluation of RC Structures[R]. Technical Report No NCEER-89-0033, National Center for Earthquake Engineering Research.State University of New York.Buffalo.NY,1987
    [16]Whitman, R.V. Reed, J.W. and Hong, S.T. Earthquake Damage Probability Matrices[C], Proceedings of the Fifth World Conference on Earthquake Engineering, Rome, Italy,1973,12: 2531-2540.
    [17]Braga, F. Dolce, M. and Liberatore, D.A Statistical Study on Damaged Buildings and an Ensuing Review of the MSK-76 Scale[C]. Proceedings of the Seventh European Conference on Earthquake Engineering. Athens, Greece.1982, pp.431-450.
    [18]Corsanego, A. and Petrini, V. Seismic Vulnerability of Buildings-Work in Progress[C].Proceedings of the Workshop II on Seismic Risk Vulnerability and Risk Assessment, Trieste, Italy,1990, pp.577-598.
    [19]Di Pasquale, G. Orsini, G. and Romeo, R.W. New Developments in Seismic Risk Assessment in Italy[J], Bulletin of Earthquake Engineering,2005,Vol.3, No.1, pp.101-128.
    [20]Miyakoshi J, Hayashi Y, Tamura K, Fukuwa N. Damage ratio functions of buildings using damage data of the 1995 Hyogoken-Nanbu earthquake[J].1997.
    [21]Yamazaki,F. and Murao,O. Vulnerability Functions for Japanese Buildings Based on Damage Data from 1995 Kobe Earthquake[M].in Implications of Recent Earthquakes on Seismic Risk,Imperial College Press,2000,pp.91-102
    [22]Orsini, G. A Model for Buildings'Vulnerability Assessment Using the Parameterless Scale of Seismic Intensity (PSI) [J]. Earthquake Spectra,1999, Vol.15, No.3, pp.463-483.
    [23]Rafaela Cardoso, Mario Lopes, Rita Bento. Seismic evaluation of old masonry buildings. Part I: Method description and application to a case-study [J]. Engineering Structures 2005,27: 2024-2035
    [24]Rita Bento, Mario Lopes, Rafaela Cardoso. Seismic evaluation of old masonry buildings. Part Ⅱ:Analysis of strengthening solutions for a case study[J]. Engineering Structures 2005,27: 2014-2023.
    [25]Giuliano Augusti. Seismic vulnerability of monumental buildings[J]. Structural Safety 2001,23: 253-274
    [26]Eunsoo Choi. Reginald DesRoches. Seismic fragilityof typical bridges in moderate seismic zones[J]. Engineering Structures 2004,26:187-199
    [27]Manolis Papadrakakis. Vissarion Papadopoulos. Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach and neural network[J]. Structural Safety 2008,30:217-235.
    [28]K.R.Karim, F.Yamazaki. Effect of Earthquake Ground Motions on Fragility Curves of Highway Bridge Piers Based on Numerical Simulation[J]. Earthquake Engineering and Structural Dynamics,2001,30:1839-1856.
    [29]Gardoni,P. Mosalam,K.M. and Der. Kiureghian,A. Probabilistic Seismic Demand Models and Fragility Estimates for RC Bridges[J]. Journal of Earthquake Engineering,2003,7:79-106.
    [30]Priestley M.J.N, Seible F. and Calvi G.M, Seismic Design and Retrofit of Bridges[M], John Wiley & Sons Inc., New York.1996
    [31]Kursat Kinali. Bruce R. Ellingwood. Seismic fragility assessment of steel frames for consequence-based engineering:A case study for Memphis[J]. Engineering Structures 2007,29: 1115-1127
    [32]Assawin Wanitkorkul. Andr'e Filiatrault. Influence of passive supplemental damping systems on structural and nonstructural seismic fragilities of a steel building[J]. Engineering Structures 2008,30:675-682
    [33]K. H. Lee. D. V. Rosowsky. Fragility analysis of woodframe buildings considering combined snow and earthquake loading [J]. Structural Safety 2006,28:289-303
    [34]Mosalam,K. Ayala,G. White,R.and Roth,C. Seismic Fragility of LRC Frame with and without Masonry inhill Walls[J]. Journal of Earthquake Engineering,1997,(4:693-720.)
    [35]Paolo Gardonil; A. D. Kiureghian. Probabilistic Capacity Models and Fragility Estimates for Reinforced Concrete Columns based on Experimental Observations [J]. Journal of Engineering Mechanics,2002,10:1024-1038.
    [36]M. A. Erberik, Amr S. Elnashai, Fragilityanaly sis of flat-slab structures[J]. Engineering Structures 2004,26:937-948
    [37]T. Rossetto, Amr Elnashai, A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures[J]. Engineer Structures 2005,27:397-409
    [38]M. S. Kircil, Z. Polat, Fragility analysis of mid-rise R/C frame buildings[J]. Engineering Structures 2006,28:1335-1345
    [39]B. Borzi, R. Pinho, H. Crowley, Simplified pushover-based vulnerability analysis for large-scale assessment of RC buildings[J]. Engineer Structures 2008,30:804-820
    [40]J. Enrique Martinez-Rueda, A. S. Elnashai, A novel technique for the retrofitting of reinforced concrete structures [J]. Engineering Structures, Vol.17, No.5, pp.359-371,1995
    [41]Jun Ji, Amr S. Elnashai, Daniel A. Kuchma, An analytical framework for seismic fragility analysis of RC high-rise buildings [J]. Engineering Structures2007,29:3197-3209
    [42]Kenneth A. G F, Gian M.GM, Maximiliano A.AI, A seismic vulnerability index for confined masonry shear wall buildings and relationship with the damage[J]. Engineering Structures, Feb.2008
    [43]M. Altu"g Erberik, Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey [J], Engineering Structures 2008,30:1360-1374
    [44]Mehrdad Sasani, Armen Der Kiureghian, Vitelmo V. Bertero. Seismic fragility of short period reinforced concrete structural walls under near-source ground motions[J]. Structure safety, 2002,24:123-138
    [45]Nikos D Lasaros, Probabilistic fragility analysis:A tool for assessing design rules of RC buildings[J]. Earthquake engineering and engineering vibration,2008, vol7-1
    [46]I. Engin Bala, Helen Crowleyb, Rui Pinhoc, F. Gu" lay, Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models[J], Soil Dynamics and Earthquake Engineering 28 (2008) 914-932
    [47]Ryan J. Williams, Paolo Gardoni, Joseph M. Bracci, Decision analysis for seismic retrofit of structures [J], Structural Safety,2008
    [48]Esra Mete Gu neyisi, Gulay Altay, Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes[J], Structural Safety 30 (2008) 461-480
    [49]Kursat kinali, Seismic fragility assessment of steel frames in the central states[D], PhD Thesis. Georgia Institute of Technology,2007.5
    [50]Crisafulli F.J., Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills [D]. PhD Thesis.University of Canterbury. New Zealand.1997
    [51]Paulos B.Tekie, Fragility analysis of concrete gravity dams [D], PhD Thesis. John Hopkins University. Baltimore Maryland,2001.12
    [52]Luis F.ibarra, Global collapse of frame structures under seismic excitation [D], PhD Thesis, Stanford University,2003
    [53]Elnashai A, Borzi B, Vlachos S. Deformation-based vulnerability functions for RC bridges. Struct Eng Mech,2004,26(2):187-199
    [54]O.C. Celik, B. R. Ellingwood. Seismic fragilities for non-ductile reinforced concrete frames-Role of aleatoric and epistemic uncertainties [J]. Structural Safety,2009,in press.
    [55]D.E. Choe, P. Gardoni, D. Rosowsky, T. Haukaas. Seismic fragility estimates for reinforced concrete bridges subject to corrosion [J]. Structural Safety,2009,31:275-283
    [56]G. M. Verderame, M.Polese, E.Cosenza. Vulnerability of existing R.C. buildings under gravity loads:A simplified approach for non sway structures [J]. Engineering Structures,2009,in press
    [57]J. Park, P.Towashiraporn, J.I. Craig, B.J.Goodno. Seismic fragility analysis of low-rise unreinforced masonry structures [J]. Engineering Structures,2009,31:125-137
    [58]Banon, H. Biggs, J.M. Seismic Damage in Reinforced Concrete Frames[J]. Journal of Structural Divisions, ASCE,1981,107:1713-1729
    [59]张令心,汪近仁,多层住宅砖房的地震易损性研究[J],地震工程与工程振动,2002,vol22-1
    [60]张令心,高淼,王瑞,按新旧规范设计的多层住宅砖房地震易损性的对比[J],地震工程与工程振动,2007,vol27-6
    [61]尹之潜,赵直,建筑物易损性和地震损失与地震加速度谱值的关系[J],地震工程与工程振动,2003,vol23-4
    [62]陶正如,陶夏新,基于地震动参数的建筑物震害预测[J],地震工程与工程振动,2004,vol24-2
    [63]吕大刚,李晓鹏,王光远,基于可靠度和性能的结构整体地震易损性分析[J],自然灾害学报,2006,vol15-2
    [1]Gutenberg, B., Richter, C. F., Frequency of Earthquake in California, Bull. Seism.Soc. Amer. 1991,V34:185-188.
    [2]Cornell, C. A., Engineering Seismic Analysis, Bull. Seism. Soc. Am.,1968, Vol.58:1583-1606.
    [3]Cornell, C. A., Winterstein, S. R., Temporal and Magnitude Dependence in Earthquake Recurrence Models, Bull. Seism. Soc. Amer.1988, Vol.78(4):1522-1537.
    [4]Kiureghian, A., Ang, A. S. A Fault-Rupture Model for Seismic Risk Analysis. Bull. Seism. Soc. Am.,1977, Vol.67:1173-1194.
    [5]Kiureghian, A. S., Anagnos, T., Stochastic Slip-Predictable Model for Earthquake Occurrence, Bull. Seism. Soc. Amer.1984, Vol.74:739-755.
    [6]Kiureghian, A. S., Suzuki, S., A Stochastic Model for Site Ground Motions From Temporally Dependent Earthquakes, Bull. Seism. Soc. Amer.1987, Vol.77, No.4:1110~1126.
    [7]Kiremidjian, A. S., Shah, H. C., Probabilistic Site-Dependent Response Spectra,Journal of the Structural Division,1980, Vol.106:69-86
    [8]Anagnos, T., Kiureghian, A. S., A Review of Earthquake Occurrence Models for Seismic Hazard Analysis, Probabilistic Engineering Mechanics,1988, Vol.3(1):3~11.
    [9]Tsai, C. C., Loh, C. H., Yeh, Y. T., Analysis of Earthquake Risk in Taiwan Based on Seismotectonic Zones, Memoir of the Geological Society of China,1987,9:413-446
    [10]Kanai, K., An Empirical Formula for the Spectrum of Strong Earthquake Motion,Bulletin of Earthquake Research Institute, Tokyo,1961, Vol.39:85~95.
    [11]Joyner, W. B., Boore D. M., Measurement, Characterization and Prediction of Strong Ground Motion, Earthquake Engineering,1978, P.43-102.
    [12]Joyner, W. B., Boore D. M., Peak Horizontal Acceleration and Velocity from Strong-Motion
    Records Including Records from the 1979 Imperial Va lley.California, Earthquake, Bull. Seism. Soc. Amer.,1981, Vol.71:2011-2038.
    [13]Campbell, K. W., Near Source Attenuation of Peak Horizontal Acceleration, Bull.Seism. Soc. Amer.,1981, Vol.71:2039~2070.
    [14]蒋溥等著.地震小区划概论,地震出版社,1990年
    [15]胡聿贤著.地震工程学,地震出版社,1988
    [16]Tijimi,H.A.,Statistical Mehtod of Determining the Maximum Response of a Building Structure During an Earthquake,Proc.2nd.WCEE,1980
    [17]孙景江、汪近仁.与规范反应谱对应的金井清谱的谱参数.世界地震工程,1990(1)
    [18]李杰、李国强.地震工程学导论.地震出版社,1992
    [19]Mortgat, C. P., Shah, H. C., A Bayesian Model for Seismic Hazard Mapping, Bull.Seism. Soc. Amer.1979, V69 (4):1237~1251.
    [20]Chiang, W. L., Guidi, G. A., Mortgat, C. P., Schoof, C. C., Shah, H. C., Computer Programs for Seismic Hazard Analysis-A User Manual,1984, John A. Blume Earthquake Engineering Center, Report No.62.
    [21]Applied Technology Council(ATC-40). Seismic Evaluation and Retrofit of Concrete Buildings[S].Vol 1.California Seismic Safty Commission, Redwoood City.CA.1996,Nov
    [22]Dalal, J. S., Probabilistic Seismic Exposure and Structural Risk Evaluation,Technical Report No.169, Department of Civil Engineering, Stanford University,1973.
    [23]Clough, R. W., Penzien, J., Dynamics of Structures, McGraw-Hill Book Inc.,1993
    [24]Lin, Y. K., Probability Theory of Structural Dynamics, McGraw-Hill Book Inc.,1967
    [25]Paz, M., Structural Dynamics-Theory and Computation, Van Nostrand Reinhold Company Inc.,1985
    [26]Hu, Y. X., Liu, S. C., Dong, W. M., Earthquake Engineering, E & FN Spon,1996
    [27]Kaul, M.K., Stochastic Characterization of Earthquake through Their Response Spectrum, Earthquake Engineering and Structural Dynamics,1978,Vol.6(5):497-509
    [28]Ohsaki, Y., On the Significance of Phase Content in Earthquake Ground Motions, Earthquake Engineering and Structural Dynamics, Vol.7, No.5,1978
    [29]Amin, M., Ang, A. S., Non-stationary Stochastic Model of Earthquake Motions,Journal of American Society of Civil Engineers,1968, Vol.94, No. EM2
    [30]Murphy JR, O'Brien LJ. The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bull Seismol Soc Am 1977;67:877-915.
    [31]Husid,R.L. Analisis de Terremotos:Analisis General, Revista de IDlEM. Santiago Chile,1969,Vol.8(1):21-42
    [32]Trifunac,M.D.et.al. A study on the Duration of Strong Earthquake Ground Motion.BSSA, 1975,Vol.65(2)
    [33]Trifunacc,M.D and Brady,A.G.On the Correlation of Peak Accelaration of Strong Motion with Earthquake Magnitude Epicentral Distance and Site Condition Proc.US Nat.Conf. Earthquake Engineering,1975,43-52
    [34]Takizawa,H.et.al. Collapse of a Modal for Ductile Reinforced Concrete Frames under Extreme Earthquake Motion. EESD,1980,Vol8(2)
    [35]田启文、廖振鹏、孙平善.根据烈度资料估算我国地震动衰减规律.地震工程与工程振动,1986,16
    [36]郭玉学、王国新.华北地区基岩场地水平加速度的衰减规律.地震工程与工程振动.1990,1
    [37]欧进萍、牛荻涛、杜修力.设计用随机地震动模型及其参数的确定.地震工程与工程振动.1991,11(3)
    [38]杜修力、陈厚群.地震动随机模拟及其参数确定方法.地震工程与工程振动.1994,14(4)
    [39]杜修力、胡晓、陈厚群.强地震运动随机过程模拟.地震学报.1995,17(1)
    [40]王亚勇、李虹.考虑场地特征的强震地面运动参数的统计分析.地震工程与工程振动.1986,3
    [41]胡聿贤等.参考唐山地震确定的华北地区地震动衰减关系.土木工程学报.1986,3(19)
    [42]Hanks,T.C. et.al. A Moment Magnitude Scale. Journal of Geophysical Rearch,1979,Vol.84(85)
    [43]陈永祁.时程分析法中地震波的选择与可靠性分析.中国建筑科学院院建筑科学研究报告.1985
    [44]李大华.计算地震反应谱的连锁公式.地震工程与工程振动,1979,Vol10(2)
    [45]Vanmarke,E.H.et.al. Strong Motion Duration and RMS Amplitude of Earthquake. BSSA, 1980,Vol70(1)
    [46]Jennings PC. Housner GW. Tsai NC Simulated earthquake motions.Technical Report, Earthquake Engineering Research Laboratory, California Institute of Technology,1968
    [47]Yokoyama,N.et.al. Distribution of Phase Differences in Relation to the Earthquake Magnitude. Distance to the Fault and Local Soil Conditions. Proceeding of 9th WCEE,1988,Vol Ⅱ
    [48]Trifunac,M.D. Preliminary Empirical Model for Scaling Fourier Amplitude Spectra of Strong Ground Acceleration in terms of Earthquake Magnitude. Source-to Station Distance and Recording Site Conditions, BSSA,1976,Vol.66(4)
    [49]Trifunac,M.D. A Method for Synthesizing Realistic Strong Ground Motion. BSSA,1971, Vol.61 (5)
    [50]Kanamori,H. A Method for Synthesizing Realistic Strong Ground Motion, BSSA,1979, Vol.69(4)
    [51]汪近仁、洪峰.功率谱与反应谱的转换和人造地震波.地震工程与工程振动,1984,3
    [52]王前信.计算反应谱的一种简便方法.地震工程研究报告集第一集.科学出版社,1982
    [1]Applied Technology Council (ATC-40). Seismic Evaluation and Retrofit of Concrete Buildings[S].Vol 1.California Seismic Safty Commission, Redwoood City.CA.1996, Nov
    [2]Algan, B. Drift and Damage Considerations in Earthquake-Resistant Design of Reinforced Concrete Buildings, PhD thesis, Department of Civil Engineering, University of Illinois at Urbana Champaign,1982
    [3]Banon, H., Bigss, J.M., Irvine, H.M. Seismic Damage in Reinforced Concrete Frames, Journal of Structural Engineering, ASCE,1981, Vol.107 (9), pp.1713-1729.
    [4]Kircher, C., Nassar, A., Dustu, O., Holmes, W. Development of Building Damage Functions
    for Earthquake Loss Estimation, Earthquake Spectra,1997, Vol.13 (4), pp.663-642.
    [5]M. A. Erberik, Amr S. Elnashai, Fragilityanaly sis of flat-slab structures[J]. Engineering Structures 2004,26:937-948
    [6]Nikos D Lasaros, Probabilistic fragility analysis:A tool for assessing design rules of RC buildings[J]. Earthquake engineering and engineering vibration,2008, vol7-1
    [7]FEMA. HAZUS99 Technical Manual[S]. Federal Emergency Management Agency, Washington, DC, U.S.A.1999
    [8]HAZUS-MH MR1. Multi-Hazard Loss Estimation Methodology:Earthquake Model[S], Department of Homeland Security, FEMA, Washington D.C.,2003
    [9]Park, Y. J., Ang, A.H-S. Mechanistic Seismic Damage Model for Reinforced Concrete[J], Journal of Structural Engineering, ASCE,1985,Vol.111 (4), pp.722-739.
    [10]Park, Y. J., Ang, M., Wen Y. K. Seismic Damage Analysis of Reinforced Concrete Buildings[J], Journal of Structural Engineering, ASCE,1985,Vol.111 (4), pp.740-757.
    [11]Park, Y. J., Ang, M., Wen Y. K. Damage-Limiting Aseismic Design of Buildings[J], Earthquake Spectra,1987,Vol.3(1), pp.1-25.
    [12]Colombo,A. and Negro,P. A Damage Index of Generalised Applicability [J]. Engineering Structures,2005,27:1164-1174
    [13]Ghobarah,A.,Aboul-Elfath,H. and Biddah,A. Response-based Damage Assessment of Structures[J]. Earthquake Engineering and Structural Dynamics,1999,28(1):79-104
    [14]Ghobarah,A. Seismic Assessment of Existing RC Structures[C], Progress in Structural Engineering Materials,2000,2:60-71
    [15]Ghobarah,A. Performance-Bsed Design in Earthquake Engineering:State of Development[J], Review article,Engineering Structures,2001,23,878-884
    [16]Ghobarah,A.On Drift Limits Associated with Different Damage Levels.Proceedings of the Implementation Workshop on Performance-Based Seismic Design:Concepts and Implementation,Bled,Slovenia[R],PEER report 2004/05,Pacific Earthquake Engineering Research Center,College of Engineering,University of California,Berkeley,2004,pp.321-332
    [17]ACI-318. Building Code Requirements for Reinforced Concrete[S]. American Concrete Institute,Detroit.MI,1963
    [18]NBCC. National Building Code of Canada.Associate Committee on the National Building Code[S].National Research of Canada,Ottawa,1995
    [19]Roufaiel,M.S.L.and Meyer,C. Analysis of Damage Concrete Frame Buildings[R].Technical Report MSF-CEE-81-21359-1,Columbia University,New York,1981
    [20]Kunnath,S.K.,Reinhorn,A.M. and Park,Y.J. Analytical Modeling of Inelastic Seismic Response of R/C Structures. Journal of Structural Engineering,ASCE,1990,116(4):996-1017
    [21]Bracci,B. Reinhorn,A.M. Mander,J.B.and Kunnath,S.K. Deterministic Model for Seismic Damage Evaluation of RC Structuies. Technical Report No.NCEER-89-0033,National Center for Earthquake Engineering Research,State University of New York,Buffalo,NY,1989
    [22]Dipasquale,E.and Cakmak,A.S. Detection and Assessment of Seismic Structural Damge. NCEER 87-0015, National Center for Earthquake Engineering Research,State University of New York at Baffalo,NY,1987
    [23]Dipasquale,E.and Cakmak,A.S. Identification of Servicebility Limit State and Detection of Seismic Structural Damage. NCEER 88-0022,National Center for Earthquake Engineering Research,State University of New York at Baffalo,NY,1988
    [24]Dipasquale,E.and Cakmak,A.S. On the Relation between Local and Global Damage Indices. NCEER 89-0034, National Center for Earthquake Engineering Research,State University of New York at Buffalo,N.Y.,1989
    [25]Dipasquale,E.and Cakmak,A.S. Relation between Global Damage Indices and Local Stiffness Degradation. Journal of Structural Engineering.ASCE,1990,116(5),1440-1456
    [26]Chung,Y.S. Meyer,C.and Shinozuka,M. Automatic Seismic Design of Reinforced Concrete Building Frames.ACI Structural Journal,1987a,87(3)326-340
    [27]Chung,Y.S. Meyer,C.and Shinozuka,M. Seismic Damage Assessment of Reinforced Concrete Members. Technical Report no.NCEER-87-0022,National Center for Earthquake Engineering Research,State University of New York,Buffalo,NY,1987b
    [28]Chung,Y.S. Meyer.C.and Shinozuka,M.Modeling of Concrete Damage. ACI Structural Journal,1989,86(3),259-271
    [29]建设部.混凝土结构设计规范(GB50010-2001)[S].北京.中国建工出版社.2002
    [30]建设部.工程抗震设计规范(GB50011-2001)[S].北京.中国建工出版社.2002
    [31]Williams, M., Sexsmith, R. Seismic Damage Indices for Concrete Structures:A State-of-the-Art Review. Earthquake Spectra,1995,Vol.11 (2), pp.319-349.
    [32]Freeman,S.A. Development and Use of Capacity Spectrum Mehtod. Proceedings of 6th US National Conference on Earthquake Engineering.Seattle,Washington,U.S.A.,1998,Paper No.269
    [33]Freeman,S.A. Nicoletti,J.P.and Tyrell,J.V. Evaluations of Existing Buildings for Seismic Risk:A Case Study of Puget Sound Naval Shipard, Bremerton, Washington, Bekeley, U.S.A., 1975,pp.113-122
    [34]FEMA 273. Guidelines for the Seismic Rehabilitation of Buildings,Federal Emergency Management Agency. Reports FEMA 273 (Guidelines) and 274 (Commentary), Washington, D.C.,1997
    [35]张凡.高层建筑结构的Pushover分析方法及应用研究,硕士论文,西安建筑科技大学,西 安,2005
    [36]朱杰江、吕西林、容柏生.复杂体型高层结构的推覆分析方法和应用.地震工程与工程振动,2003,23(2):26-36
    [37]Antoniou S., Rovithakis A. and Pinho R. Development and verification of a fully adaptive pushover procedure. Proceedings of the Twelfth European Conference on Earthquake Engineering, London, UK,2002, Paper No.822.
    [38]Antoniou S. and Pinho R.Advantages and Limitations of Force-based Adaptive and Non-Adaptive Pushover Procedures, Journal of Earthquake Engineering,2004a,Vol.8, No.4, pp.497-522.
    [39]Antoniou S. and Pinho R. Development and Verification of a Displacement-based Adaptive Pushover Procedure, Journal of Earthquake Engineering,2004b, Vol.8, No.5, pp.643-661.
    [40]Casarotti C. and Pinho R. Seismic response of continuous span bridges through fibre-based finite element analysis, Journal of Earthquake Engineering and Engineering Vibration,2006, Vol.5, No.1, pp.119-131.
    [41]Casarotti C. and Pinho R. An Adaptive capacity spectrum method for assessment of bridges subjected to earthquake action, Bulletin of Earthquake Engineering,2007
    [42]Zhu TJ, Heidebrecht AC, Tso WK. Effect of peak ground acceleration to velocity ratio on ductility demand of inelastic systems. Earthq Eng Struct Dyn,1988,16:63-79.
    [43]Sawada T, Hirao K, Yamamota H, Tsujira O. Relation between maximum amplitude ratio and spectral parameters of earthquake ground motion. In:Proceedings of the 10th world conference on earthquake engineering, vol.2; 1992. p.617-22.
    [44]Naeim, F., Alimoradi, A. and Pezeshk, S., Selection and Scaling of Ground Motion Time Histories for Structural Design Using Genetic Algorithms, Earthquake Spectra, Earthquake Engineering Research Institute, Oakland, CA.,2004, Vol.20, No.2, pp.413-426,
    [45]Murphy JR, O'Brien LJ. The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bull Seismol Soc Am 1977;67:877-915.
    [46]Bertero W. Strength and deformation capacities of buildings under extreme environments.Structural Engineering and Structural Mechanics, Pister KS (ed); Prentice Hall: New Jersey,1977; 211-215.
    [47]Bazzurro P, Cornell CA. Seismic Hazard Analysis for Non-Linear Structures. Ⅰ:Methodology. ASCE Journal of Structural Engineering 1994; 120(11).
    [48]Vamvatsikos D, Cornell AC. Incremental dynamic analysis. Earthq Eng Struct Dyn 2002;31(3):491-514.
    [49]Nassar AA, Krawinkler H. Seismic Demands for SDOF and MDOF systems. Report No.95, The John A.Blume Earthquake Engineering Center, Stanford University, Stanford 1991;
    62-155.
    [50]Psycharis IN, Papastamatiou DY, Alexandris AP. Parametric investigation of the stability of classical comlumns under harmonic and earthquake excitations. Earthquake Engineering and Structura Dynamics 2000; 29:1093-1109.
    [51]国家减灾委员会及科技部抗震救灾专家组.汶川地震灾害综合分析与评估[M].科学出版社.2008,12
    [52]中国土木工程学会.汶川地震建筑震害调查与灾后重建分析报告[M].中国建筑工业出版社.2008,10
    [53]De Martino A., Faella C. and Mazzolani F.M. Simulation of Beam-to-Column Joint Behaviour under Cyclic Loads[J], Construzioni Metalliche,1984, Vol.6, pp.346-356.
    [54]Elnashai A.S. and Elghazouli A.Y. Performance of composite steel/concrete members under earthquake loading, Part Ⅰ:Analytical model[J], Earthquake Engineering and Structural Dynamics,1993, Vol.22, pp.315-345.
    [55]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
    [56]French C.W. and Moehle J.P. Effect of Floor Slab on Behavior of Slab-Beam-Column Connections[J]. Design of Beam-Column Joints for Seismic Resistance,SP-123,American Concrete Institute,Farmington Hills,Mich.,1991.225-258.
    [57]Madas P., Elnashai A.S. A new passive confinement model for transient analysis of reinforced concrete structures[J]. Earthquake Engineering and Structural Dynamics.1992.21:409-431.
    [58]Martinez-Rueda J.E. and Elnashai A.S. Confined concrete model under cyclic load, Materials and Structures,1997,Vol.30, No.197, pp.139-147.
    [59]Menegotto M. and Pinto P.E. Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending, Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland,1973,pp.15-22.
    [60]Filippou F.C., Popov E.P. and Bertero V.V. Modelling of R/C joints under cyclic excitations, Journal of Structural Engineering,1983,Vol.109, No.11, pp.2666-2684.
    [61]L'opez-Menjivar MA. Verification of a displacement-based Adaptive Pushover method for assessment of 2-D Reinforced Concrete Buildings.PhD thesis. Italy:European School for Advances Studies in Reduction of Seismic Risk (ROSE School), University of Pavia; 2004.
    [62]Casarotti C, Pinho R, Calvi GM. Adaptive pushover-based methods for seismic assessment and design of bridge structures, ROSE Research Report 2005/06. Pavia, Italy:IUSS Press; 2005.
    [63]Shome N, Cornell CA. Probabilistic seismic demand analysis of nonlinear structures. Ph.D. dissertation. Stanford:Stanford University; 1999.
    [64]中国工程建设标准化协会(CECS).叠层橡胶支座隔震技术规程[S].北京.中国建工出版社.CECS126:2001
    [65]建设部.建筑隔震橡胶支座(JG118-2000)[S].北京.中国建工出版社.2002
    [66]周福霖.工程结构减震控制[M].北京:地震出版社.1997
    [67]建设部.工程抗震设计规范(GBJ11-89)[S].北京.中国建工出版社.1989
    [68]建设部.建筑结构荷载规范(GB50009-2001)[S].北京.中国建工出版社.2002
    [69]Crisafulli F.J., Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills[D]. PhD Thesis.University of Canterbury. New Zealand.1997
    [70]日本建筑学会著.刘文光译.隔震结构设计[M].地震出版社.2006
    [1]国家减灾委员会及科技部抗震救灾专家组.汶川地震灾害综合分析与评估[M].科学出版 社.2008,12
    [2]Kunreuther, H. Insurance as an Integrating Policy Tool for Disaster Management:The Role of Public-Private Partnerships[J], Earthquake Spectra,1999,Vol.15 (4), pp.725-745.
    [3]曾立新.美国巨灾风险融资和政府干预研究[M].对外经济贸易大学出版社,北京,2008
    [4]姚国章.应急管理前沿书系—日本灾害管理体系:研究与借鉴[M].北京大学出版社.北京,2009
    [5]马玉宏.赵桂峰.地震灾害风险分析及管理[M].科学出版社.北京.2008
    [6]国家标准化委员会.地震现场工作第4部分:灾害直接损失评估(GB/T 18208.4-2005)[S].中国建工出版社,2005
    [7]孙祁祥.保险学[M].北京大学出版社.,2009,7
    [1]欧进萍.结构振动控制-主动、半主动和智能控制[M].科学出版社.2003
    [2]周福霖.工程结构减震控制[M].北京.地震出版社..1997
    [3]中国土木工程学会.汶川地震建筑震害调查与灾后重建分析报告[M].中国建筑工业出版社.2008,10
    [4]建设部.工程抗震设计规范(GB50011-2001)[S].北京.中国建工出版社.2002
    [5]Madas P., Elnashai A.S. A new passive confinement model for transient analysis of reinforced concrete structures[J]. Earthquake Engineering and Structural Dynamics.1992.21:409-431.
    [6]Menegotto M. and Pinto P.E. Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending, Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland,1973,pp.15-22.
    [7]刘瑞,李玉顺.极低屈服点钢材在耗能减震控制中的应用[J].低温建筑技术,2006,(2):52-53.
    [8]HAZUS-MH MR1. Multi-Hazard Loss Estimation Methodology:Earthquake Model[S], Department of Homeland Security, FEMA, Washington D.C.,2003
    [9]建设部.工程抗震设计规范(GBJ11-89)[S].北京.中国建工出版社.1989
    [10]黄襄云.层间隔震减震结构的理论分析和振动台试验研究[D].西安建筑科技大学博士论文.2008
    [11]建设部.混凝土结构设计规范(GB50010-2001)[S].北京.中国建工出版社.2002
    [12]中国工程建设标准化协会(CECS).叠层橡胶支座隔震技术规程[S].北京.中国建工出版社.CECS126:2001
    [13]日本建筑学会著.隔震结构设计[M].地震出版社.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700