用户名: 密码: 验证码:
甲胺和甲烷在不同催化剂表面裂解的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用DFT–GGA方法及平板模型系统地研究了甲胺和甲烷在不同催化剂表面的裂解,通过研究它们在不同催化剂表面的反应活化能,揭示不同催化剂的活性差异。本文的研究获得了以下结论:
    
     (1)研究了甲胺的C–N键裂解生成甲基和氨基这一反应过程中涉及到的物种甲胺、甲基和氨基在清洁的Mo(100)、C(N, O, P, Cl)原子改性的Mo(100)、Mo2C(100)、MoN(100)和Pt(100)表面的吸附,以及甲胺的C–N键在这些表面的裂解。结果表明,C、N、O、P原子改性的Mo(100)表面增加了C–N键裂解的活化能,即这些改性原子钝化了清洁的Mo(100)表面;而Cl原子改性的Mo(100)表面却略微降低了C–N键裂解的活化能。处于同一周期的C、N、O原子,当它们位于Mo(100)的表面层时,对Mo(100)表面钝化的程度相近。然而,当C原子处于Mo(100)表面的亚表面层时,却极大程度地提高了该表面的反应活性。在Mo2C(100)和MoN(100)表面,甲胺C–N键裂解的活化能高于在清洁的Mo(100)表面,表明C和N原子降低了Mo的表面活性。而甲胺的C–N键在Mo2C(100)和MoN(100)表面裂解的活化能与在Pt(100)表面相当,因此,Mo2C(100)和MoN(100)表面可以代替昂贵的Pt–族金属(如钌、铑、钯、锇、铱、铂)来催化甲胺的C–N键的裂解。
     (2)研究了甲胺在Ni(111)、Ni(100)、台阶的Ni(111)和N原子改性的Ni(100) (N–Ni(100))表面可能的吸附裂解步骤。计算分析了裂解过程中可能出现的中间物种的吸附性质,详细研究了不同的催化剂对甲胺的第一步裂解,即C–H、N–H和C–N这三种原子键裂解的催化活性的差异。结果表明,这四种金属镍表面的活性降低的顺序依次为:台阶的Ni(111) > Ni(100) > Ni(111) > N–Ni(100),表明改性N原子的存在降低了Ni(100)表面的活性。对于所研究的三个裂解反应,在这四种表面,C–N键裂解的活化能最高;在Ni(111)和Ni(100)表面,C–H键裂解的活化能最低;而在台阶的Ni(111)和N–Ni(100)表面,N–H键裂解的活化能最低。
     (3)研究了CH4的C–H键在Pd基催化剂表面裂解的能学过程。结果表明,在清洁的Pd表面,C–H键裂解的反应是一个结构敏感反应。与清洁的Pd表面相比,O原子改性的Pd表面升高了反应CH4+O→CH3+OH和CH4+O→CH3+H+O的活化能。并且在相同的Pd表面,反应CH4+O→CH3+OH的活化能随着改性O原子覆盖度的增加而升高。从活化能的计算结果可以看出,CH4的C–H键裂解生成甲基和羟基的反应在O原子改性的Pd表面、PdO(100)和PdO(110)表面是结构非敏感性的,而该反应又是甲烷催化燃烧反应中的速控反应,因此,CH4在Pd表面的催化燃烧反应是结构非敏感性反应,这与实际实验相符合。另外,亚表面层O原子的存在,降低了反应CH4+O→CH3+OH在表面层O原子改性的Pd(111)表面的活化能。
In this thesis, the decomposition mechanisms of methylamine and methane on some catalysts surfaces have been systematically investigated by DFT–GGA method and slab model. The reactivity difference of various catalysts surfaces has been studied by the calculation of activation energy. The main conclusions of this work are summarized as follow.
     (1) The adsorption of methylamine, methyl, and amino involved in the C–N bond cleavage of methylamine and the dissociation of C–N bond have been investigated on the clean Mo(100), C(N, O, P, Cl) atom modified Mo(100), Mo2C(100), MoN(100), and Pt(100) surface. For C–N bond cleavage of methylamine, compared with that on the clean Mo(100), the calculated results show that the activation energy on the Mo(100) surface modified with the C, N, O, or P atom is increased. That is, the clean surface is deactivated by these modification atoms. Whereas the barrier on the Cl atom modified Mo(100) surface is slightly decreased. For the C, N, and O atom listed in the same row in the element period table, when they are on the surface of Mo(100), the passivation effect induced by them on the Mo(100) is almost the same. However, the carbon atom on the subsurface increases the reactivity of Mo(100) dramatically. On the Mo2C(100) and MoN(100) surface, the activation energy of the C–N bond cleavage is higher than that on clean Mo(100). This indicates that the presence of carbon and nitrogen decreased the reactivity of Mo(100). The barriers for the C–N bond breaking on Mo2C(100) and MoN(100) surface are similar to that on Pt(100), suggesting that the properties of the transition metal carbides and nitrides for the C–N bond scission of methylamine might be very similar to the expensive Pt-group metals (Ru, Rh, Pd, Os, Ir, Pt).
     (2) As regards for methylamine decomposition on Ni(111), Ni(100), stepped Ni(111), and nitrogen atom modified Ni(100) (N–Ni(100)), the adsorption energies under the most stable configuration of the possible species and the reactivity difference of the catalysts to the C–H, N–H, and C–N bond breaking have been investigated. Through systematic calculations for the kinetics mechanism of methylamine decomposition on these surfaces, it is found that the reactivity of the four nickel surfaces decrease with the order of stepped Ni(111) > Ni(100) > Ni(111) > N–Ni(100) and the presence of nitrogen atom decreased the reactivity of Ni(100). The barrier for the C–N bond breaking is the highest on these four surfaces, the barrier for the C–H bond breaking is the lowest on Ni(111) and Ni(100), whereas the barrier for the N–H bond breaking is the lowest on stepped Ni(111) and N–Ni(100).
     (3) The cleavage of the C–H bond in methane has been studied on the palladium based catalysts. The results show that such a reaction is a structure sensitive reaction on clean palladium surfaces. For the reaction CH4+O→CH3+OH and CH4+O→CH3+H+O, compared with that occurred on clean palladium surface, the barrier is increased. And on the same palladium surface, for the reaction CH4+O→CH3+OH, the activation energy increased with coverage. From the calculation results of activation energy, we can see that the C–H bond breaking of methane forming methyl hydroxyl is structure insensitive on the oxygen atom modified palladium, PdO(100), and PdO(110) surfaces. The reaction CH4+O→CH3+OH is the limiting step of the methane catalytic combusition. So, the catalytic combustion reaction of methane on palladium surfaces is a structure insensitive reaction, which verifies the experiment. In addition, for the reaction CH4+O→CH3+OH, the presence of subsurface oxygen decreased the barrier on oxygen atom modified Pd(111).
引文
[1]黄仲涛.工业催化剂手册[M].北京:化学工业出版社, 2001, 3, 178-183.
    [2]候增寿,卢光熙.金属学原理[M].上海:上海科学技术出版社, 1990, 29, 92-95.
    [3]孙大明,席光康.固体的表面与界面[M].安徽:安徽教育出版社, 1996, 2, 199-202.
    [4] Paul J P, Sautet J. Influence of the surface atom metallic coordination in the adsorption of ethylene on a platinum surface: a theoretical study [J]. J. Phys. Chem., 1994, 98: 10906-10912.
    [5] Francoise D, Philippe S. Low-temperature adsorption of formaldehyde on a Pt( 111) surface: a theoretical study [J]. Langmuir, 1993, 9: 197-207.
    [6] Zhang C J, Hu P. CO oxidation on Pd(100) and Pd(111): A comparative study of reaction pathways and reactivity at low and medium coverages [J]. J. Am. Chem. Soc., 2001, 123: 1166-1172.
    [7] Zhou Y H, Lv P H, Wang G C. DFT studies of methanol decomposition on Ni(100) surface:compared with Ni(111) surface [J]. J. Mol. Catal. A., 2006, 258: 203-215.
    [8] Wang G C, Zhou Y H, Morikawa Y, et al. Kinetic mechanism of methanol decomposition on Ni(111) surface: a theoretical study [J]. J. Phys. Chem. B., 2005, 109: 12431-12442.
    [9]李恒德,肖纪美,朱逢吾等.材料表面与界面[M].北京:清华大学出版社, 1990, 6.
    [10] Kossel W. The theory ofcrystal growth [J]. Nachr. Ges. Wiss G?ttingen, Math.-Physik. KI., 1927, 135-143.
    [11] Stranski I N. Zur Theorie des Kristallwachstums [J]. Z. Phys. Chem., 1928, 136: 259-278.
    [12] Blakely D W, Somorjai G A. The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces [J]. J. Catal., 1976, 42: 181-196.
    [13] Liu Z P, Hu P. General rules for prediction where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces [J]. J. Am. Chem. Soc., 2003, 125: 1958-1967.
    [14] Gong X Q, Raval R, Hu P. CO dissociation and O removal on Co(0001): a density functional theory study [J]. Surf. Sci., 2004, 562: 247-256.
    [15] Huo C F, Li Y W, Wang J G, et al. Formation of CHx species from CO dissociation on double-stepped Co(0001): exploring fischer-tropsch mechanism [J]. J. Phys. Chem. C., 2008, 112: 14108-14116.
    [16] van Grootel P W, Hensen E J M, van Santen R A. DFT study on H2O activation by stepped and planar Rh surfaces [J]. Surf. Sci., 2009, 603: 3275-3281.
    [17] Davis S M, Somorjai G A. The effect of surface oxygen on hydrocarbon reactions catalyzed by platinum crystal surfaces with variable kink concentrations [J]. Surf. Sci., 1980, 91: 73-91.
    [18]吉林大学化学系催化作用基础编写组.催化作用基础[M],北京:科学出版社, 1980, 335。
    [19] Pearlstine K A, Friend C M. Surface chemistry of alkyl amines. 2. methylamine and trimethylamine on W(100), W(100)-(5×1)-C, and W(100)-(2×1)-O [J]. J. Am. Chem. Soc., 1986, 108: 5842-5847.
    [20] Bafrali R, Bell A T. Adsorption and decomposition of CH3NH2 on Mo(100)-c(2×2)N [J]. Surf. Sci., 1994, 316(3): 267-276.
    [21] Valden M, Pere J, Xiang N, et al. Influence of preadsorbed oxygen on activated chemisorption of methane on Pd(110) [J]. Chem. Phys. Lett., 1996, 257: 289-296.
    [22] Pinnaduwage D S, Zhou L, Gao W W, et al. Chlorine promotion of styrene epoxidation on Au(111) [J]. J. Am. Chem. Soc., 2007, 129: 1872-1873.
    [23] Oh H S, Yang J H, Costello C K, et al. Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts [J]. J. Catal., 2002, 210, 375-386.
    [24] Broqvist P L, Molina M, Gronbeck H, et al. Promoting and poisoning effects of Na and Cl coadsorption on CO oxidation over MgO-supported Au nanoparticles [J]. J. Catal., 2004, 227, 217-226.
    [25] Cao Y L, Chen Z X. Slab model studies of water adsorption and decomposition on clean and X-(X=C, N and O) contaminated Pd(111) surfaces [J]. Phys. Chem. Chem. Phys., 2007, 9: 739-746.
    [26] Wang G C, Tao S X, Bu X H. A systematic theoretical study of water dissociation on clean and oxygen-preadsorbed transition metals [J]. J. Catal., 2006, 244: 10-16.
    [27] Xue L Q, Pang X Y, Wang G C. Is the preadsorbed sulfur atom always acting as a poison for the surface reaction? [J]. J. Phys. Chem. C., 2007, 111: 2223-2228.
    [28] Tao S X, Wang G C, Bu X H. Effect of pre-covered oxygen on the dehydrogenation reactions over copper surface: A density functional theory study [J]. J. Phys. Chem. B., 2006, 110: 26045-26054.
    [29]清山哲郎.金属酸化物とその触媒作用[M].東京:講談社, 1978, 173.
    [30] Henrich V E, Cox P A. The surface science of metal oxides [M]. Cambridge: Cambridge University Press, 1994, 45.
    [31] Thiel P A, Madey T E. The interaction of water with solid surfaces: fundamental aspects [J]. Surf. Sci. Rep., 1987, 7: 211-385.
    [32] Henderson M A. The interaction of water with solid surfaces: fundamental aspects revisited [J]. Surf. Sci. Rep., 2002, 46: 1-308.
    [33] Lundgren E, Gustafson J, Mikkelsen A, et al. Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures [J]. Phys. Rev. Lett., 2004, 92: 046101: 1-4.
    [34] Stampfl C. Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics [J]. Catal, Today., 2005, 105: 17-35.
    [35] Lundgren E, Mikkelsen A, Andersen J N, et al. Surface oxides on close-packed surfaces of late transition metals [J]. J. Phys.: Condens. Matter., 2006, 18: R481-R499.
    [36] Campbell C T. Transition metal oxides: extra thermodynamic stability as thin films [J]. Phys. Rev. Lett., 2006, 066106(96): 1-4.
    [37] Choudhary T V, Banerjee S, Choudhary V R. Catalysts for combustion of methane and lower alkanes [J]. Appl. Catal. A., 2002, 234: 1-23.
    [38] Gélin P, Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review [J]. Appl. Catal. B., 2002, 39: 1-37.
    [39] Ciuparu D, Lyubovsky M R, Altman E, et al. Catalytic combustion of methane over palladium-based catalysts [J]. Catal. Rev., 2002, 44: 593-649.
    [40] Trimm D L. Catalytic combustion (review) [J]. Appl. Catal., 1983, 7: 249-282.
    [41] Prasad R, Kennedy L A, Ruckenstein E. Catalytic combustion [J]. Catal. Rev. Sci. Eng., 1984, 26: 1-58.
    [42] Pfefferle L D, Pfefferle W C. Catalysis in Combustion [J]. Catal. Rev. Sci. Eng., 1987, 29: 219-267.
    [43] Ismagilov Z R, Kerzhenzev M A. Catalytic fuel combustion—a way of reducing emission of nitrogen oxides [J]. Catal. Rev. Sci. Eng., 1990, 32: 51-103.
    [44] Zwinkels M F M, J?r?s S G, Menon P G, et al. Catalytic materials for high-temperature combustion [J]. Catal. Rev. Sci. Eng., 1993, 35: 319-358.
    [45] Broclawik E, Endou A, Kubo M, et al. Density functional study on the activation of methane over Pd2, PdO, and Pd2O clusters [J]. Int. J. Quantum. Chem., 1997, 61: 673-682.
    [46] Broclawik E, Yamauchi R, Endou A, et al. On the electronic structure of the palladium monoxide and the methane adsorption: Density functional calculations [J]. J. Chem. Phys., 1996, 104: 4098-4104.
    [47] Li H Y, Guo Y L, Guo Y, et al. C-H bond activation over methane oxides: a new insight into the dissociation kinetics from density functional theory [J]. J. Chem. Phys., 2008, 051101(128): 1-4.
    [48] Blanco-Ray M, Jenkins S J. Methane dissociation and methyl diffusion on PdO(100) [J]. J. Chem. Phys., 2009, 014705(130): 1-8.
    [49] Toth L E. Transition metal carbides and nitrides [M]. Academic Press: New York, 1971, 5.
    [50] Oyama S T, Haller G L. Catalysis, specialist periodical reports [M]. The chemical society: London, 1981, 5: 333.
    [51] Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides [J]. Catal. Today, 1992, 15: 179-200.
    [52] Oyama S T. The chemistry of transition metal carbides and nitrides [R]. blackie academic and professional, Glasgow, 1996, 107-120.
    [53] Levy R L, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis [J]. Science, 1973, 181: 547-549.
    [54] Frapper G, Pélissier M. CO adsorption on molybdenum nitride’sγ-Mo2N(100) surface: formation of N=C=O species? a density functional study [J]. J. Phys. Chem. B., 2000, 104: 11972-11976.
    [55] Liu P, Rodriguez J A. Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study [J]. Catal. Lett., 2003, 91(3-4): 247-252.
    [56] Liu P, Rodriguez J A. Water-Gas-Shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide [J]. J. Phys. Chem. B., 2006, 110: 19418-19425.
    [57] de Broglie L. A tentative theory of light quanta [J]. Philosophical Magazine., 1924, 47: 446-458.
    [58] Born M, Oppenheimer R. On the quantum theory of molecules [J]. Annalen Der Physik., 1927, 84: 457-484.
    [59] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864-B871.
    [60] Kohn W, Sham L J. Self-consistent equations including exchang and correlation effects [J]. Phys. Rev., 1965, 140: A1133-A1138.
    [61] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett., 1980, 45: 566-569.
    [62] Perdew J P, Norman M R. Electron removal energies in kohn-sham density-functional theory [J]. Phys. Rev. B., 1982, 26: 5445-5450.
    [63] Fuchs M, Bockstedte M, Pehlke E, et al. Pseudopotential study of binding properties of solids within generalized gradient approximations: the role of core-valence exchange correlation [J]. Phys. Rev. B., 1998, 57: 2134-2145.
    [64] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
    [65] Zhang Y K, Yang W T. Comment on“generalized gradient approximation made simple”[J]. Phys. Rev. Lett., 1998, 80: 890-890.
    [66] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B., 1992, 46: 6671-6687.
    [67] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B., 1993, 47: 558-561.
    [68] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computat. Mater. Sci., 1996, 6: 15-50.
    [69] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B., 1996, 54: 11169-11186.
    [70] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B., 1999, 59: 1758-1775.
    [71] Bl?chl P E. Projector augmented-wave method [J]. Phys. Rev. B., 1994, 50: 17953-17979.
    [72] Kresse G, Hafner J J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. Phys. Cond. Matt., 1994, 6: 8245-8257.
    [73] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations [J]. Phys. Rev. B., 1993, 43: 1993-2006.
    [74] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B., 1990, 41: 7892-7895.
    [75] Louie S G, Froyen S, Cohen M L. Nonlinear ionic pseudopotentials in spin-density-functional calculations [J]. Phys. Rev. B., 1982, 26: 1738-1742.
    [76] Singh D J. Plane Waves, Pseudopotentials and the LAPW method [M]. Norwell MA: Kluwer Academic, 1994, 1.
    [77] Marsman M, Kresse G J. Relaxed core projector-augmented-wave method [J]. J. Chem. Phys., 2006, 104101(125): 1-12.
    [78] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B., 1981, 23: 5048-5059.
    [79] Ceoerley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett., 1980, 45: 566-569.
    [80] von Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case: I [J]. J. Phys. C., 1972, 5, 1629-1642.
    [81] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis [J]. Can. J. Phys., 1980, 58: 1200-1211.
    [82] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B., 1992, 45: 13244-13249.
    [83] Hammer B, Hansen L B, Norsk?v J K. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals [J]. Phys. Rev. B., 1999, 59: 7413-7421.
    [84] Armiento R, Mattson A E. Functional designed to include surface effects in self-consistent density functional theory [J]. Phys. Rev. B., 2005, 085108(72): 1-5.
    [85] Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Phys. Rev. Lett., 2008, 136406(100): 1-4.
    [86] Harris J, Jones R O. The surface energy of a bounded electron gas [J]. J. Phys. F., 1974, 4: 1170-1186.
    [87] Gunnarsson O, Lundqvist B I. Exchange and correlation in atoms molecules, and solids by the spin-density-functional formalism [J]. Phys. Rev. B., 1976, 13: 4274-4298.
    [88] Staroverov V N, Scuseria G E, Tao J, et al. Tests of a ladder of density functionals for bulk solids and surfaces [J]. Phys. Rev. B., 2004, 075102(69): 1-11.
    [89] Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models [J]. J. Chem. Phys., 1998, 108: 664-675.
    [90] Jaramillo J, Scuseria G E, Ernzerhof M. Local hybrid functionals [J]. J. Chem. Phys., 2003, 118: 1068-1073.
    [91] Heyd J, Scuseria G E. Hybrid functionals based on a screened coulomb potential [J]. J. Chem. Phys., 2003,118(18): 8207-8214.
    [92] Tao J, Perdew J P, Staroverov V N, et al. Climbing the density functional ladder:nonempirical meta–generalized gradient approximation designed for molecules and solids [J]. Phys. Rev. Lett., 2003, 146401(91): 1-4.
    [93] Paier J, Hirschl R, Marsman M, et al. The perdew–burke–ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set [J]. J. Chem. Phys., 2005, 234102(122): 1-13.
    [94] Paier J, Marsman M, Hummer K, et al. Screened hybrid density functionals applied to solids [J]. J. Chem. Phys., 2006, 154709(124): 1-13.
    [95] de Silva J L F, Ganduglia-Pirovano V, Sauer J, et al. Hybrid functionals applied to rare-earth oxides: the example of ceria [J]. Phys. Rev. B., 2007, 045121(75): 1-10.
    [96] Franchini C, Bayer V, Podloucky R, et al. Density functional theory study of MnO by a hybrid functional approach [J]. Phys. Rev. B., 2005, 045132(72): 1-6.
    [97] Franchini C, Podloucky R, Paier J, et al. Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations [J]. Phys. Rev. B., 2007, 195128(75): 1-11.
    [98] Kübler J, H?ck K H, Sticht J, et al. Density functional theory of non-collinear magnetism [J]. J. Phys. F., 1988, 18: 469-483.
    [99] Oda T, Pasquarello A, Car R. Fully unconstrained approach to noncollinear magnetism: application to small Fe clusters [J]. Phys. Rev. Lett., 1998, 80: 3622-3625.
    [100] Hobbs D, Kresse G, Hafner J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method [J]. Phys. Rev. B., 2000, 62: 11556-11570.
    [1] Katzer J R, Sivasubramanian R. Process and catalyst needs for hydrodenitrogenation [J]. Catal. Rev. Sci. Eng., 1979, 20: 155-208.
    [2] Paul E W, Ricco A J, Wrighton M S. Resistance of polyanillne films as a function of electrochemical potential and the fabrication of poiyanlline-based microelectronic devices [J]. J. Phys. Chem., 1985, 89: 1441-1447.
    [3] Skotheim T A. Handbook of conducting polymers [M]. Marcel Dekker, New York, 1986, 48-53.
    [4] Baca A G, Schulz M A, Shirley D A. Electron energy loss spectroscopy (EELS) of CH3NH2 adsorbed on Ni(100), Ni(111), Cr(100), and Cr(111) [J]. J. Chem. Phys., 1985, 83: 6001-6008.
    [5] Chorkendorff I, Russell Jr J N, Yates Jr J T. Surface reaction pathways of methylamine on the Ni(111) surface [J]. J. Chem. Phys., 1987, 86: 4692-4700.
    [6] Chang C C, Khong C, Saiki R. Temperatre-programmed reaction of methylamine on the Ni(100) surface [J]. J. Vac. Sci. Technol. A., 1993, 11(4): 2122-2127.
    [7] Bond G C. Catalysis by metals [M]. New York: Academic Press, 1992: 296-297.
    [8] Yao Y. Chemisorption of amines and its effect on subsequent oxidation of iron surfaces [J]. J. Phys. Chem., 1964, 68: 101-105.
    [9] Gardin D E, Somorjai G A. Vibrational spectra and thermal decomposition of methylamine and ethylamine on Ni(111) [J]. J. Phys. Chem., 1992, 96: 9424-9431.
    [10]吉林大学化学系催化作用基础编写组.催化作用基础[M].北京:科学出版社, 1980, 335.
    [11] Bafrali R, Bell A T. Adsorption and decomposition of CH3NH2 on Mo(100)-c(2×2)N [J]. Surf. Sci., 1994, 316(3): 267-276.
    [12] Liu P, Rodriguez J A. Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study [J]. Catal. Lett., 2003, 91(3-4): 247-252.
    [13] Eng J Jr, Bent B E, Frühberger B, et al. Modifying surface reactivities by a carbide overlayer: a vibrational study of the reaction mechanisms of cyclohexene and 1,3-cyclohexadiene on Mo(110) and (4×4)-C/Mo(110) surfaces [J]. Langmuir, 1998, 14: 1301-1311.
    [14] Clark P, Oyama S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts [J]. J. Catal., 2003, 218, 78-87.
    [15] Frapper G, Pélissier M, Hafner J. CO adsorption on molybdenum nitride’sγ-Mo2N(100) surface: formation of N=C=O species? a density functional study [J]. J. Phys. Chem. B., 2000, 104, 11972-11976.
    [16] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B., 1996, 54: 11169-11186.
    [17] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
    [18] Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond [J]. J. Comput. Chem. 2008, 29: 2044-2077.
    [19] Bl?chl P E. Projector augmented-wave method [J]. Phys. Rev. B., 1994, 50: 17953-17979.
    [20] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B., 1992, 46: 6671-6687.
    [21] Mortensen J J, Kaasbjerg K, Frederiksen S L, et al. Bayesian error estimation in density-functional theory [J]. Phys. Rev. Lett., 2005, 216401(95): 1-4.
    [22] Tomaszewski P E. Structural phase transitions in crystals. [J]. Phase Transition, 1992, 38, 127-220.
    [23] Bezinge A, Yvon K, Muller J, et al. High-pressure high-temperature experiments onδ-MoN [J]. Solid State Communications, 1987, 63: 141-145.
    [24] Bauer E, Hoppa H. The interaction of oxygen with the Mo(100) surface [J]. Surf. Sci., 1979, 88, 31-64.
    [25] Li J, Li R F, Wang G C. A systematic density functional theory study of the C-N bond cleavage of methylamine on metals [J]. J. Phys. Chem. B., 2006, 110: 14300-14303.
    [26] Masahiro N, Akihiro N, Jun T, et al. Advances in powder metallurgy & particulate materials, Metal Powder Industries Federation, Princeton, N J, 1999, 3:109-116.
    [27] Kim S H, Stair P C. Surface chemistry of methyl radicals on O/Mo(100) surfaces [J]. J. Phys. Chem. B., 2000, 104, 3035-3043.
    [28]赵新新,宓一鸣. Cu(001)表面CO吸附单层结构和电子态的第一性原理研究[J].物理化学学报, 2008, 24(1): 127-132.
    [29] Kresse G, Gil A, Sautet P. Significance of single-electron energies for the description of CO on Pt(111) [J]. Phys. Rev. B., 2003, 073401(68): 1-4.
    [30] Akman N, Durgan E, Yildirm T, et al. Hydrogen storage capacity of titanium met-cars [J]. J. Phys. Condens. Matter., 2006, 18: 9509-9517.
    [31] Wang G C, Li J, Xu X F, et al. The relationship between adsorption energies of methyl on metals and the metallic electronic properties: a first-principles DFT study [J]. J. Comput. Chem., 2005, 26: 871-878.
    [32] Lide D R. CRC Handbook of Chemistry and Physics, 73rd, Ed.; CRC Press: 1992.
    [33] Fall C J, Binggeli N, Baldereschi A. Deriving accurate work functions from thin-slab calculations [J]. J. Phys. Condens. Matter., 1999, 11: 2689-2696.
    [34] Tang Q L, Chen Z X. Density functional slab model studies of water adsorption on flat and stepped Cu surfaces [J]. Surf. Sci., 2007, 601: 954–964.
    [35] Cao Y L, Chen Z X. Slab model studies of water adsorption and decomposition on clean and X-(X=C, N and O) contaminated Pd(111) surfaces [J]. Phys. Chem. Chem. Phys., 2007, 9: 739–746.
    [36] Hammer B, Morikawa Y, N?rskov J K. Surface oxides on close-packed surfaces of late transition metals [J]. Phys. Rev. Lett., 1996, 2141(76): R481-R499.
    [37]吕存琴,凌开成,尚贞锋,等.甲基、氨基和甲胺在清洁及C(N, O)改性的Mo(100)表面的吸附,物理化学学报, 2008, 24(8): 1366-1370.
    [38] Chen J G G, Menning C A, Zellner M B. Monolayer bimetallic surfaces: experimetal and theoretical studies of trends in electronic and chemical properties [J]. Surf. Sci. Rep., 2008, 63: 201–254.
    [39] Kratzer P, Hammer B, N?rskov J K. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces [J]. J. Chem. Phys., 1996, 105: 5595-5604.
    [40] Ulitsky A, Elber R. A new technique to calculate steepest descent paths in flexible polyatomic systems [J]. J. Chem. Phys., 1990, 92: 1510-1511.
    [1] Bafrali R, Bell A T. Adsorption and decomposition of CH3NH2 on Mo(100)-c(2×2)N [J]. Surf. Sci., 1994, 316(3): 267-276.
    [2] Pearlstine K A, Friend C M. Surface chemistry of alkyl amines. 2. methylamine and trimethylamine on W(100), W(100)-(5×1)-C, and W(100)-(2×1)-O [J]. J. Am. Chem. Soc., 1986, 108: 5842-5847.
    [3] Sasaki T, Aruga T, Kuroda H, et al. Cocadsorption of CO and methylamine on Ru(001): effect of coadsorbed CO on dissociation paths of methylamine [J]. Surf. Sci., 1991, 249(1-3): L347-L353.
    [4] Kato T, Kang S Y, Xu X, et al. Dissociative adsorption of CH3OH and CH3NH2 on Si(100)-2×1 surface [J]. J. Phys. Chem. B., 2001, 105: 10340-10347.
    [5] Cho J, Kleinman L. Self-assembled molecular array in methylamine dissociation on Si(001) [J]. Phys. Rev. B., 2003, 201301(67): 1-4.
    [6] Li J, Li R F, Wang G C. A systematic density functional theory study of the C-N bond 65cleavage of methylamine on metals [J]. J. Phys. Chem. B., 2006, 110: 14300-14303.
    [7] Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. J. Chem. Phys., 2000, 113: 9901-9904.
    [8] Lerch D, Klein A, Schmidt A, et al. Unusual adsorption site of hydrogen on the unreconstructed Ir(100) surface [J]. Phys. Rev. B., 2006, 075430(73): 1-11.
    [9] Huang W Y, Lai W Z, Xie D Q. First-principles study of decomposition of NH3 on Ir(100) [J]. Surf. Sci., 2008, 602: 1288-1294.
    [10] Wang G C, Tao S X, Bu X H. A systematic theoretical study of water dissociation on clean and oxygen-preadsorbed transition metals [J]. J. Catal., 2006, 244: 10-16.
    [11] Xue L Q, Pang X Y, Wang G C. Is the preadsorbed sulfur atom always acting as a poison for the surface reaction? [J]. J. Phys. Chem. C., 2007, 111: 2223-2228.
    [12] Cao Y L, Chen Z X. Slab model studies of water adsorption and decomposition on clean and X-(X=C, N and O) contaminated Pd(111) surfaces [J]. Phys. Chem. Chem. Phys., 2007, 9: 739–746.
    [13] Tang Q L, Chen Z X. Density functional slab model studies of water adsorption on flat and stepped Cu surfaces [J]. Surf. Sci., 2007, 601: 954–964.
    [14] Feibelman P J, Hamann D R. Electronic structure of a“poisoned”transition-metal surface [J]. Phys. Rev. Lett., 1984, 52(1): 61-64.
    [15] Kim S H, Stair P C. Surface chemistry of methyl radicals on O/Mo(100) surfaces [J]. J. Phys. Chem. B., 2000, 104: 3035-3043.
    [16] Liu P, N?rskov J K. Ligand and ensemble e.ects in adsorption on alloy surfaces [J]. Phys. Chem. Chem. Phys., 2001, 3: 3814-3818.
    [17] Chen J G, Menning C A, Zellner M B. Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties [J]. Surf. Sci. Rep., 2008, 63: 201-254.
    [18] Walker B W, Stair P C. The adsorption and decomposition of trimethylamine on the clean and oxidized Mo(100) surface [J]. Surf. Sci., 1981, 103: 315-337.
    [19] Liu P, Rodriguez J A. Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study [J]. Catal. Lett., 2003, 91(3-4): 247-252.
    [20] Chen J G. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities [J]. Chem. Rev., 1966, 96: 1477-1498.
    [21] Xu Y, Greeley J, Mavrikakis M. Effect of subsurface oxygen on the reactivity of the Ag(111) surface [J]. J. Am. Chem. Soc. 2005, 127: 12823-12827.
    [22] Liu Z P, Hu P J. General trends in CO dissociation on transition metal surfaces [J]. Chem. Phys., 2001, 114: 8244-8247.
    [23] Mortensen J J, Hammer B, N?rskov J K. A theoretical study of adsorbate–adsorbate interactions on Ru(0001) [J]. Surf. Sci., 1998, 414: 315-329.
    [24] Alavi A, Hu P J, Deutsch T, et al. CO oxidation on Pt(111): an ab initio density functional theory study [J]. Phys. Rev. Lett., 1998, 80: 3650-3653.
    [25] Bleakley K, Hu P. A density functional theory study of the interaction between CO and O on a Pt Surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111) [J]. J. Am. Chem. Soc., 1999, 121: 7644-7652.
    [1] Gardin D E, Somorjai G A. Vibrational spectra and thermal decomposition of methylamine and ethylamine on Ni(111) [J]. J. Phys. Chem., 1992, 96: 9424-9431.
    [2] Nunney T S, Birtill J J, Raval R. Infrared studies of sub-monolayer methylamine and trimethylamine adsorption on Ni(111) [J]. Surf. Sci., 1999, 427- 428: 282-287.
    [3] Chorkendorff I, Russell Jr J N, Yates Jr J T. Surface reaction pathways of methylamine on the Ni(111) surface [J]. J. Chem. Phys., 1987, 86: 4692-4700.
    [4] Schoofs G R, Benziger J B. Reactions of organonitrogen molecules with Ni(100) [J]. J. Phy. Chem., 1988, 92: 741-750.
    [5] Chang C C, Khong C, Saiki, R. Temperatre-programmed reaction of methylamine on the Ni(100) surface [J]. J. Vac. Sci. Technol. A., 1993, 11(4): 2122-2127.
    [6] Baca A G, Schulz M A, Shirley D A. Electron energy loss spectroscopy (EELS) of CH3NH2 adsorbed on Ni(100), Ni(111), Cr(100), and Cr(111) [J]. J. Chem. Phys., 1985, 83: 6001-6008.
    [7] Sheets R W, Blyholder G. Dissociation of alkylamines adsorbed on iron and nickel [J]. J. Catal., 1981, 67(2): 308-315.
    [8] Johnson D F, Wang Y, Parmeter J E, et al. Chemisorption and thermal decomposition ofmethylamine on the Ru(001) surface [J]. J. Am. Chem. Soc., 1992, 114: 4279-4290.
    [9] Chen J J, Winograd N. The adsorption and decomposition of methylamine on Pd(111) [J]. Surf. Sci., 1995, 326: 285-300.
    [10] Hwang S Y, Seebauer E G, Schmidt L D. Decomposition of CH3NH2 on Pt(111) [J]. Surf. Sci., 1987, 188: 219-234.
    [11] Cordonier G A, Schüth F, Schmidt L D. Decomposition of CH3NH2 on Pt and Rh: rate oscillations and surface intermediates [J]. Vacuum., 1990, 41(1-3): 278-281.
    [12] Pearlstine K A, Friend C M. Surface dhemistry of alkyl amines. 2. methylamine and trimethylamine on W(100), W(100)-(5×1)-C, and W(100)-(2×1)-O [J]. J. Am. Chem. Soc., 1986, 108: 5842-5847.
    [13] Bafrali R, Bell A T. Adsorption and decomposition of CH3NH2 on Mo(100)-c(2×2)N [J]. Surf. Sci., 1994, 316(3): 267-276.
    [14] Hwang S Y, Kong A C F, Schmidt L D. Surface chemistry of C-N bonds on Rh(111). 1. C2N2 and CH3NH2 [J]. J. Phys. Chem., 1989, 93: 8327-8333.
    [15] Maseri F, Peremans A, Darville J, et al. An IRAS/TDS study of the adsorption of CH3NH2 on Cu(110) [J]. J. Electron Spectrosc. Relat. Phenom., 1990, 54-55:1059-1064.
    [16] Kato T, Kang S Y, Xu X, et al. Dissociative adsorption of CH3OH and CH3NH2 on Si(100)-2×1 surface [J]. J. Phys. Chem. B., 2001, 105: 10340-10347.
    [17] Cho J, Kleinman L. Self-assembled molecular array in methylamine dissociation on Si(001) [J]. Phys. Rev. B., 2003, 201301(67): 1-4.
    [18] Oliva C, van den Berg C, (Hans) Niemantsverdriet J W, et al. A density functional theory study of HCN hydrogenation to methylamine on Ni(111) [J]. J. Catal., 2007, 245: 436-445.
    [19] Li J, Li R F, Wang G C. A systematic density functional theory study of the C-N bond cleavage of methylamine on metals [J]. J. Phys. Chem. B., 2006, 110: 14300-14303.
    [20] Kittel C. Introduction to solid state physics [M]. seventh ed., New York: Wiley, 1996, 11.
    [21] Yang H, Whitten J L. Ab Initio chemisorption studies of CH3 on Ni(111) [J]. J. Am. Chem. Soc., 1991, 113: 6442-6449.
    [22] Michaelides A, Hu P. Methyl chemisorption on Ni(111) and C-H-M multicentre bonding: a density functional theory study [J]. Surf. Sci., 1999, 437: 362-376.
    [23] Lee M B, Yang Q Y, Tang S L, et al. Activated dissociative chemisorption of CH4 onNi(111): observation of a methyl radical and implication for the pressure gap in catalysis [J]. Chem. Phys., 1986, 85: 1693-1694.
    [24] Wang G C, Zhou Y H, Morikawa Y, et al. Kinetic mechanism of methanol decomposition on Ni(111) surface: a theoretical study [J]. J. Phys. Chem. B., 2005, 109: 12431-12442.
    [25] Siegbahn P E M, Panas I. A theoretical study of CHx chemisorption on the Ni(100) and Ni(111) surfaces [J]. Surf. Sci., 1990, 240: 37-49.
    [26] Robinson J, Woodruff D P. The local adsorption geometry of CH3 and NH3 on Cu(111): a density functional theory study [J]. Surf. Sci., 2002, 498: 203-211.
    [27] Zhou Y H, Lv P H, Wang G C. DFT studies of methanol decomposition on Ni(100) surface: compared with Ni(111) surface [J]. J. Mol. Catal. A., 2006, 258: 203-215.
    [28] Greeley J, Mavrikakis M. A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior [J]. Surf. Sci., 2003, 540: 215-229.
    [29] Yang H, Whitten J L. Chemisorption of hydrogen on the nickel(111) surface [J]. J. Chem. Phys., 1988, 89: 5329-5334.
    [30] Mattsson T R, Wahnstrom G, Bengtsson L, et al. Quantum-mechanical calculation of H on Ni(001) using a model potential based on first-principles calculations [J]. Phys. Rev. B., 1997, 56: 2258-2266.
    [31] Kresse G, Hafner J. First-principles study of the adsorption of atomic H on Ni(111), (100) and (110) [J]. Surf. Sci., 2000, 459: 287-302.
    [32] Zhang C J, Hu P. Methane transformation to carbon and hydrogen on Pd(100): pathways and energetics from density functional theory calculations [J]. J. Chem. Phys., 2002, 116: 322-327.
    [33] Yang H, Whitten J L. Dissociative chemisorption of CH4 on Ni(111) [J]. J. Chem. Phys., 1992, 96: 5529-5536.
    [34] Burghgraef H, Jansen A P J, van Santen R A. Theoretical investigation of the insertion of nickel in the CH bond of CH4. Electronic structure calculations and dynamics [J]. J. Chem. Phys., 1993, 98: 8810-8818.
    [35] Michaelides A, Hu P. A first principles study of CH3 dehydrogenation on Ni(111) [J]. J. Chem. Phys., 2000, 112: 8120-8125.
    [36] Zhu Y A, Dai Y C, Chen D, et al. First-principles calculations of CH4 dissociation on Ni(100) surface along different reaction pathways [J]. J. Mol. Catal. A., 2007, 264: 299-308.
    [37] Zhang C J, Hu P. A first principles study of methanol decomposition on Pd(111): mechanisms for O–H bond scission and C–O bond scission [J]. J. Chem. Phys., 2001, 115: 7182-7186.
    [38] Ge Q, Neurock M. Correlation of adsorption energy with surface structure: ethylene adsorption on Pd surfaces [J]. Chem. Phys. Lett., 2002, 358: 377-382.
    [39] Zhang C J, Hu P. CO oxidation on Pd(100) and Pd(111): a comparative study of reaction pathways and reactivity at low and medium coverages [J]. J. Am. Chem. Soc., 2001, 123: 1166-1172.
    [40] Cao Y L, Chen Z X. Slab model studies of water adsorption and decomposition on clean and X-(X = C, N and O) contaminated Pd(111) surfaces [J]. Phys. Chem. Chem. Phys., 2007, 9: 739-746.
    [41] Wang H F, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-sate searching method for resolving the complex reaction network [J]. J. Am. Chem. Soc., 2008, 130: 10996-11004.
    [1]贺黎明,沈召军.甲烷的转化和利用[M],北京:化学工业出版社, 2005, 8.
    [2] Anderson R B, Stein K C, Feenan J J, et al. Catalytic oxidation of methane [J]. Ind. Eng. Chem., 1961, 53: 809-812.
    [3] Gélin P, Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review [J]. Appl. Catal. B., 2002, 39: 1-37.
    [4] Jacobs J W M, Schryvers D. A high-resolution electron microscopy study of photodeposited Pd particles on TiO2 and their oxidation in air [J]. J. Catal., 1987, 103(2): 436-449.
    [5] Farrauto R J, Hobson M C, Kennelly T, et al. Catalytic chemistry of supported palladium for combustion of methane [J]. Appl. Catal. A., 1992, 81: 227-237.
    [6] McCarty J G. Kinetics of PdO combustion catalysis [J]. Catal. Today, 1995, 26: 283-293.
    [7] Burch R, Urbano F J. Investigation of the active state of supported palladium catalysts in the combustion of methane [J]. Appl. Catal. A., 1995, 124: 121-138.
    [8] Burch R. Low NO x options in catalytic combustion and emission control [J]. Pure & Appl. Chem., 1996, 68: 377-385.
    [9] Burch R. Low NOx options in catalytic combustion and emission control [J]. Catal. Today, 1997, 35: 27-36.
    [10] Müller C A, Maciejewski M, Koeppel R A, et al. Combustion of methane over Palladium/Zirconia derived from a glassy Pd-Zr Alloy: effect of Pd particle size on catalytic behavior [J]. J. Catal., 1997, 166: 36-43.
    [11] Su S C, Carstens J N, Bell A T. A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4 [J]. J. Catal., 1998, 176: 125-135.
    [12] Carstens J N, Su S C, Bell A T. Factors affection the catalytic activity of Pd/ZrO2 for the combustion of methane [J]. J. Catal., 1998, 176: 136-142.
    [13] Groppi G, Cristiani C, Lietti L, et al. Studies in surface science and catalysis, Vol. 130D, Elsevier, Amsterdam, 2000, 3801.
    [14] Lyubovsky M, Pfefferle L. Methane combustion over theα-alumina supported Pd catalyst: activity of the mixed Pd/PdO state [J]. Appl. Catal. A.,1998, 173: 107-119.
    [15] Datye A K, Bravo J, Nelson T R, et al. Catalyst microstructure and methane oxidation reactivity during the PdO?Pd0 transformation on alumina supports [J]. Appl. Catal. A., 2000, 198: 179-196.
    [16] Ciuparu D, Pfefferle L. Methane combustion activity of supported palladium catalysts after partial reduction [J]. Appl. Catal. A., 2001, 218: 197-209.
    [17] Burch R, Crittle D J, Hayes M J. C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts [J]. Catal. Today, 1999, 47: 229-234.
    [18] Choudhary V R, Rane V H. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons [J]. J. Catal., 1991, 130(2): 411-422.
    [19] Fujimoto K-I, Ribeiro F H, Avalos-Borja M, et al. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures [J]. J. Catal., 1998, 179: 431-442.
    [20] Hicks R F, Qi H, Young M L, et al. Structure sensitivity of methane oxidation over platinum and palladium [J]. J. Catal., 1990, 122(2): 280-294.
    [21] Hicks R F, Qi H, Young M L, et al. Effect of catalyst structure on methane oxidation over palladium on alumina [J]. J. Catal., 1990, 122(2): 295-306.
    [22] Garbowski E, Feumi-Jantou C, Mouaddib N, et al. Catalytic combustion of methane over palladium supported on alumina catalysts: evidence for reconstruction of particles [J]. Appl. Catal., 1994, 109: 277-291.
    [23] Müller C A, Maciejewski M, Koeppel R A, et al. Combustion of methane over palladium/zirconia derived from a Pd-Zr Alloy: effect of Pd particle size on catalytic behavior [J]. J. Catal., 1997, 166: 36-43.
    [24] Baldwin T R, Burch R. Catalytic combustion of methane over supported palladium catalysts: 1. Alumina supported catalysts [J]. Appl. Catal., 1990, 66(1): 337-358.
    [25] Cullis C F, Willatt B M. Oxidation of methane over Supported Precious Metal Catalysts [J]. J. Catal., 1983, 83(2): 267-285.
    [26] Baldwin T R, Burch R. Remarkable activity enhancement in the catalytic combustion of methane on supported palladium catalysis [J]. Catal. Lett., 1990, 6: 131-138.
    [27] Ribeiro F H, Chow M, Betta R A D. Kinetics of the complete oxidation of methane over supported palladium catalysts [J]. J. Catal., 1994, 146: 537-544.
    [28] Zhu G H, Han J Y, Zemlyanov D Y, et al. The turnover rate for the catalytic combustion of methane over palladium is not sensitive to the structure of the catalyst [J]. J. Am. Chem. Soc., 2004, 126: 9896-9897.
    [29] Yarw-Nan W, Herman R G, Klier K. Dissociative adsorption of methane on Pd(679) surface [J]. Surf. Sci., 1992, 279(1-2): 33-48.
    [30] Klier K, Hess J S, Herman R G. Structure sensitivity of methane dissociation on palladium single crystal surfaces [J]. J. Chem. Phys., 1997, 107: 4033-4043.
    [31] Solymosi F, Erdohelyi A, Cserenyi J, et al. Decomposition of CH4 over supported Pd catalysts [J]. J. Catal., 1994, 147(1): 272-278.
    [32] Valden M, Pere J, Xiang N, et al. Influence of preadsorbed oxygen on activated chemisorption of methane on Pd(110) [J]. Chem. Phys. Lett., 1996, 257: 289-296.
    [33] Luntz A C, Winters H F. Dissociation of methane and ethane on Pt(110): evidence for adirect mechanism under thermal conditions [J]. J. Chem. Phys. 1994, 101(12): 10980-10989.
    [34] Zhang C J, Hu P. Methane transformation to carbon and hydrogen on Pd(100): pathways and energetics from density functional theory calculations [J]. J. Chem. Phys., 2002, 116(1): 322-327.
    [35] Broclawik E, Endou A, Kubo M, et al. Density functional study on the activation of methane over Pd2, PdO, and Pd2O clusters [J]. Int. J. Quantum. Chem., 1997, 61: 673-682.
    [36] Broclawik E, Yamauchi R, Endou A, et al. On the electronic structure of the palladium monoxide and the methane adsorption: density functional calculations [J]. J. Chem. Phys., 1996, 104: 4098-4104.
    [37] Li H Y, Guo Y L, Guo Y, et al. C-H bond activation over methane oxides: a new insight into the dissociation kinetics from density functional theory [J]. J. Chem. Phys., 2008, 051101(128): 1-4.
    [38] Blanco-Ray M, Jenkins S J. Methane dissociation and methyl diffusion on PdO(100) [J]. J. Chem. Phys., 2009, 014705(130): 1-8.
    [39] Rogal J, Reuter K, Scheffler M. Thermodynamic stability of PdO surfaces [J]. Phys. Rev. B., 2004, 075421(69):1-8.
    [40]贺黎明,沈召军.甲烷的转化和利用[M].北京,化学工业出版社, 2005, 50-51.
    [41] Lai W Z, Xie D Q, Zhang D H. First-principles study of adsorption of methyl, coadsorption of methyl and hydrogen, and methane dissociation on Ni(100) [J]. Surf. Sci. 2005, 594, 83.
    [42] Zhu Y A, Dai Y C, Chen D, et al. First-principles calculations of CH4 dissociation on Ni(100) surface along different reaction pathways [J]. J. Mol. Catal. A., 2007, 264: 299-308.
    [43] ?str?m H, Ogasawara H, N?slund L, et al. Physisorption-induced C-H Bond elongation in methane [J]. Phys. Rev. Lett., 2006, 146104(96): 1-4.
    [44] Cao Y L, Chen Z X. Slab model studies of water adsorption and decomposition on clean and X- (X = C, N and O) contaminated Pd(111) surfaces [J]. Phys. Chem. Chem. Phys., 2007, 9: 739-746.
    [45] Wang G C, Li J, Xu X F, et al. The relationship between adsorption energies of methyl onmetals and the metallic electronic properties: a first-principles DFT Study [J]. J. Comp. Chem., 2005, 26: 871-878.
    [46] Paul L F, Sautet P J. Chemisorption and transformation of CHx fragments (x = 0-3) on a Pd(111) surface: a periodic density functional study [J]. Phys. Chem. B., 1998, 102, 1578-1585.
    [47] Liu Z P, Hu P. General rules for prediction where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces [J]. J. Am. Chem. Soc., 2003, 125: 1958-1967.
    [48] Yang H, Whitten J L. Dissociative chemisorption of CH4 on Ni(111) [J]. J. Chem. Phys., 1992, 96: 5529-5536.
    [49] Burghgraef H, Jansen A P J, van Santen R A. Theoretical investigation of the insertion of nickel in the CH bond of CH4. electronic structure calculations and dynamics [J]. J. Chem. Phys., 1993, 98: 8810-8818.
    [50] Michaelides A, Hu P. A first principles study of CH3 dehydrogenation on Ni(111) [J]. J. Chem. Phys., 2000, 112: 8120-8125.
    [51] N?rskov J K, Bligaard T, Hvolb?k B, et al. The nature of the active site in heterogeneous metal catalysis [J]. Chem. Soc. Rev., 2008, 37: 2163-2171.
    [52] Wang Y N, Herman R G, Klier K. Dissociative adsorption of methane of Pd(679) surface [J]. Surf. Sci., 1992, 279: 33-48
    [53] Mcleod A S, Gladden L F. Relating metal particle geometry to the selectivity and activity of supported-metal catalysts: a monte carlo study [J]. J. Catal., 1998, 173: 43-52.
    [54]Winters H F. The activated dissociative chemisorption of methane on tungsten [J]. J. Chem. Phys., 1975, 62: 2454-2460.
    [55] Winters H F. The kinetic isotope effect in the dissociative chemisorption of methane [J]. J. Chem. Phys., 1976, 64: 3495-3500.
    [56] Wang G C, Zhou Y H, Morikawa Y, et al. Kinetic mechanism of methanol decomposition on Ni(111) surface: a theoretical study [J]. J. Phys. Chem. B., 2005, 109: 12431-12442.
    [57] Beebe Jr T P, Goodman D W, Kay B D, et al. Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces [J]. J. Chem. Phys., 1987, 87: 2305-2315.
    [58] Kokalj A, Bonini N, Sbraccia C, et al. Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111) [J]. J. Am. Chem. Soc., 2004, 126: 16732-16733.
    [59] Fratesi G, Gironcoli S D. Analysis of methane-to-methanol conversion on clean and defective Rh surfaces [J]. J. Chem. Phys., 2006, 044701(125): 1-7.
    [60] Zhang C J, Hu P. CO oxidation on Pd(100) and Pd(111): a comparative study of reaction pathways and reactivity at low and medium coverages [J]. J. Am. Chem. Soc., 2001, 123: 1166-1172.
    [61] Somorjai G A. Molecular concepts of heterogeneous catalysis [J]. J. Mol. Struct., (Theochem) 1998, 424: 101-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700