用户名: 密码: 验证码:
油页岩及其半焦流化床燃烧N_2O生成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界范围内能源需求不断增长的今天,油页岩是一种非常重要的替代能源,其本身及所含页岩油都具有潜在的利用价值,寻求储量巨大的油页岩有效开发与经济利用的途径,进行热转化规律及工程应用研究,对于缓解能源供需矛盾,推动社会的发展,具有重大的现实意义。作为一种燃料油页岩的挥发分含量高,固定碳含量低,其热解、燃烧特性与常规煤种有很大差别,燃烧以挥发分为主,如桦甸油页岩挥发分的放热量为固定碳的2.57倍,有必要对油页岩这种燃料的特殊性开展深入研究。另外,对油页岩炼油废弃物,也即油页岩半焦的资源化利用,也是油页岩利用的重要研究内容。油页岩及其半焦应用于流化床燃烧实践中,氧化亚氮排放浓度高于一般煤粉炉,N_2O是一种破坏臭氧层的温室气体,是排在二氧化碳、甲烷之后的第三大温室气体。随着当前环保要求的日益提高,如何有效控制N_2O的排放是流化床燃烧急需解决的重要问题。
     本文基于以上对油页岩有效开发利用的实际问题分析,根据油页岩热转化的进程,研究了油页岩热解、燃烧反应机理,为深入剖析油页岩在流化床燃烧中N_2O的生成机理,通过油页岩及其半焦在基础流化床实验台及半工业流化床实验装置中的燃烧过程监测,得到终产物排放特性,所得连续燃烧下的运行参数用于进一步模拟N_2O的生成,分析模拟结果以得到生成N_2O的关键组分和反应步骤。
     油页岩热解过程的研究中,分析了油页岩的结构组成,进一步研究了油页岩热解条件下转化为不凝气、页岩油和页岩焦的过程,并对油页岩中含有的官能团如何转化进行了分析。通过改进的热天平实验台,采用气相色谱方法测量油页岩热解反应时不凝气的浓度。元素总量平衡模型,首先基于C、H、O、N、S各元素总量平衡方程,再通过建立页岩油族组成模型,得出油页岩热解产物中十种主要的气相组分含量,并与色谱实验结果进行对比,二者吻合较好。
     油页岩燃烧反应过程的研究中,建立了不凝气中可燃成分进行燃烧时的基元反应机理,建立含氮物HCN和NH_3的基元反应机理,对含氮中间产物分类并分析其转化路径,并得到了燃烧过程中各组分的转化路径图。在此基础上利用含氮前驱物HCN和NH_3的基元反应机理,重点研究了柱塞流反应器中HCN:NH_3在五种不同比例下的N_2O排放特性,结果反映出在HCN:NH_3比例高时,N_2O生成浓度明显增高,HCN有趋向于生成N_2O的特征。
     油页岩流化床实验台中的燃烧特性研究中,利用小型流化床进行了油页岩及其半焦的燃烧特性实验,小型实验台研究结果为设计半工业化流化床提供了指导作用。在小型流化床实验台上,进行了颗粒直径、钙硫比、床料高度、床温、过量空气系数、二次风率和循环倍率这七个运行参数对N_2O排放的影响规律,并采用油页岩掺混半焦比例分别为10%、20%、30%、50%、75%及100%的燃料,进行燃烧特性试验,得到了各因素对流化床污染物排放的影响规律,并采用灰色关联方法对七个因素对N_2O排放浓度的关联度进行排序,发现床温和过量空气系数的影响相对显著。
     为验证小型流化床实验结果,并为工业化流化床锅炉实践运行提供基础数据,设计并搭建了大型流化床实验装置,采用XDC800控制系统,对油页岩与油页岩半焦掺混比例分别为25%、50%、75%和100%的混合燃料进行了燃烧实验,对运行过程中给风量、压力以及炉膛高度方向上温度分布的变化情况进行实时记录,采用氧化锆氧量分析仪以及GASMET便携式红外分析仪对燃烧过程中的气体排放浓度进行了在线监测,综合以上数据得到了大型流化床中油页岩及其半焦的污染物排放特性。在无辅助热源的条件下,油页岩及其掺混不同比例下的520℃干馏制得的半焦,所得各燃料自身燃烧生成的热量都能够使流化床温逐渐升高到某一平衡温度,反映出燃料的燃烧特性良好。
     结合油页岩元素总量模型和燃烧反应机理模型,建立油页岩流化床燃烧分区模型,并结合热态流化床实验中各工况相对应的运行参数,计算值和实验值吻合较好,所得结果显示,N_2O在密相区的生成份额远高于稀相区。对流化床密相区和稀相区N_2O的生成规律进行分别研究,对N_2O的主要生成反应在密相区和稀相区的重要性进行了对比。对N_2O生成的机理结果进行详细分析,得到了N_2O生成的主要路径图,以及影响N_2O生成的关键组分和反应式,NH是影响N_2O生成的关键组分,N_2O最主要的生成反应NH+NO=N_2O+H。这些结果为将来采取相应措施控制N_2O排放提供理论依据。最后对复杂的基元反应机理进行简化,得出具有较高准确性的简化机理,更有助于发现并分析影响N_2O生成的关键步骤。
With the growing demand for energy and the gradual decrease in conventional energy resources, oil shale would be a very important alternative energy resource, which could demonstrate potential value for utilization as well as shale oil that it contains. How to efficiently exploit and utilize oil shale rich and widespread throughout the world, and to carry out thermal conversion and engineering application, will be of great practical significance for balancing energy supply and demand, and promoting social development. Oil shale has high volatile content and low fixed carbon content, which determines that its pyrolysis and combustion characteristics are so different from conventional coal that volatile is the major content of oil shale combustion, for example, the releasing heat of volatile is 2.57 times that of fixed carbon for Huadian oil shale. The special characteristics of oil shale make it necessary to carry out thorough research. In addition, it is also an important research content that realizing the resource utilization of oil refining residue - shale char. As a utilization method, fluidized bed combustion of oil shale would produce higher nitrous oxide (N_2O) emission concentration than the general pulverized coal. N_2O is an ozone-layer depleting greenhouse gas, and is ranked third largest of greenhouse gases following the carbon dioxide, methane. With the increasing requirements of environmental protection, how to control the emissions of N_2O effectively in fluidized bed combustion is an urgent issues needing to resolve.
     For the purpose of utilizing domestic oil shale resources cleanly and efficient, and on the basis of analyzing the above practical problem, the paper carried out the concrete research through the path of thermal conversion process of oil shale, which included pyrolysis and combustion reaction mechanism of oil shale. In order to model N_2O formation mechanism, the combustion experiment of oil shale and its shale char in small-scale and semi-industrial fluidized bed were carride out, and it was monitored and recorded that the pollutant emission of oil shale fluidized bed combustion according to the operation characteristics. Based on all these theoretical model and experimental results, the N_2O formation in fluidized bed was modeled in order to find the key component and reaction affecting N_2O formation.
     During the research of oil shale pyrolysis, the structural composition of oil shale was analyzed, and in the further study, the process that oil shale converts to non-condensible gas, shale oil and shale char at pyrolysis conditions, and how the functional groups in oil shale evolve were investigated. By the improving thermogravimetric test units, gas chromatography methods was used to measure the concentration of non-condensible gas in oil shale pyrolysis reaction. Based on total balance equation of each element C, H, O, N, S in ultimate analysis, gross equilibrium model was built up by assuming group-composition distribution of shale oil. The contents of ten major gas outputs in pyrolysis were calculated, and the results were validated by experimental data.
     During the detailed process research of oil shale combustion, the detailed combustion mechanism of combustible component in non-condensible gas was established, and the fine elementary reaction mechanism of nitrogen-containing materials HCN and NH_3 was built too in a hierarchical manner. The nitrogen-containing intermediates were classified and the conversion path of them was analyzed, and then the conversion map in the combustion process was deduced. Using the above model about nitrogen-containing precursors HCN and NH_3 fine reaction mechanism, the N_2O emission characteristics of the plug flow reactor were studied at five different HCN: NH_3 ratios. The results shows that HCN: NH_3 ratio is higher, N_2O formation concentration is significantly higher, and HCN tends to produce N_2O.
     During the experimental research of fluidized bed combustion characteristics, the small-scale fluidized bed experimental rig were used to carry out the combustion experiment of oil shale and shale char, which can provide some guidance for designing large-scale fluidized bed. In the small-scale fluidized bed, the experiments were proceeded which consisted of the effect of seven operating factors on N_2O emission, such as particle size, Ca/S ratio, bed material height, bed temperature, secondary air ratio, secondary air rate circulation ratio, and adopted samples of five mixture ratio including 10%, 20%, 30%, 50%, 75% and 100% of shale char content to apply tests about combustion characteristics. The grey relational analysis was used to treat the experiments data of seven operating factors and made order for them using obtained grey relational degree. The calculation results indicate that bed temperature and excess air have marked influence on N_2O emission.
     Based on the small-scale fluidized bed experimental results, the large-scale fluidized bed experimental device adopting XDC800 control system were designed and built which could provide the foundation for industrial fluidized bed boiler, the continuous combustion experiments were done for five mixture ratio including 25%, 50%, 75% and 100%, recording the operation course relating to air flow, pressure and temperature distribution in furnace height in real-time, and using zirconia oxygen analyzer and GASMET portable infrared analyzer to on-line monitor flue gas emissions in the process of combustion. Combined with all these data, pollutant emission characteristics of oil shale and shale char were analyzed under the large-scale fluidized bed. In absence of auxiliary heat source, bed temperature would be gradually increased to a certain balance temperature by formation heat of the fuel samples including oil shale and different mixture ratio with shale char obtained at pyrolysis conditions of 520℃, which reflected good characteristics of fluidized bed combustion.
     Combined with element gross equilibrium models and combustion reaction detailed mechanism model of oil shale, the zone model of fluidized bed combustion was established, and then was used to calculate simulation cases under the conditions corresponding to the same operating parameters of the experiment cases. The calculation results were in good agreement with thermal experimental data. The results showed N_2O formation in the dense phase region is far higher than that in the dilute phase region. N_2O formation in the dense phase region and dilute phase region of fluidized bed was discussed separately, and importance factor of N_2O major formation reaction was studied in the dense phase and dilute phase region. After detailed analysis of N_2O formation mechanism from the calculation results, the main N_2O formation map was obtained as well as the key component and reaction affecting N_2O formation. NH is the key component, and NH+NO=N_2O+H is the key reaction of N_2O formation. These results will provide a theoretical basis for taking effective measures to control N_2O emissions in the future. Finally, the detailed elementary reaction mechanism was simplified to obtain the simplified mechanism with high accuracy, which would help to identify and analyze a critical step affecting N_2O formation.
引文
1刘招君,柳蓉.中国油页岩特征及开发利用前景分析.地学前缘. 2005, 12(3): 315-323.
    2 Hou X. L. Prospect of oil shale and shale oil industry. Proceedings International Conference on Oil Shale and Shale Oil. Beijing, Chemical Industry Press, 1988, 7-15.
    3王庆一.中国能源.北京:冶金工业出版社, 1988, 171-172.
    4刘招君,董清水,叶松青,等.中国油页岩资源现状.吉林大学学报(地球科学版). 2006, 36(6): 869-876.
    5上海市能源研究会主编.能源技术手册.上海:科学技术出版社, 1989.
    6 Jiang X. M, Han X. X, Cui Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy. 2007, 32(5): 772-777.
    7 Yan J. W., Jiang X. M, Han X. X. Study on the characteristics of the oil shale and shale char mixture pyrolysis. Energy & Fuels. 2009, 23(12): 5792–5797.
    8岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行.北京:中国电力出版社, 1998, 10-12.
    9冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉.中国电力出版社, 2003.
    10 Jiang X. M., Liu D. C., Chen H. P., Zheng C. G., Qin Y. K. Experimental investigation on oil shale circulating fluidized bed boiler. Oil Shale. 2001, 18 (1): 73-83.
    11姜秀民,秦裕琨,刘德昌等.油页岩循环流化床燃烧室密相区物料颗粒与燃烧特性.化学工程. 2002, 30(6): 25-29.
    12姜秀民,秦裕琨,刘德昌等.油页岩循环流化床燃烧室稀相区流动结构与燃烧特性.中国电机工程学报. 2001, 21(11): 53-59.
    13 Liu H., Gibbs B. M. Reduction of N2O Emissions from a Coal-fired Circulating Fluidised Bed Combustor by Afterburning. Fuel. 1998, 77(14): 1579-1587.
    14 Armesto L., Boerrigter H., Bahillo A., et al. N2O emissions from fluidised bed combustion: the effect of fuel characteristics and operating conditions. Fuel. 2003, 82(15-17): 1845-1850.
    15 Rantanen M. J., Rantanen J. T., Linna V. L. Formation and destruction of N2O in pulverized fuel combustion environments between 750 and 970℃. Fuel. 1990, 69(8): 957-961.
    16张秀君.温室气体氧化亚氮排放源的研究.沈阳教育学院学报. 2003, 5(1): 108-111.
    17叶长春.燃烧污染物N2O的形成及其抑止.电站系统工程. 1995, 15(1): 32-36, 63.
    18沈宏,曹志洪.温室气体及其排放的研究.生态农业研究. 1998, 6(3): 21-24.
    19姜秀民,王擎,张靖波等.油页岩循环流化床锅炉的设计与运行.动力工程, 1998, 18(3):22-28, 8.
    20于海龙,姜秀民.桦甸油页岩热解特性的研究.燃料化学学报, 2001, 29(5): 450-453.
    21 Williams P. T., Ahmad N. Influence of process conditionson the pyrolysis of Pakistani oil shales. Fuel. 1999, 78(6): 653-662.
    22 Haddadin R.A., Mizyed F.A. Thermogravimetric analysis kinetics of Jordan oil shale. Industrial& Engineering Chemistry, Process Designand Development. 1974, 13(4): 332-336
    23闫澈,韩向新,王辉等.油页岩颗粒的热解模型.化学工程. 2004, 32(1): 9-12.
    24 Lisboa A. C. L., Watkinson A. P. Operating conditions for oil shale thermogravimetry. Powder Technology. 1999, 101(2): 151-156.
    25何德民.煤、油页岩热解与共热解研究.大连理工大学硕士学位论文,2006.
    26 Williams P. T., Chishti H. M. Two stage pyrolysis of oil shale using a zeolite catalyst. Journal of Analytical and Applied Pyrolysis. 2000, 55(2): 217-234.
    27姜秀民,刘德昌,郑楚光等.油页岩燃烧性能热分析研究.中国电机工程学报, 2001, 21(8): 55-59.
    28 Han X. X., Jiang X. M., Cui Z. G. Thermal analysis studies on combustion mechanism of oil shale. Journal of Thermal Analysis and Calorimetry. 2006, 84(3): 631-636.
    29姜秀民,王擎,张靖波,李学恒,孙健,秦裕琨.油页岩循环流化床锅炉的设计与运行.动力工程. 1998,22(3):22-28,8.
    30 Jiang X. M., Liu D. C., Chen H. P., Zheng C. G., Qin Y. K., Experimental investigation on oil shale circulating fluidized bed boiler. Oil Shale. 2001, 18(1): 73-84.
    31 Han X. X., Jiang X. M, Wang H., Cui Z. G., Study on design of Huadian oil shale-fired circulating fluidized bed boiler. Fuel processing technology. 2006, 87(4): 289-295.
    32 Jiang X. M, Han X. X., Cui Z. G., Yu L. J., Flow Structure and Combustion Characteristic of 65 t/h Oil-Shale-Fired Circulating Fluidized Bed Riser. 1. Dense Phase. Industrial and Engineering Chemistry Research. 2006, 45(12), 4329-4334.
    33 Jiang X. M, Han X. X., Cui Z. G. Flowstructure and combustion characteristic of 65 t/h oil shale-fired circulating fluidized bed riser-2: Dilute phase. Chemical Engineering Science. 2006, 61(8): 2533-2539.
    34 Jiang X. M., Yu L. J., Yan C., Han X. X., Yu H. L. Experimental investigation of SO2 and NOx emissions from Huadian oil shale during circulating fluidized-bed combustion. Oil shale. 2004, 21(3): 249-257.
    35 Han X. X., Jiang X. M., Liu J. G., Wang H. Grey relational analysis of N2O emission from oil shale-fired circulating fluidized bed. Oil Shale. 2006, 23(2): 99-109.
    36丁乃今,姜秀民,吴少华.油页岩流化床燃烧N2O生成特性.热能动力工程. 2003,18(6):589-591.
    37 Hayhurst A. N., Lawrence A. D. Amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char. Combustion and Flame. 1996, 105(3):341-357.
    38袁建伟,冯波,蔡学军,等.流化床煤燃烧过程中N2O的生成与分解机理的研究.中国电机工程学报. 1994,14 (4):1-7.
    39刘皓,陆继东,冯波,等.挥发分的均相反应等对N2O、NO生成影响的模拟与试验研究.工程热物理学报. 1997,18(5):639-643.
    40 Liu H., Gibbs B. M. The influence of calcined limestone on NOx and N2O emissions from char combustion in fluidized bed combustors. Fuel. 2001, 80(9): 1211-1215.
    41冯波,袁建伟,林志杰,等.流化床燃烧工况下N2O多相分解的机理研究.工程热物理学报. 1995,16(l):111-114.
    42冯波,刘皓,袁建伟,等.鼓泡流化床煤燃烧中燃料氮转化的研究(I)影响因素.煤炭转化. 1996,19(1):82-87.
    43冯波,刘皓,袁建伟,等.鼓泡流化床煤燃烧中燃料氮转化的研究(II)机理解释.煤炭转化. 1996,19(2):25-29.
    44刘翊纶.基础元素化学.北京:高等教育出版社, 1992.
    45曹庭礼,郭炳南.无机化学丛书.北京:科学出版社, 1995.
    46化工百科全书.北京:化学工业出版社, 1997.
    47 Buckley A. N., Kelly M. D., Nelson P. F., et al. Inorganic nitrogen in Australian semi-anthracites; implications for determining organic nitrogen functionality in bituminous coals by X-ray photoelectron spectroscopy. Fuel Processing Technology. 1995, 43(1): 47-60.
    48 Sudipa M. K., Mullins O. C., Branthaver J. F., et al. Nitrogen chemistry of kerogens and bitumens from X-ray absorption near-edge structure spectroscopy. Energy&Fuels. 1993, 7(6): 1128-1134.
    49 Stanczyk K., Dziembaj R., Piwowarska Z., et al. Transformation of nitrogen structures in carbonization of model compounds determined by XPS. Carbon. 1995, 33(10): 1383-1392.
    50刘艳华,车得福,李荫堂等. X射线光电子能谱测定铜川煤及其焦中氮的形态.西安交通大学学报. 2001, 35(7): 661-665.
    51 Stanczyk K. Nitrogen Oxide Evolution from Nitrogen-Containing Model Chars Combustion. Energy and Fuels. 1999, 13: 82-90.
    52 Nelson P. F., Kelly M. D., Wornat M. J. Conversion of fuel nitrogen in volatiles to NOx precursors under rapid heating conditions. Fuel. 1991, 70(3): 403-407.
    53 Kambara S., Takarada T., Yamamota Y., et al. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis. Energy&Fuels. 1993, 7(6): 1013-1020.
    54郭兴明.煤粉挥发分燃烧生成氮氧化物机理的理论与试验研究.西安:西安交通大学博士学位论文, 2003.
    55 Li C. Z., Wu F., Xu B., et al. Characterization of successive time/temperature-resolved liquefaction extract fractions released from coal in a flowing-solvent reactor. Fuel. 1995, 74(1): 37-45.
    56 Xie K. C., Zhang Y. F., Li C. Z., et al. Pyrolysis characteristics of macerals separated from a single coal and their artificial mixture. Fuel. 1991, 70(3): 474-479.
    57 Xie Z. L., Feng J., Zhao W., et al. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV.Pyrolysis of set of Australian and Chinese coals. Fuel. 2001, 80(15): 2131-2138.
    58 Lappalahti L, Koljonan T. Nitrogen evolution from coal, peat and wood during gasification: Literature review. Fuel Processing Technology, 1995, 43(1): 1-45.
    59 Li C. -Z., Nelson P. F. Interactions of quartz, zircon sand and stainless steel with ammonia: implications for the measurement of ammonia at high temperatures. Fuel, 1996, 75(4): 525-526.
    60 Peles J. R., Kapteijn F., Moulijn J. A., et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 35(11): 1641-1653.
    61赵炜,常丽萍,冯志华等.煤热解过程中生成氮化物的研究.燃料化学学报. 2002, 30(5): 408-412.
    62 Bassilakis R., Zhao Y., Solomon P. R., et al. Sulfur and nitrogen evolution in the Argonne coals. Experiment and modeling. Energy&Fuels. 1993, 7(6): 710-720.
    63 Tan L. L., Li C. -Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass.Part II .Effect of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. Fuel. 2000, 79(15): 1891-1897.
    64 Feng J., Li W. Y., Xie K. C., et al. Studies of the release rule of NOx precursors during gasification of coal and its char. Fuel Processing Technology. 2003, 84(3): 243-254.
    65谢克昌.煤的结构与反应性.北京:科学出版社, 2002.
    66 Friebel J., K?psel R. F. W. The fate of nitrogen during pyrolysis of german low rank coals: a parameter study. Fuel. 1999, 78: 923-932.
    67 Nichols K. M., Hedman P. O., Douglas S. L. Release and reaction of fuel-N in a high-pressure entrained-coal gasifier. Fuel. 1987, 66(9): 1339-1334.
    68 Xu W. -C., Kumagai M. Nitrogen evolution during rapid hydropyrolysis of coal. Fuel. 2002, 81(18): 2325-2334.
    69 Jensen A., Johnsson J. E., Andries J. et al. Formation and reduction of NOx in Pressurized fluidized bed combustion of coal. Fuel. 1995, 74 (11): 1555-1569.
    70 Friebel J., Koepsel R. F. W. Fate of nitrogen during pyrolysis of German low rank coals - a parameter study. Fuel. 1999, 78(8): 923-932.
    71 Chang L. P., Feng Z. H., Xie K. C. Effect of operating parameters on HCN and NH3 release from Australian and Chinese coals during temperature-programmed pyrolysis. Journal of Energy Source. 2003, 25: 703-712.
    72 Aho M. J., H?m?l?inen J. P., Tummavuori J. L. Coversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800℃. Fuel. 1993, 72: 837-841.
    73 Wojtowicz M. A., Pels J. R., Moulijn J. A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel. 1995, 74(4): 507-516.
    74 Pels J R, Kapteun F, Moulun J A , et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995, 33(11): 1641-1653.
    75 Tan L. L., Li C. Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass, Part III. discussion on the formation of HCN and NH3 during pyrolysis. Fuel. 2000, 79(15): 1899-1906.
    76常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究.太原:太原理工大学博士学位论文, 2004.
    77 Lazera M. J., Ibarra J. V., Moliner R., et al. The release of nitrogen during the combustion of coal chars: the role of volatile matter and surface area. Fuel. 1996, 75(8): 1014-1024.
    78 Ohtsuka Y. Effect of ultrafine iron and mineral matter on conversion of nitrogen and carbon during pyrolysis and gasification of coal. Energy&Fuels. 1995, 9(1): 141-147.
    79 Ohtsuka Y., Xu C., Kong D., et al. Decomposition of ammonia with iron and calcium catalysts supported on coal chars. Fuel. 2004, 83 (6): 685-692.
    80 Tsubouchi N., Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation. Fuel. 2002, 81(18): 2335-2342.
    81 Ohtsuka Y., Wu Z., Furimsky E. Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal. Fuel. 1997, 76(14-15): 1361-1367.
    82 Gulyurtlu I., Esparteiro H., Cabrita I. N2O formation during fluidized bed combustion of chars. Fuel. 1994, 73(7): 1098-1102.
    83 Hayhurst A. N., Lawrence A.D. The amounts of NOx and N2O formed in a fluidized bed combustion during the burning of coal volatiles and also of char. Combustion and Flame. 1996, 105(3): 341-357.
    84 Wojtowicz M. A.,Pels J. R., Moulijn J. A. N2O emission control in coal combustion. Fuel. 1994, 73(9): 1461-1421.
    85 Pels J. R., Wojtowicz M. A., Moulijn J. A. Rank dependence of N2O emission in fluidized bed combustion of coal. Fuel. 1993, 72(3): 373-378.
    86 Oudel Lohuis J. A., Tromp P. J. J., Moulijn J. A. et al. Parametric study of N2O formation in coal combustion. Fuel. 1992, 71(1): 9-14.
    87刘皓等.循环流化床燃烧工况对生成N2O的影响.华中理工大学学报. 1995, (11): 1-4.
    88 Hayhurst A. N., Lawrence A. D. Emissions of nitrous oxide from combustion sources, Progress in Energy and Combustion Science. 1992, 18: 529-552.
    89 Lu Y., Jahkola A., Hippinen I., Jalovaara J. The emissions and control of NOx and N2O in pressurized fluidized bed combustion. Fuel. 1992, 71(6): 693-699.
    90 Amand L. E., Leckner B. Influence of fuel on the emission of nitrogen oxides(NO and N2O) from an 8MW fluidized bed boiler. Combustion and Flame. 1991, 84(1-2): 181-196.
    91 Aho M. J., Rantanen J. T., Linna V. L. Formation and destruction of N2O in pulverized fuel combustion environments between 750℃and 950℃. Fuel. 1990, 69: 957-964.
    92蓝计香等.飞灰循环流化床锅炉NOx和N2O排放控制研究.动力工程, 1996, 16(5): 39-44.
    93 Hayhurst A. N., Lawrence A. D. The effect of solid CaO on the production of NOx and N2O in fluidized bed combustors: studies using pyridine as a prototypical nitrogenous fuel. Combustion and Flame. 1996, 105: 511-527.
    94刘皓,冯波,卢建欣,林志杰.煤质特性对循环流化床燃烧N2O生成的影响.华中理工大学学报, 1995, (5): 100-103.
    95 Liu D. C., Shen B. X., Feng B., et al. Influence of coal properties on emissions of nitrous oxides and nitric oxides. Energy & Fuels. 1999, 13(6): 1111-1113.
    96 Liu D. C., Wu Z. S., Shen B. X., et al. The relative importance of char and volatile nitrogen on formation of nitrous oxides and nitric oxides. Energy & Fuels. 1999, 13(6): 1252-1254.
    97 Bonn B., Pelz G., Baumann H. Formation and decomposition of N2O in fluidized bed boilers. Fuel. 1995, 74: 165-171.
    98冯波,林志杰,袁建伟,蔡学军,刘德昌.流化床燃烧中N2O生成影响因素的研究.热力发电, 1994, (6): 29-35.
    99刘皓,陆继东,冯波,等.流化床煤燃烧N2O,SOx及NOx的消减.华中理工大学学报, 1996, (11): 103-105.
    100 Lin W. G., Bu J. J., Korbee R., Svoboda K., Van den Bleek C. M. Modelling SO2 and NOx emission in fluidized bed combustion of coal. Fuel. 1993, 72(3): 299-304.
    101 Bramer E. A., Valk M. Nitrous oxide and nitric oxide emissions by fluidized bed combustion. ASME, Proceedings of 11th International Conference on FBC, Montreal, Canada, 1991: 701-708.
    102 Lyngfelt A., Leckner B. SO2 capture and N2O reduction in a circulation fluidized bed boiler: influence of temperature and air staging. Fuel. 1993, 72(11): 1553-1561.
    103 Wang X. S., Gibbs B.M., Rhodes M.J. Impact of air staging on the fate of NO and N2O in a circulating fluidized bed combustion. Combustion and Flame. 1994, 99(3-4): 508-515.
    104 Amand L. E., Leckner B. Reduction of N2O in a circulating fluidized bed combustor. Fuel. 1994, 73(9): 1389-1397.
    105 Hulgaard T., Dam-Johansen K. Homogeneous nitrous oxide formation and destruction under combustion conditions. AIChE Journal. 1993, 39: 1342-1354.
    106 Kilpinen P., Hupa M. Homogeneous N2O chemistry at fluidized bed combustion conditions: a kinetic modeling study. Combustion and Flame. 1991, 85(1-2): 94-101.
    107 Miller J. A., Bowman C. T. Mechanism and modelling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science. 1989, 15: 287-299.
    108 Ashman P. J., Haynes B. S., Buckley A. N. et al. The fate of char-nitrogen in low-temperature oxidation. The Combustion Institute, Twenty-Seventh Symposium (International) on Combustion, Pittsburgh, USA, 1998, 3069-3075.
    109 Thomas K., Grant K., Tate K. Nitrogen-doped carbon-13 materials as models for the release of NOx and N2O during coal char combustion. Fuel. 1993, 72: 941-947.
    110 Winter F., Loffler G., Wartha C., et al. The NO and N2O formation mechanism under circulating fluidized bed combustor conditions: from the single particle to the pilot-scale. The Canadian Journal of Chemical Engineering. 1999, 77: 275-283.
    111 Goel S., Zhang B., Sarofim A. NO and N2O formation during char combustion: is it HCN or surface attached nitrogen?. Combustion and Flame. 1996, 104: 213-217.
    112 Croiset E., Heurtebise C., Rouan J. et al. Influence of pressure on the heterogeneous formation and dustruction of nitrogen oxides during char combustion. Combustion and Flame. 1998, 112: 33-44.
    113 Feng B., Liu H., Yuan J. et al. Mechanisms of N2O formation from char combustion. Energy and Fuels, 1996. 10: 203-208.
    114 Amand L., Leckner B. Formation of nitrogen oxide (N2O) in a circulating fluidized-bed combustor.Energy and Fuel. 1993, 7: 1097-1107.
    115任维.焦炭流化床燃烧条件下氧化亚氮生成机理的实验研究.北京:清华大学博士学位论文, 2003.
    116刘皓,陆继东,冯波等.挥发分的均相反应等对N2O、NO生成影响的模拟与实验研究.工程热物理学报. 1997, 18(5): 639-643.
    117袁建伟,冯波.喷氨同时脱除NO和N2O过程的化学动力学模拟.环境化学. 1995, 14(1): 1-8.
    118钟北京.氧化亚氮形成的动力学机理及其转变的基本规律.热力发电. 1995, (1): 3-8, 37.
    119钟北京, P. V. Rosliakov.火焰中形成的二氧化氮和氧化亚氮.热能动力工程. 1996, 11(3): 147-153.
    120赵瑞兰,彭美生,马玉梅等.烟气中N2O生成反应的动力学研究.环境化学. 1998, 17(6): 542-546.
    121袁建伟,冯波,蔡学军等.流化床煤燃烧过程中N2O的生成与分解机理的研究.中国电机工程学报. 1994, 14 (4): 1-7.
    122曾东,郑守忠,蔡崧.流化床煤燃烧中氧化亚氮生成机理研究.热力发电. 2000, (1): 17-19,24.
    123 Hulgaard T., Glarborg P., Dam-Johansen K. Homogeneous formation and destruction of N2O at fluidized bed combustion conditions. Proceedings of the 11th International Conference on Fluidized Bed Combustion, Montreal, 1991, 991.
    124陈鸿伟,金保升,徐益谦等.燃煤流化床中N2O生成与分解的均相反应机理.环境科学. 1994, 15(6): 74-78.
    125 De Soete G. G. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion. The Combustion Institute, 23rd (International) Symposium on Combustion, Orleans, 1990, 1253-1257.
    126 Soete G. G. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion. The Combustion Institute, 23th Symposium Combustion, France, 1991, 22.
    127冯波,袁建伟,林志杰等.流化床燃烧工况下N2O多相分解的机理研究.工程热物理学报. 1995, 16(l): 111-114.
    128 Miller J. A., Bowman C. T. Mechanism and modelling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science. 1989, 15: 287-338.
    129袁建伟,冯波.燃煤过程中N2O生成与分解的化学动力学模拟.华中理工大学学报. 1995, 23(4): 114-119.
    130王勤辉,骆仲映,李绚天等.循环流化床锅炉氮氧化物的生成与分解模型.燃料化学学报. 1998, 26(2): 108-113.
    1刘招君,柳蓉.中国油页岩特征及开发利用前景分析.地学前缘. 2005,12(3):315-323.
    2 Burnham A. K., Happe J. A. On the mechanism of kerogen pyrolysis. Fuel. 1984, 63(10): 1353-1356.
    3 Ekstrom A., Fookes C. J. R., Loeh H. J., Randall C. H., Rovere C., Eliss J., Crips, P. T. Chemical and pyrolysis characteristics of two types of oil shale from the condor deposit in Queensland,Australia. Fuel. 1987, 66(8): 1133-1138.
    4王宗贤,秦匡宗,王廷芬,张亚丽.用两步热重法测定生油岩干酪根的芳碳率和生油量.石油大学学报(自然科学版). 1993,17(6):99-104.
    5 Khan M. R. Influence of oxidative weathering on shale structure and of the subsequent devolatilization of oil shale. American Chemical Society, Division of Petroleum Chemistry, Preprints, 1987, 32(1-2): 49-56.
    6张普林,吕宝臣,李春田,孙家儒,刘爱.早第三纪桦甸动物群的发现及其地质意义.吉林地质. 1986,(4):1-11.
    7王永莉,刘招君,荆惠林,张海龙,张建.桦甸盆地古近系桦甸组油页岩矿床沉积特征.吉林大学学报(地球科学版). 2005,(6):720-724.
    8崔银萍,秦玲丽,杜娟,等.煤热解产物的组成及其影响因素分析.煤化工. 2007,129(2):10-15.
    9 Yang J., Stansberry P. G., Zondlo J. W., et al. Characteristics and carbonization behaviors of coal extracts. Fuel Processing Technology. 2002, 79(3): 207-215.
    10秦匡宗,王仁安,贾生盛.超临界流体抽提法研究茂名与抚顺油页岩中油母质的化学结构(II)—抽提产物的性质及油母质化学结构的初步探讨.石油大学学报(自然科学版). 1982,6(4):94-104.
    11 Akash B.A., Jaber J.O. Characterization of shale oil as compared to crude oil and some refined petroleum products. Energy Sources. 2003, 25(12): 171-118.
    12迟姚玲,李术元,岳长涛油页岩加工和利用的研究进展.现代化工,2005,25(7): 44-46,52.
    13秦匡宗.论干酪根芳碳率的石油地球化学意义.石油勘探与开发. 1985,12(6):15-21,68.
    14黄第藩,李晋超,周虹,顾信章,张大江.陆相有机质演化和成烃机理.北京:石油工业出版社,1984:32-34.
    15秦匡宗,劳永新.抚顺、茂名油页岩有机质的碳骨架结构研究.全国第二届有机地球化学会议论文选.北京:石油工业出版社,1985.
    16 Miknis F.P., Szeverenyi N.M., Maciel C.E. Characterization of the residual carbon in retorted oil shale by solid-state 13C n. m. r. Fue1. 1982, 61(1): 341-345.
    17劳永新,秦匡宗.油页岩科学研究论文集.华东石油学院,1984:82-89.
    18 Karabakan A., Yürüm Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Gvynük and US Green River oil shales. Fuel. 1998, 77(12): 1303-1309.
    19 Wanzl W. Chemical reactions in thermal decomposition of coal. Fuel Processing Technology. 1988, 20(1-3): 317-336.
    20 Ma S., Lu J., Gao J. Study of the low temperature pyrolysis of PVC. Energy & Fuels. 2002, 16(2): 338-342.
    21于海龙,姜秀民.桦甸油页岩热解特性的研究.燃料化学学报. 2001,29(15):450-453.
    22闫澈,韩向新,王辉,姜秀民.油页岩颗粒的热解模型.化学工程. 2004,32(1):9-12.
    23孙学信,陈建原.煤粉燃烧物理化学基础.武汉:华中理工大学出版社,1991:109-123.
    24 Sato S., Enomoto M. Development of new estimation method for CO2 evolved from oil shale. Fuel Processing Technology. 1997, 53(1-2): 41-47.
    25 Sato S., Enomoto M., Development of new estimation method for CO2 evolved from oil shale. Fuel Processing Technology. 1997, 53(1-2): 41-47.
    26 Migliavacca G., Parodi E., Bonfanti L., et al. A general mathematical model of solid fuels pyrolysis. Energy. 2005, 30(8): 1453-1468.
    27 Juentgen H. Review of the kinetic of pyrolysis and hydroprolysis in relation to chemical constitution of coal. Fuel. 1984, 63(6): 731-737.
    28 Borghi G. Parallel model of pyrolysis. AIChEJ, 70th Annual Meeting, 1976.
    29 Solomon P. R. Relation between coal aromatic carbon concentration and proximate analysis fixed carbon. Fuel. 1981, 60(1): 3-6.
    30 Solomon P. R., Hamblen D. G. Finding order in coal pyrolysis kinetics. Progress in Energy and Combustion Science. 1983, 9(4): 323-361.
    31 Solomon P. R., Hamblen D. G., Carangelo R. M., Serio M.A., Deshpande G.V. A general model ofcoal devolatilization. Energy & Fuels. 1988, 2(4): 405-422.
    32 Gavalas G. R., Cheong P. H. K., Jain R. Model of coal pyrolysis 1. qualitative development. Industrial & Engineering Chemistry, Fundamentals. 1981, 20(2): 113-122.
    33 Gavalas G. R., Jain R., Cheong P. H. K. Model of coal pyrolysis 2. qualitative formation and results. Industrial & Engineering Chemistry, Fundamentals. 1981, 20(2): 122-132.
    34 Borghi G. Parallel Model of Pyrolysis. AIChEJ, 70th Annual Meeting, 1976.
    35 Hayashi J., Nakagawa K., Kusakabe K., et al. Change in molecular structure of flash pyrolysis tar by secondary reaction in a fluidized bed reactor. Fuel Processing Technology. 1992, 30(3): 237-248.
    36刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究.太原:太原理工大学博士学位论文,2004.
    37朱子彬,唐黎华,王欣荣,俞丰,朱宏斌,张成芳.烟煤快速加氢热解研究——半焦、挥发分和焦油等生成行为的考察.华东理工大学学报. 1998,24(1):12-16,58.
    38降文萍.煤热解动力学及其挥发分析出规律的研究.太原:太原理工大学硕士学位论文,2004.
    39闫金定,崔洪.热重质谱联用研究兖州煤的热解行为.中国矿业大学学报. 2003,32(3):311-315.
    40 Solomon P. R., Serio M. A. Cross-link reaction during coal conversion. Energy & Fuels. 1990, 4(1): 42-54.
    41尤先锋.煤热解产物的关联性研究.太原:太原理工大学硕士学位论文,2002.
    42 Mrazikova J., Beverka S. S. L., Macak J. Evolution of organic oxygen bonds during pyrolysis of coal. Fuel. 1986, 65: 342-346.
    43李振广.干酪根结构中碳分布特征及其与生烃潜力的关系──13C NMR CP/MAS与DD技术的应用.地球化学. 1995,24(2):101-109.
    44 Kelemen S. R., Gorbaty M. L., Kwiatek P. J . Quantification of nitrogen forms in argonne premium coal. Energy & Fuels. 1994, 8: 896-906.
    45 W?jt?wicz M. A., Pels J A , Moulijin J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel. 1995, 74 (4): 507-516.
    46 Li C. Z., Pang Y. Y., Li X. G. Formation of NH3 during the pyrolysis of a brown coal. In: Proceeding of 15th Annual Internation Pittsburth Coal Conference. Taiwan, 1998.
    47赵炜,常丽萍,冯志华,等.煤热解过程中生成氮化物的研究.燃料化学学报. 2002,30(5):408-412.
    48郭兴明.煤粉挥发分燃烧生成氮氧化物机理的理论与试验研究.西安:西安交通大学博士学位论文,2003.
    49 Laughlin M. K., Gavin D. G., Reed G. P. Coal and char nitrogen chemistry during pressurized fluidized bed combustion. Fuel. 1994, 73: 1027-1033.
    50 Nelson P. F., Li C. Z., Ledesma E. B. Formation of HCNO from the rapid pyrolysis of coals. Energy & Fuel. 1996. 10: 264-265.
    51 Kambara S., Takarada T., Yamamota Y., et al. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis. Energy&Fuels. 1993, 7(6): 1013-1020.
    52 Nelson P. F., Kelly M. D., Wornat M. J. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions. Fuel. 1991, 70: 403-407.
    53 Johnsson J. E. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel. 1994, 73(9): 1398-1415.
    54 L i C. Z., Nelson P. F. An experimental study of the release of nitrogen from coals pyrolyzed-bed reactors. In: 26th Symposium (International) Combustion, Combustion Institute, 1996: 3205-3211.
    55任维.焦炭流化床燃烧条件下氧化亚氮生成机理的实验研究.北京:清华大学博士学位论文,2003.
    56李强.煤焦油二次热解过程中HCN及NH3释放特性研究.燃料化学学报. 2005,33(2):161-165.
    57 Ledesma E. B., Li C. Z., Nlson P. F., et al. Release of HCN, NH3, and NHCO from the thermal gas-phase cracking of coal pyrolysis tars. Energy & Fuels. 1998, 12(3): 536-541.
    58林建英,赵娅鸿,常丽萍,等.平朔煤岩显微组分热解过程中HCN的生成.燃料化学学报.2004,32(3):278-281.
    59 Gorbaty M. L., George G. N., Keleman S. R. Direct determination and quantification of sulphur forms in heavy petroleum and coals(2) The sulphur K edge X-ray absorption spectroscopy approach. Fuel. 1990, 69: 945-949.
    60 Brown J. R., Kasrai M., Bancroft G. M., et al. Direct identification of organic sulphur species in Rasa coal from sulphur L edge X-ray absorption near edge spectra. Fuel. 1992, 71: 649-653.
    61 Kelemen S. R., Gorbaty M. L., George G. N. Surface composition of iron and inorganic surfur forms in argonne premium coals by X- ray photoelectron spectroscopy. Energy & Fuels. 1991, 5: 720-723.
    62 Kelemen S. R., Vaughn S. N., Gorbaty M. L., Kwiatek P. J. Transformation kinetics of organic sulphur forms in Argonne Premium coals during pyrolysis. Fuel. 1993, 72(5): 645-653.
    63 Bassilakis R., Zhao Y., Solomon P. R., Serio M.A. Sulfur and nitrogen evolution in the Argonne coals: experiment and modeling. Energy & Fuels. 1993, 7(6): 710-720.
    64 Calkins W. H. Investigation of organic sulfur-containing structures in coal by flash pyrolysis experiments. Energy & Fuels. 1987, 1(1): 59-64.
    65李斌,杜霞茹,李庆峰,张建民,王洋.灰分对高硫煤热解部分气化硫变迁的影响.环境科学. 2004,25(1):149-153.
    66 Xu W. -C., Matsuoka K., Akiho H., Kumagai M., Tomita A. High pressure hydropyrolysis of coals by using a continuous free-fall reactor. Fuel. 2003, 82(6): 677-685.
    67 Thakur D. S., Nuttall, H. E, Jr. Kinetics of pyrolysis of moroccan oil shale by thermogravimetry. Industrial & Engineering Chemistry Research. 1987, 26(7): 1351-1356.
    68周静,何品晶,于遵宏.用热失重仪研究煤快速热解.煤炭转化. 2004,27(2):30-36.
    69周国江,朱玉高,魏贤勇.油页岩CS2-NMP萃取物GC/MS分析.黑龙江科技学院学报. 2006,(6):390-392.
    70秦匡宗,王仁安,贾生盛.超临界流体抽提法研究茂名与抚顺油页岩中油母质的化学结构(Ⅱ)——抽提产物的性质及油母质化学结构的初步探讨.石油大学学报(自然科学版). 1982,(4):94-104.
    71 Tissot B. P., Welte D. H. Petroleum formation and ocurrence. Berlin: Springer Verlag, 1978.
    72 Solomon P. R., Miknis F. P. Use of Fourier transform infrared spectroscopy for determining oil shale properties. Fuel. 1980, 59(12): 893-896.
    73修健.低含油率油页岩的热解研究.大连:大连理工大学硕士学位论文,2005.
    74 Niksa S., Liu G. S., Hurt R. H. Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation. Progress in Energy and Combustion Science. 2003, 29(5): 425-477.
    75 Migliavacca G., Parodi E., Bonfanti L., Faravelli T., Pierucci S., Ranzi E. A general mathematical model of solid fuels pyrolysis. Energy. 2005, 30(8): 1453-1468.
    76 Han X. X., Jiang X. M., Cui Z, G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Applied Energy. 2009, 86(11): 2381-2385.
    77 Al-harahsheh A., Al-otoom A. Y., Shawabkeh R. A. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale. Energy. 2005, 30(15): 2784-2795.
    78 Merrick D. Mathematical models of the thermal decomposition of coal-1. The evolution of volatile matter. Fuel. 1983, 62(5): 534-539.
    79 Williams P. T., Chishti H. M. Two stage pyrolysis of oil shale using a zeolite catalyst. Journal of Analytical and Applied Pyrolysis. 2000, 55(2): 217-234.
    80刘生玉,王宝俊,谢克昌.镜煤抽提物热解特性的实验研究.燃料化学学报, 2003,31(5):420-423.
    81张军,范志林,林晓芬,等.生物质快速热解过程中产物的在线测定.东南大学学报(自然科学版). 2005,35(3):16-19.
    1 Westbrook C. K., Dryer F. L. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science. 1984, 10(1): 1-57.
    2 Kee R. J., Rupley F. M., Miller J. A. The chemkin thermodynamic database. Rep. SAND 87-8215, Livermore, CA.: Sandia National Laboratories, 1987.
    3 Ritter E. R., Bozzelli J. W. Therm: thermodynamic property estimation for gas phase radicals and molecules. International Journal of Chemical Kinetics. 1991, 23(9): 767-778.
    4 Sumathi R., Carstensen H., Green W. H. Reaction rate prediction via group additivity part 1: H abstraction from alkanes by H and CH3. Journal of Physical Chemistry A, 2001, 105(28): 6910-6925.
    5 Smith G. P., Golden D. M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., et al. http://www.me.berkeley.edu/gri_mech/.
    6 Hughes K. J., Tomlin A. S., Hampartsoumian E. and Nimmo W. An investigation of important gas-phase reactions of nitrogenous species from the simulation of experimental measurements in combustion system. Combustion and Flame. 2001, 124: 573-589.
    7 http://chem.leeds.ac.uk/Combustion/Combustion.html.
    8 http://www.cstl.nist.gov/div836/ckmech/reti.html.
    9 Konnov A. Version 0.5; 2000. http://homepages.vub.ac.be/~akonnov.
    10 Simmie J. M. Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Progress in Energy and Combustion Science. 2003, 29(6): 599-634.
    11 Mueller M.A., Yetter R.A., Dryer, F.L., et al. Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics. 1999, 31(2): 113–125.
    12 Connaire M.ó., Curran H. J., Simmie J. M., et al. A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics. 2004, 36: 603-622.
    13 Egolfopoulos F. N., Du D. X., Law C. K. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes. Combustion Science and Technology. 1992, 83: 33-75.
    14 http://www.cstl.nist.gov/div836/ckmech/reti.html.
    15 Kilpinen P., Hupa M., Aho M. Selective non-catalytic NOx reduction at elevated pressures - studies on the risks for increased N2O emissions. Proceedings of The 7th International Workshop on Nitrous Oxides Emissions. Cologne, 1997: 21-23.
    16 Smoot L. D., Hecker W. C., Williams G. A. Prediction of Propagating Methane-Air Flames. Combustion and Flame. 1976, 26: 323-342.
    17 Warnatz J. The Structure of laminar alkane-, alkene-, and acetylene flames. 18th Symposium (International) on Combustion. Pittsburgh: the Combustion Institute, 1981: 369-384.
    18 Miller J. A., Bownman C. T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science. 1989, 15: 287-338.
    19 Bernstein J. S., Fein A., Choi J. B., Cool T. A., Sausa R. C., Howard S. L., Locke R. J., Miziolek A. W. Laser-based flame species profile measurements: a comparison with flame model predictions. Combustion and Flame. 1993, 92(1-2): 85-105.
    20 Bromly J. H., Barnes F. J., Muris S., You X., Haynes B. S. Kinetic and thermodynamic sensitivity analysis of the NO-sensitized oxidation of methane. Combustion Science andTechnology. 1996, 115(4-6): 259-296.
    21 Sung C. J., Li B., Law C. K., Wang H. Structure and sooting limits in counterflow methane/air and propane/air diffusionflames from 1 to 5 atmospheres. Proceedings of Combust Institute, 1998, 27: 1523-1530.
    22 Tan Y., Dagaut P., Cathonnet M., Boettner J. C. Natural gas and blends oxidation and ignition. Experiments and modeling. Proceedings of the 25th Symposium (International) on Combustion. Irvine, CA, USA, 1994, 1563.
    23 Marinov N., Malte P. C. Ethylene oxidation in a well-stirred reactor. International Journal of Chemical Kinetics. 1995, 27(10): 957.
    24 Hunter T. B., Litzinger T. A., Wang H., Frenklach M. Ethane oxidation at elevated pressures in the intermediate temperature regime: experiments and modeling. Combustion and Flame. 1996, 104(4): 505-523.
    25 Skinner G. B., Lifshitz A., Scheller K., Burcat A. Kinetics of methane oxidation. Journal of Physical Chemistry. 1972, 56: 3853.
    26 Tsang W., Hampson R.F. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. Journal of Physical and Chemical Reference Data. 1986, 15: 1087.
    27 Smooke M. D., Xu Y., Zurn R. M., Lin P., Frank J. H., Long M. B. Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames. Proceedings of Combust Institute. 1992, 24: 813-22.
    28 Thomas K. M. The release of nitrogen oxides during char combustion. Fuel. 1997, 76(6): 457-473.
    29 Tognotti L., Longwell J. P., Sarofim A. F. 24th Symposium (International) on Combustion. Pittsburgh, PA: The Combustion Institute, 1990: 1207-1213.
    30 Smoot L. D., Smith P. J.,傅维标,等译.煤的燃烧与气化.北京:科学出版社, 1992.
    31 Yang Y. B., Hampartsoumian E., Gibbs B. M. The effects of temperature, mixing and volatile release on NO reduction mechanisms by coal reburning. 27th Symposium (International) on Combustion. Pittsburgh, PA: The Combustion Institute, 1998: 3009-3017.
    32 Glarborg P., Alzueta M. U., Dam-Johansen K., et al. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame. 1998, 115(1): 1-27.
    33 Dagaut E., Lecomte E., Chevailler S., et al. Experimental and detailed kinetic modeling of nitric oxide reduction by natural gas blend in simulated reburning conditions. Combustion Science and Technology. 1998, 139(1): 329-363.
    34 http://www.abo.fi/fak/tkf/cmc/research/r_schemes.html.
    35 Song S., Golden D.M., Hanson R.K., Bowman C.T., Senosian J. P., Musgrave C.B., Friedrichs G., Soto M.R., Page M. A shock tube study of the reaction NH2 + CH4 = NH3 + CH3 and comparison with transition state theory. International Journal of Chemical Kinetics. 2003, 35: 304-309.
    36 Chen M. T., Kirsch M. J., Lester T. W. Reaction of nitric oxide with bond carbon at flame temperature, Combustion and Flame. 1989, 72(2): 213-217.
    37 Goel S. K., Morihara A., Tullin C. J., Sar?m A. F. Effect of NO and O2 concentration on N2O formation during coal combustion in a fuidized-bed combustor: modeling results. 25th Symposium (International) on Combustion. The Combustion Institute, 1994: 1051-1059.
    38屈卫东,杨建华,杨义波,唐昕.循环流化床锅炉设备及运行.河南:河南科学技术出版社,2002.
    39 Johnsson J. E., Kim Dam-Johansen. Proceeding of the 13th International Conference on Fluidized Bed Combustion. Orlando: ASME, 1995: 859.
    40 Abbs T., Costa M., Costen P., et al. NOx formation and reduction mechanisms in pulverized coal flames. Fuel. 1994, 73(9): 1423-1436.
    41朱皑强,芮新红.循环流化床锅炉设备及系统.北京:中国电力出版社,2004.
    42 Johnsson J. E., Jensen A., Nielsen J. S. Kinetics of heterogeneous NO and N2O reduction at FBC conditions. Paper No. FBC 99-0099. In: Reuther RB, editor. Proceedings of the 15th International Conference on Fluidized Bed Combustion, Savannah, GA: ASME, 1999.
    43 Jensen A., Johnsson J. E., Andries J., Laughli K., Read G., Mayer M., Baumann H., Bonn B. Formation and reduction of NOx in pressurized fuidized bed combustion of coal. Fuel. 1995, 74(11): 1555-1569.
    44 Johnson J. E. A new NOx module for the IEA-model, Beograd: 21st IEA±AFBC Meeting, 1990.
    45 Zijlma G. J., Gerritsen A. W., Van den Bleek C. M. NOx formation and reduction with NH3 in fuidized bed combustion D the in fuence of the O2 concentration on the kinetics. Paper No. FBC 99-0168. In: Reuther RB, editor. Proceedings of the 15th International Conference on Fluidized Bed Combustion, Savannah, GA: ASME, 1999.
    46 Zijlma G. J., Jensen A., Johnsson J. E., Van den Bleek C. M. The in fuence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3. Fuel. 2000, 79: 1449-1454.
    47 Johnsson J. E., Amand L. E., Dam-Johansen K., Leckner B. Modeling N2O reduction and decomposition in a circulating fluidized bed boiler. Energy & Fuels. 1996, 10: 970-979.
    48 Johnsson J. E., ?mand L. E., Dam-Johansen K., Leckner B. Modeling of N2O reduction in a circulating fluidized bed boiler. Proceedings of the 5th International Conference on Circulating Fluidized Beds, Beijing, P.R. China, 1996.
    49 Johnsson J. E., Jensen A., Vaaben J. E., Dam-Johansen K. Decomposition and reduction of N2O over limestone under FBC conditions. In: Preto FDS, editor. Proceedings of the 14th International Conference on Fluidized Bed Combustion, Vancover, Canada: ASME, 1997: 953-966.
    50冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉.北京:中国电力出版社,2003.
    51 Middleton S. P., Patrick J. W., Walker A. The release of coal nitrogen and sulfur on pyrolysis and partial gasification in a fluidized bed. Fuel. 1997, 76(13): 1195-1200.
    52 K?psel R. F. W., Halang S. Catalytic influence of ash elements on NOx formation in char combustion under fluidized bed conditions. Fuel. 1997, 76(4): 345-351.
    53 Aho M. J., H?m?l?inen J. P., Tummavuori J. L. Coversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800℃. Fuel. 1993, 72: 837-841.
    54 Lepp?l?hti J., Kurkela E., Behaviour of nitrogen compounds and tars in fluidized bed air gasification of peat. Fuel. 1991, 70, 491-497.
    55 Han X. X., Jiang X. M., Cui Z. G., Flow structure and combustion characteristic of 65 t/h oil shale-fired circulating fluidized bed riser-2: Dilute phase. Chemical Engineering Science. 2006, 61(8): 2533-2539.
    56赵炜,常丽萍,冯志华,等.煤热解过程中生成氮化物的研究.燃料化学学报. 2002,30(5):408-412.
    57 Li C. Z., Tan L. L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and HN3 during pyrolysis. Fuel. 2000, 79(15): 1899-1906.
    58 Lifshitz A., Tamburu C., Suslensky A. Isomerization and decomposition of pyrrole at elevated temperature, Shock tube pyrolysis of pyrrole and kinetic modeling. Journal of Physical Chemistry. 1989, 93(15): 5802-5808.
    59 Wang W. X., Thomas K. M. The release of nitrogen species from carbons during gasification: models for coal char gasification. Fuel. 1992, 71(8): 871-877.
    60 Tan L. L., Li C. Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass, Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel. 2000, 79(15): 1899-1906.
    61 Chang L. P., Feng Z. H., Xie K. C. Effect of operating parameters on HCN and NH3 release from Australian and Chinese coals during temperature-programmed pyrolysis. Journal of Energy Source. 2003, 25: 703-712.
    62 Johnsson J. E. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel. 1994, 73(9): 1398-1415.
    63 Bassilakis R., Zhao Y., Solomon P. R., et al. Sulfur and nitrogen evolution in the Argonne coals: experiment and modeling. Energy & Fuels. 1993, 7(6): 710-720.
    64 Li C. Z., Nelson P. F. An experimental study of the release of nitrogen from coals pyrolyzed-bed reactors. In: 26th Symp (Int) Combustion. Combustion Institute, 1996: 3205-3211.
    65 Zhao Z., Qiu J., Li W., et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion. Fuel. 2003, 82(8): 949-957.
    66周浩生,陆继东,周琥.燃煤流化床加入氧化钙的氮转化机理.工程热物理学报. 2000,21(5):647-651.
    67 Tan L. L., Li C. Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass, Part II. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. Fuel. 2000, 79(15): 1891-1897.
    68常丽萍,Xie Z. L.,谢克昌,Li C. Z.,Yang L.褐煤热解过程中HCN和NH3形成的主要影响因素.化工学报. 2003,54(6):863-867.
    1邓巨龙.灰色系统理论教程.武汉:华中理工大学出版社,1990:53-84.
    2张雪平,殷国富.基于层次灰色关联的产品绿色度评价研究.中国电机工程学报. 2005,25(17):78-82.
    3王淅芬,孙学信,李敏.煤燃烧中微量元素的转换机理及富集规律研究.煤炭转化. 1999,22(1):58-62.
    4 Fu C. Y., Zheng J. S., Zhao J. M., et al. Application of grey relational analysis for corrosion failure of oil tubes. Corrosion Science. 2001, 43(5): 881-889.
    1冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉.北京:中国电力出版社,2003.
    2岑可法,池涌,倪明江,等.循环流化床锅炉理论设计与运行.北京:中国电力出版社,1998.
    3王启民,李源,杨海瑞,吕俊复.燃煤循环流化床锅炉N2O的生成、消解与控制.沈阳工程学院学报(自然科学版). 2007,3(2):108-111.
    4朱皑强,芮新红.循环流化床锅炉设备及系统.北京:中国电力出版社,2004.
    5 Valk M., Radovanovic M., A1blas B. P. Effects of the ash recycle ratio on combustion efficiency for various coal types. Proc. 8th Int. Conf. on FBC. Ed. Grace J R. New York, USA: ASME Press, 1985, 1408-1417.
    6 Carson R., Wheelson J., Castleman J., Hansen P. TVA l60-MWe AFBC demonstration plant process performance. Proc. 11th Int. Conf. on FBC. Ed. Anthony E. J. Montreal, Canada: ASME Press, 1991, 391-401.
    7田子平编译.沸腾床锅炉的理论与实践.北京:机械工业出版社,1984.
    1朱皑强,芮新红.循环流化床锅炉设备及系统.北京:中国电力出版社,2004.
    2刘德昌.流化床燃烧技术的工业应用.北京:中国电力出版社,1999.
    3 Jiang, X. M., Han, X. X., Cui, Z. G., et al. Flow structure and combustion characteristic of 65 t/h oil shale-fired circulating fluidized bed riser. 1: Dense phase. Industrial & Engineering Chemistry Research. 2006, 45(12): 4329-4334.
    4 Basu, P., Greenblatt, J. H., Basu, A. Studies of the fragmentation of different coals in a fluidized bed. Journal of the Energy Institute. 2005, 78(1): 32-37.
    5 Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., et al. The chemistry of minerals obtained from the combustion of Jordanian oil shale. Energy. 2005, 30(5): 611–619.
    6冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉.北京:中国电力出版社,2003.
    7 Chaiklangmuang S., Pourkashanian M., Williams A. Conversion of volatile-nitrogen and char-nitrogen to NO during combustion. Fuel. 2002, 81(18): 2363-2369.
    8 Tomlin A. S., Pilling M. J., Turanyi T., et al. Mechanism reduction for the oscillatory oxidation of hydrogen sensitivity and quasi-steady-state analyses. Combustion and Flame. 1992, 91: 107-130.
    9 Yetter R. A., Dryer F. L., Rabitz H. Some interpretive aspects of elementary sensitivity gradients in combustion kinetics modeling. Combustion and Flame. 1985, 59: 107-133.
    10 Tamas Turany. Application of sensitivity analysis to combustion chemistry. Reliability Engineering and System Safety. 1997, 57: 41-48.
    11 Radhakrishnan K. Numerical approaches to combustion modeling. In Progress in Astronautics and Aeronautics. Eds Oran E.S and Boris J P . Washing: AIAA, 1990, 135: 83-128.
    12孔文俊,张孝谦,周向阳. CH4/O2/N2预混、层流、稳态火焰反应机理分析.燃烧科学与技术. 1998,4(2):168-176.
    13袁建伟,冯波.喷氨同时脱除NO和N2O过程的化学动力学模拟.环境化学. 1995,14(1):1-8.
    14 Yang W., Blasiak W. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism. Fuel Processing Technology. 2005, 86(9): 943-957.
    15潘维.超细煤粉再燃机理及改造方案的数值模拟研究.杭州:浙江大学博士学位论文,2005.
    16 Lutz A. E., Kee R. J., Miller J. A. Senkin: a fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. SAND87-8248, Livermore, CA, USA: Sandia National Laboratories, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700