用户名: 密码: 验证码:
基于吡喃腈和菁染料衍生物的分子逻辑门和荧光探针
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学传感器是超分子化学领域最活跃的研究领域之一,特别是化学传感器在生物方面的应用日益受到研究者的重视。自de Silva报道了第一个分子型AND逻辑门以来,分子逻辑门的研究取得了巨大的进展。传统的半导体硅材料通过电压变化实现逻辑运算,超分子化学则通过客体与主体的相互作用过程及对应的光谱信号变化,与逻辑计算过程的输入及输出一一对应。相对于传统半导体,在分子水平上构建逻辑操作最大的优势在于尺度小、可重构性好。故基于化学传感器构建分子逻辑门有着非常巨大的应用前景。
     分子荧光的优势在于灵敏度高、响应快、可在单分子水平上远距离监测及易于实现人与分子之间的联系等。本论文主要设计合成了以吡喃腈和菁染料为受体的系列衍生物,在分子结构中引入了不同的受体基团以及对吡喃腈母体的结构进行了修饰。根据典型的D-π-A体系中的受体基团对不同客体的识别作用,调控分子体系内的电荷转移(ICT)过程,利用在光谱上表现出不同的响应信号,成功地构建了具有序列响应、逻辑存储功能的分子键盘和具有比较功能的半减法器等组合逻辑门及荧光传感器。本论文的主要研究内容概括如下:
     第一章重点介绍了化学传感器的基本原理,以及对分子逻辑门的重要进展进行了综述,并提出本论文的研究内容。
     第二章设计、合成了以吡喃腈为受体的含有哌嗪单元的两个化合物DCMP和DCPP。研究发现,只有DCPP对Hg2+表现为选择性的荧光增强,而对Cu2+表现出强烈的荧光淬灭效应,并对其它测试金属离子表现出很好的选择性。进一步研究发现,化合物DCPP与Cu2+和Hg2+的配合常数为同一数量级,导致DCPP与一定当量的Hg2+和Cu2+配位时存在动力学竞争,表现为加入离子次序不同得到的荧光信号输出不同。利用DCPP与Hg2+和Cu2+在配位过程中的动力学差异,成功地构建了一个具有序列响应、逻辑存储功能的分子键盘。
     第三章设计、合成了含有二甲基吡啶(DPA)单元和pH响应的“V”型双边化吡喃腈衍生物DADPP,详细研究了DADPP作为Zn2+探针的性能。DADPP在不同酸碱条件下与Zn2+作用产生了DADPP、DADPP-、DADPP--Zn2+及DADPP-Zn2+四种不同状态,并伴随产生不同的光谱变化。利用DADPP四种不同状态之间的转换,实现在光谱上的变化作为响应输出,成功构建了含有比较功能的半减法器。
     第四章基于吡喃腈荧光单元,通过自由基聚合合成了温度敏感性聚合物poly(NIPMAM-co-MDCPDP).研究发现,该聚合物对Cu2+的荧光选择性荧光淬灭与pH密切相关,只有在pH<7时才表现出强烈的荧光淬灭作用,而pH=10时,却对Cu2+没有响应。利用聚合物在不同的pH值下其吸收和荧光光谱表现出截然不同的温度响应,选择以pH值作为一个信号输入,温度(Temp)和Cu2+两者之一作为另外一个输入,成功的模拟了两个INHIBIT逻辑门;以pH值、温度(Temp)及Cu2+为三个输入成功地实现了两个NOR逻辑门并行的组合逻辑门。
     第五章设计、合成了亲水型的荧光聚合物poly(HEMA-co-MDCPDP).该聚合物对Cu2+表现出快速的选择性荧光淬灭效应,且配位后的薄膜在EDTA的水溶液中能重复使用。进一步合成了聚合物的金属配合物poly(HEMA-co-MDCPDP)-Cu2+,研究其对阴离子识别作用发现,其对焦磷酸根(PPi)表现为选择性荧光增强,并对PPi、AMP、ADP和ATP表现出很高的选择性,并且poly(HEMA-co-MDCPDP)-Cu2+的薄膜与PPi作用在5 min左右达平衡。成功地发展了基于"ensemble"法PPi阴离子的荧光探针,其具有近红外、荧光增强、高选择性等优点,有望对生物过程中在线监测PPi的浓度变化具有潜在的应用价值,极大地解决了荧光传感膜的成膜性、膜的通透性、亲水性和溶涨等一系列制约微型化反应器实际应用的问题。
     第六章基于汞促进硫脲成胍的反应,设计合成了三个菁染料的近红外比值型荧光探针IR-877、IR-897及IR-925,并研究三个不同的异氰硫脲基团的取代基效应。IR-877和IR-897与Hg2+作用时有明显的吸收光谱偏移,分别产生176和162 nm的波长红移,在荧光光谱上780 nm处荧光淬灭而在830 nm处荧光增强,而IR-925在合理的有效检测时间内光谱上几乎没有变化。通过激发光谱模式的双激发、等吸收光点激发的双发射等方法,IR-897和IR-877可作为近红外的比色法和荧光比率型探针检测无机Hg2+和有机的甲基汞离子,并具有高选择性和高灵敏性的等优点,检测最低限可达到纳摩尔(nmol)级,成功地开发快速定性检测Hg2+和MeHg+试纸,极大地避免微环境测量时的荧光单元的浓度、光程以及激发光强度的漂移会引起错误的读出。另外,通过细胞成像研究发现该类探针具有很好的膜渗透性,可作为近红外、生物检测的比率型荧光探针,提供了一种新的设计思路。
     第七章设计合成了基于喹啉为受体的四个化合物DDCM、DDCP、DECM及DECP,研究了其分子聚集荧光增强(AIE)效应,并采用单晶结构进一步研究了DDCM的堆积方式。对长碳链的DDCM、DDCP作为阴离子表面活性的探针进行初步检测。
     另外,合成一系列基于苯并吡喃腈和多吡啶的化合物,总结了一些尝试性的工作。
The development of highly sensitive and selective chemosensors has become an active area in supramolecular chemistry, especially in the biology and microenviroment. The remarkable progress in the development of molecular logic gates has brought chemists closer to the realization of molecular-scale calculator since the first report of molecular AND logic gate based on chemosensors by de Silva et al. Compared with the modern semiconductor IT industry, molecular logic gates can be viewed as computational devices that process physical or chemical "inputs" to generate "outputs" based on a set of logical operators. The molecular logic systems can also make themselves to convenient reconfiguring, especially for application in the life sciences. The "bottom-up" method exhibits a distinct advantage over conventional semiconductor counterparts. As a consequence, molecular logic function can be designed in chemical and intracellular sensing, small object recognition and intelligent diagnostics.
     Molecular fluorescence has many remarkable advantages, such as high sensitivity down to the single molecule, easy detection and wide dynamic ranges. With further understanding molecular recognition and increasing skills in molecular design, several Donor-π-Acceptor (D-π-A) chemosensors based on dicyanomethylene-4H-pyran and cyanine derivatives were synthesized for the detection of cations and anions, and successfully constructed as memory keypad and half-substractor with comparator function. The main contents and results are outlined as follows:
     In Chapter 1, the major sensing principles of optical chemosensors are introduced, and the progress of molecular switches and logic gates performing distinct signalling output is reviewed.
     In Chapter 2, a novel fluorescent probe DCPP possessing both DCMP and 2,6-bis(amiomethyl)pyridine moieties was designed for detecting Hg2+and Cu2+. The characteristic fluorescence of Hg+-selective OFF-ON and Cu+-selective ON-OFF can be monitored, and controlled reversibly by the sequence and ratio of Hg2+and Cu2+inputs, which has been successfully constructed as a keyboard capable of crossword puzzles and logic memory at the molecular level based on the above logic operation. It provides a characteristic signaling pattern which can perform distinct algebraic operations solely in the fluorescence mode with the same excitation wavelength and be detectable in fluorescence for straightforward "reading" of the arithmetic results. The concept of such crossword puzzle based on fluorophores can be expected to greatly develop the combinatorial logic operations in sequential logic circuits with memory function.
     In Chapter 3, a V-shaped molecule of DADPP was designed, containing two receptors such as an aromatic unit possessing bis(2-pyridyl-methyl)amine (DPA) moiety and a phenolic moiety, via double bonds as bridges to incorporate a dicyanomethylene-4H-pyran unit as chromophore. A half-subtractor with a combination of comparator has been constructed based on intramolecular charge transfer (ICT) process resulting from hosting two different guests with the binding of Zn2+and the deprotonation of phenolic hydroxyl group in a unimolecular system. The corresponding spectral shifts in absorption and a variation in fluorescence intensity were well elucidated. An XOR (exclusive OR) logic gate generates the difference digit of half-subtractor reading at 445 run, and two INHIBIT logic gates are achieved for the borrow digit of half-subtractor when the output signals are monitored at 400 and 525 nm, respectively. Taken together, the comparison and subtraction operations are practically performed in parallel without mutual interference due to the same inputs and different outputs within the same molecule system.
     In Chapter 4, a novel thermometer fluorescent sensor poly(NIPMAM-co-DCPDP) consisting of N-isopropyl methacrylamide as a thermoresponsive unit and dicyanomethylene-4H-pyran derivative as a dipolar-sensitive fluorophore unit was designed. Poly(NIPMAM-co-DCPDP) performs fluorescence quenching merely by coordination with Cu2+ions or increasing temperature in neutral or acid aqueous solution.The ON-OFF fluorescence response of poly(NIPMAM-co-DCPDP) is driven by a temperature-induced phase transition from coil to globule and the capture of Cu2+ions resulting in a decrease of the ICT efficiency in neutral solution. The combinational serial NOR logic operation as well as two INHIBIT logic gates was constructed with three inputs:various pH, temperature change, and Cu2+ions. The proposed combinational logic circuits play a key role in mimicking comprehensive arithmetic operations at the nano-scale level.
     In Chapter 5, a new strategy of incorporating ion-sensitive fluorescent unit to form hydrophilic copolymer poly(HEMA-co-MCPDP) has been developed as film sensor for Cu2+ and PPi.2-hydroxyethyl methacrylate (HEMA) as a neutral hydrophilic chain segment is chosen as monomer for its high hydrophilicity to improve ion permeability into the polymer matrix. Using the ensemble method, the related metal complex, poly(HEMA-co-MCPDP)-Cu2+, shows turn-on fluorescence and high sensitivity for PPi both in solution and thin film over other anions such as adenosine triphosphate (ATP) and phosphate (Pi). The low-cost hydyophilic copolymer film of poly(HEMA-co-MCPDP)-Cu2+ exhibits high sensitivity and rapid response to PPi with turn-on orange-red fluorescence, showing an ideal hydrophilic film strategy for low-cost anion chemosensors or chips to the on-line monitor and high-throughput bio-processing in continuous system.
     In Chapter 6, three tricarbocyanine derivative dyes (IR-897, IR-877, and IR-925) with different isothiocyanate substituents as dosimeter units via the specific Hg2+-induced desulfurization have been synthesized for developing near-infrared (NIR) colorimetric and ratiometric chemodosimeters to mercury ion. The distinct response is dependent upon the electron-donating effect of isothiocyanate substituents, that is, the stronger in the electron-donating capability of isothiocyanate substituents, the faster in the Hg2+-promoted cyclization. IR-877 and IR-897 with Hg2+exhibit large red shifts in absorption (176 and 162 nm, respectively), fully meeting "naked-eye" colorimetric changes and successfully developed as Hg2+and MeHg+indicator paper. Moreover, measuring either a single emission with two excitation sources (excitation spectra mode) or dual emission with an isosbestic absorption point as single excitation source, these chemodosimeters can be successfully constructed as the first NIR ratiometric Hg2+sensors, allowing for fast and accurate measurements with eliminating the influence of dye concentration and microenvironmental fluctuations in pH, refractive index and photobleaching.
     In chapter 7, a series of novel Aggregation-induced Emission (AIE) luminescent materias (DECM, DDCM, DECP and DDCP) were designed and synthesized. The structure is a typical D-π-A structure containing quinoline unit as electron-receptors, N,N-dimethylaniline and triphenylamine unit as electron-donor. Their AIE effects were fully studied with absorption and fluorescence spectra. Moreover, the potential application was done for detection of anionic surfactants.
     In addition, some other synthetic work was introduced. A new series of DCM derivatives based on dicyanomethylene-4H-chromene with different receptors was designed.
引文
[1]Steed J. W., Alwood J. L. Supramolecular Chemistry. John wiley& Sons Ltd. Chichester, 2000.
    [2]Lehn J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl.1988,27(1): 89-112.
    [3]Lehn J. M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-Organization. Angew. Chem. Int. Ed.1990, 29(11):1304-1309.
    [4]陈国珍,黄贤智,许金钩,朱梓,王尊本.荧光分析法.北京出版社.1989.
    [5]Value B. Molecular Fluorescence:Principles and Applications. Wiley, New York,2002.
    [6]de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev.1997,97(5):1515-1566.
    [7]Valeur B., Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord:Chem.Rev.2000,205(1):-3-40.
    [8]吴世康.荧光化学传感器研究中的光化学与光物理问题.化学进展.2004,16(2):174-183.
    [9]Martinez-Manez R., Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev.2003,103 (11):4419-4476.
    [10]Borisov S. M., Wolfbeis O. S. Optical Biosensors. Chem. Rev.2008,108(2):423-461.
    [11]Kim J. S., Quang, D. T. Calixarene-Derived Fluorescent Probes. Chem. Rev.2007, 107(9):3780-3799.
    [12]Thomas S. W., Joly G. D., Swager T. M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev.2008,107(4):1339-1386.
    [13]Kim S. K., Lee D. H., Hong J. I., Yoon J. Chemosensors for Pyrophosphate. Acc. Chem. Res.2009,42(1):23-31.
    [14]de Silva A. P., McClenaghan N. D., McCoy C. P. in Molecular Switches (Ed:Feringa B. L.), Wiley-VCH, Weinheim,2000.
    [15]Mano M. M., Kime C. R., Kime C. Logic and Computer Design Fundamentals,3rd ed. Prentice Hall:New Jersey,2003.
    [16]Balzani V., Venturi M., Credi A. Molecular Devices and Machines, Wiley-VCH, Weinheim,2003.
    [17]de Silva A. P., Gunaratne H. Q. N., McCoy C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature,1993,364,42-44.
    [18]Raymo F. M. Digital Processing and Communication with Molecular Switches. Adv. Mater.2002,14(6):401-414.
    [19]Callan J. F., de Silva A. P., Magria D.C. Luminescent sensors and switches in the early 21st century. Tetrahedron.2005,61(36):8551-8588.
    [20]Pischel U. Chemical Approaches to Molecular-Logic Elements for Addition and Subtraction. Angew. Chem. Int. Ed.2007,46(22):4026-4040.
    [21]de Silva A. P., Uchiyama S. Molecular logic and computing Nat. Nanotechnol.2007, 2(7):399-410.
    [22]Szacilowski K. Digital Information Processing in Molecular Systems. Chem. Rev.2008, 108(9):3481-3548.
    [23]傅晓飞,孙伟,房晨婕,郭瑞,严纯华.分子基逻辑材料.化学进展.2009,21(5):957-963.
    [24]Andreasson J, Pischel U. Smart molecules at work-mimicking advanced logic operations. Chem. Soc. Rev.2010,39(1):174-188.
    [25]Amelia M, Zou, L, Credi A. Signal processing with multicomponent systems based on metal complexes. Coord. Chem. Rev.,2010, doi:10.1016/j.
    [26]樊美公等.光化学基本原理与光子学材料科学.科学出版社.2001.
    [27]Fox M. A., Chanon M. (eds). Photoinduced Electron Transfer. Amsterdam:Elsevier Science Publishers B.V.1988, Part A-Part D.
    [28]Rehm D., Weller A., Bunsen-Ges B. Kinetics and mechanism of electron transfer in fluorescence quenching in acetonitrile. Phys. Chem.1969,73(8-9):834-839..
    [29]Doz P., Retting W. Charge Separation in Excited States of Decoupled Systems-TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis. Angew. Chem. Int. Ed. Engl.1986,25(11): 971-988.
    [30]Forster Th. Z. Elektrochem. Angew. Phys. Chem.1939,45:571-575.
    [31]Lippert E., Luder W., Moll F., Nagele W., Boos H., Prigge H., Seibold I. Umwandlung von Elektronenanregungsenergid. Angew. Chem.1961,73(21):695-706.
    [32]Bourson J., Valeur B. Ion-Responsive Fluorescent Compounds.2. Cation-Steered Intramolecular Charge transfer in a Crowned Merocyanine. J. Phys. Chem.1989,93(11): 3871-3876.
    [33]Changenet P., Plaza P., Martin M. M., Meyer Y. H. Role of Intramolecular Torsion and Solvent Dynamics in the Charge-Transfer Kinetics in Triphenylphosphine Oxide Derivatives and DMABNk. J. Phys. Chem. A.1997,101(44):8186-8194.
    [34]Martin M. M., Plaza P., MeyerFatima Badaoui Y. H. Steady-State and Picosecond Spectroscopy of Li+or Ca2+Complexes with a Crowned Merocyanine. Reversible Photorelease of Cation. J. Phys. Chem.1996,100(17):6879-6888.
    [35]Hsing-Kang Z., Ren-Lan M., Er-Pin N., Chu G. Behaviour of the laser dye 4-dicyanomethylene-2-methyl-6-dimethylaminostryryl-4H-pyran in the excited singlet state. J. Photochem.1985,29(3-4):397-404.
    [36]Kovalenko S. A.,Ernsting N. P., Ruthmann J. Femtosecond hole-burning spectroscopy of the dye DCM in solution:the transition from the locally excited to a charge-transfer state. Chem. Phys. Lett.1996,258(1-2):445-454.
    [37]Bell T. W., Hext N. M. Supramolecular optical chemosensors for organic analytes. Chem Soc. Rev.2004,33(9):589-598.
    [38]Dujols V., Ford F., Czarnik A. W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc.1997,119(31):7386-7387.
    [39]Uchiyama S., Kawai N., de Silva A. P., Iwai K. Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs. J. Am. Chem. Soc.2004,126(10):3032-3033.
    [40]Magri D. C., Brown G. J., McClean G. D., de Silva A. P. Communicating Chemical Congregation:A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype. J. Am. Chem. Soc.2006,128(15):4950-4951.
    [41]Ozlem S., Akkaya E. U. Thinking Outside the Silicon Box:Molecular AND Logic.As an Additional Layer of Selectivity in Singlet Oxygen Generation for Photodynamic Therapy. J. Am. Chem. Soc.2009,131(1):48-49.
    [42]Montenegro J. M., Perez-Inestrosa E., Collado D., Vida Y., Suau R. A Natural-Product-Inspired Photonic Logic Gate Based on Photoinduced Electron-Transfer-Generated Dual-Channel Fluorescence. Org. Lett.2004,6(14):2353-2355.
    [43]Qu D. H., Ji F. Y., Wang Q., Tian H. A Double INHIBIT Logic Gate Employing Configuration and Fluorescence Changes. Adv. Mater.2006,18(15):2035-2038.
    [44]de Silva A. P., McClenaghan N. D. Proof-of-Principle of Molecular-Scale Arithmetic. J. Am. Chem. Soc.2000,122(16):3965-3966.
    [45]Zhou Y. C., Wu H., Qu L., Zhang D. Q., Zhu D. B. A New Redox-Resettable Molecule-Based Half-Adder with Tetrathiafulvalene. J. Phys. Chem. B.2006,110(32): 15676-15679.
    [46]Kou S., Lee H. N., Noort D., Swamy K. M. K., Kim S. H., Soh J. H., Lee K. M., Nam, S. W., Yoon J., Park S. Fluorescent Molecular Logic Gates Using Microfluidic Devices. Angew. Chem. Int. Ed.2008,47(5):872-876.
    [47]Bozdemir O. A., Guliyev R., Buyukcakir O., Selcuk S., Kolemen S., Gulseren G, Nalbantoglu T., Boyaci H., Akkaya, E. U. Selective Manipulation of ICT and PET Processes in Styryl-Bodipy Derivatives:Application in Molecular Logic'and Fluorescence Sensing of Metal Ions. J. Am. Chem. Soc.2010,10.1021/ja1008163.
    [48]Langford S. J., Yann T. Molecular Logic:A Half-Subtractor Based on Trtraphenylporphyrin. J. Am. Chem. Soc.2003,125(37):11198-11199.
    [49]Coskun A., Deniz E., Akkaya E. U., Effective PET and ICT Switching of Boradiazaindacene Emission:A Unimolecular, Emission-Mode, Molecular Half-Subtractor with Reconfigurable Logic Gates. Org. Lett.2005,7(23):5187-5189.
    [50]Margulies D., Melman G, Shanzer A. Fluorescein as a model molecular calculator with reset capability. Nat. Mater.2005,4:768-771.
    [51]Liu Y., Jiang W., Zhang H. Y., Li C. J. A Multifunctional Arithmetical Processor Model Integrated Inside a Single Molecule. J. Phys. Chem. B.2006,110(29):14231-14235.
    [52]Qian J. H., Qian X. H., Xu Y. F., Zhang S. Y. Multiple molecular logic functions and molecular calculations facilitated by surfactant's versatility. Chem. Commun.2008, 4141-4143.
    [53]Margulies D., Melman G, Shanzer A. A Molecular Full-Adder and Full-Subtractor, an Additional Step toward a Moleculator. J. Am. Chem. Soc.2006,128(14):4865-4871.
    [54]Amelia M., Baroncini M., Credi A. A Simple Unimolecular Multiplexer/Demultiplexer. Angew. Chem. Int. Ed.2008,47(33):6240-6243.
    [55]Andreasson J., Straight S. D., Moore T. A., Moore A. L., Gust D. Molecular All-Photonic Encoder-Decoder. J. Am. Chem. Soc.2008,130(33):11122-11128.
    [56]Margulies D., Felder C. E., Melman G, Shanzer A. A Molecular Keypad Lock:A Photochemical Device Capable of Authorizing Password Entries. J. Am. Chem. Soc. 2007,129(2):347-354.
    [57]Kumar M., Dhir A., Bhalla V. A Molecular Keypad Lock Based on the Thiacalix[4]arene of 1,3-Alternate Conformation. Org. Lett.2009,11(12):2567-2570.
    [58]Andreasson J., Straight S. D., Moore T. A., Moore A. L., Gust D. An All-Photonic Molecular Keypad Lock. Chem. Eur. J.2009,15(16):3936-3939.
    [59]Strack G, Ornatska M., Pita M., Katz E. Biocomputing Security System:Concatenated Enzyme-Based Logic Gates Operating as a Biomolecular Keypad Lock. J. Am. Chem. Soc.2008,130(13):4234-4235.
    [60]Gupta T. G, van der Boom M. E. Redox-Active Monolayers as a Versatile Platform for Integrating Boolean Logic Gates. Angew. Chem. Int. Ed.2008,47(29):5322-5326.
    [61]de Ruiter G, Tartakovsky E., van der Boom M. E. Sequential Logic Operations with Surface-Confined Polypyridyl Complexes Displaying Molecular Random Access Memory Features. Angew. Chem. Int. Ed.2010,49(1),169-172.
    [62]de Silva A. P. A layer of logic. Nature.2008,454,417-418.
    [63]黄春辉,李富有,黄岩谊.光电功能超薄膜.北京大学出版社.2004.
    [64]Balzani V., Credi A., Venturi M. The Bottom-Up Approach to Molecular-Level Devices and Machines. Chem. Eur. J.2002,8(24):5524-5532.
    [65]Ball P. High-density memory:A switch in time. Nature.2007,445,362-363.
    [66]Suzuki Y., Yokoyama K. Design and Synthesis of Intramolecular Charge Transfer-Based Fluorescent Reagents for the Highly-Sensitive Detection of Proteins. J. Am. Chem. Soc. 2005,127(50):17799-17802.
    [67]Woods L. L. Some Further Reactions of 2,6-Dimethyl-4-pyrone. J. Am. Chem. Soc. 1958,80(6):1440-1442.
    [68]Scheytza H., Rademacher O., ReiBig H. U. Synthesis and Structures of Novel Pyraidine-Bridged Phanes of 4,4-Bipyridine. Eur. J. Org. Chem.1999,9(9):2373-2381.
    [69]Maciejewski A., Naskrecki R., Lorenc M., Ziolek M., Karolczak J., Kubicki J., Matysiak M., Szymanski M. Transient absorption experimental set-up with femtosecond time resolution. Femto-and picoseconds study of DCM molecule in cyclohexane and methanol solution. J. Mol. Struct.2000,555(1-3):1-13.
    [70]Martin M. M., Plaza P., Meyer Y. H. Ultrafast intramolecular charge transfer in the merocyanine dye DCM. Chem. Phys.1995,192(3):367-377.
    [71]Lee S. H., Jung S. H., Sung, J. H., Hong K. H., Nam C. H. Adaptive quantum control of DCM fluorescence in the liquid phase. J. Chem. Phys.2002,117(21):9858-9861.
    [72]Pomnterey S., Gustavsson T., Naskrecki R., Baldamhino G., Mialocq J. C. Femtosecond absorption and emission spectroscopy of the DCM laser dye. J. Mol. Liq. 1995,64(1-2):101-112.
    [73]Van der Meulen P., Zhang H., Jonkman A. M., Glasbeek, M. Subpicosecond Solvation Relaxation of 4-(Dicyanomethylene)-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran in Polar Liquids. J. Phys. Chem.1996,100(13):5367-5373.
    [74]Meyer M., Mialocq J. C., Perly B. Photoinduced intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye:picoseconds and nanosecond laser spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance studies. J. Phys. Chem.1990,94(1):98-104.
    [75]de Silva A. P., McClenaghan N. D. Molecular-Scale Logic Gates. Chem. Eur. J.2004, 10(3):574-586.
    [76]Guo X. F., Qian X. H., Jia L. H. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc.2004, 126(8),2272-2273.
    [77]Shortreed M., Kopelman R., Kuhn M., Hoyland B. Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements. Anal. Chem.1996,68(8):1414-1418.
    [78]Rurack K., Kollmannsberger M., Resch-Genger U., Daub J. A Selective and Sensitive Fluoroionophore for HgⅡ, AgⅠ, and CuⅡ with Virtrally Decoupled Fluorophore and Receptor Units. J. Am. Chem. Soc.2000,122(5):968-969.
    [79]Martinez R., Espinosa A., Tarraga A., Molina P. New Hg2+and Cu2+Selective Chromo-and Fluoroionphore Based on a Bichromophoric Azine. Org. Lett.2005,7(26): 5869-5872.
    [80]Kim S. H., Kim J:S., Park S. M., Chang S.K. Hg2+-Selective OFF-ON and-Cu2+-Selective ON-OFF Type Fluoroionophore Based upon Cyclam. Org. Lett.2006, 8(3):371-374.
    [81]Yang D. X., Li S. A., Li D. F., Chen M., Huang J., Tang W. X. Synthesis, structure and properties of an imidazolate-bridged dicopper complex of a novel macrocycle with two alcohol-pendants as an active site model of Cu, Zn-SOD. Polyhedron 2003,22(7): 925-932.
    [82]Su C. Y., Goforth A. M., Smith, M. D., Loye H. C. Z. Formation of Dinuclear, Macrocyclic, and Chain Structures from HgI2 and a Semirigid Benzimidazole-Based Bridging Ligand:An Example of Ring-Opening Supramolecular Isomerism. Inorg. Chem. 2003,42(18):5685-5692.
    [83]de Silva A. P., Uchiyama S., Vance T. P., Wannalerse, B. A supramolecular chemistry basis for molecular logic and computation. Coord. Chem. Rev.2007,251(13-14): 1623-1632.
    [84]Credi A. Molecules That Make Decisions. Angew. Chem. Int. Ed.2007,46(29): 5472-5475.
    [85]Sun W., Zho C., Xu C. H., Fang, C. J., Zhang C., Li Z. X., Yan C. H. A Fluorescent-Switch-Based Computing Platform in Defending Information Risk. Chem. Eur. J.2008,14(21):6342-6351.
    [86]Suresh M., Jose D. A., Das A. [2,2'-Bipyridyl]-3,3'-diol as a Molecular Half-Subtractor. Org. Lett.2007,9(3):441-444.
    [87]Sircar I., Duell B. L., Bristol J. A., Weishaar R. E., Evans D. B. Cardiotonic agent.5. 1,2-Dihydro-5-[4-(1 H-imidazol-1-yl)phenyl]-6-methyl-2-oxo-3-pyridinecarbonitriles and related compounds. Synthesis and inotropic activity. J. Med. Chem.1987,30: 1023-1029.
    [88]Lokot I. P., Pashkovsky F. S., Lakhvich F. A. A new approach to the synthesis of 3,6-and 5,6-dialkyl derivatives of 4-hydroxy-2-pyrone. Synthesis of racgermicidin. Tetrahedron 1999,55:4783-4792.
    [89]King L. C., Ozog F. J., Moffat J. Preparation of Substituted Mercaptopyrylium Salts. J. Am. Chem. Soc.1951,73:300-302.
    [90]Sams C. K., Somoza F., Bernal I., Toftlund H., Coordination chemistry of transition metal complexes of a novel pentadentate ligand. Inorg. Chimi. Acta.,2001,318(1-2): 45-52.
    [91]Maruyama S., Kikuchi K., Hirano T., Urano Y., Nagano T. A Novel, Cell-Permeable, Fluorescent Probe for Ratiometric Imaging of Zinc ion. J. Am. Chem. Soc,2002, 124(36):10650-10651.
    [92]Peng X. J.,Du J.J., Fan J. Y.,Wang J. K., Wu J. R., Zhao J.Z., Sun S.G., Xu T. A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. J. Am. Chem. Soc,2007, 129(6):1500-1501.
    [93]Moylan C. R., Ermer S., Lovejoy S. M., McComb I., Leung D. S., Wortmann R., Krdmer P., Twieg R. (Dicyanomethylene)pyran Derivatives with C2v Symmetry:An Unusual Class of Nonlinear Optical Chromophores. J. Am. Chem. Soc,1996,118(51): 12950-12955.
    [94]Ermer S., Lovejoy S. M., Leung D. S., Warren H. Synthesis and Nonlinearity of Triene Chromophores Containing the Cyclohexene Ring Structure. Chem. Mater.1997,9(6): 1437-1442.
    [95]de Silva, A. P. Rice, T. E. A. small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre(PRC). Chem. Commun.1999,163-164.
    [96]de Silva, A. P. McClenaghan, N. D. Simultaneously Multiply-Configurable or Superposed Molecular Logic Systems Composed of ICT (Internal Charge Transfer) Chromophores and Fluorophores Integrated with One-or Two-Ion Receptors. Chem. Eur. J.2002,8 (21):4935-4945.
    [97]Green J. E., Choi J. W., Boukai A., Bunimovich Y., Johnston-Halperin E., Delonno E., Luo Y, Sheriff B. A., Xu K., Shin Y S., Tseng H. R., Stoddart J. F., Heath J. R. Nature.2007,445:414-417.
    [98]Brouwer A. M., Frochot C., Gatti F. G, Leigh D. A., Mottier L., Paolucci F., Roffia S., Wurpel G W. H. Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle. Science.2001,291:2124-2128.
    [99]刘锋,卓仁禧.水凝胶的制备及应用.高分子通报.1995,(4):205-216.
    [100]罗宜干,王坦.N-异丙基丙烯酰胺系温度敏感聚合物和水瑕胶的研究进展.化学通报,1996,(4):10-15.
    [101]Uchiyama S., Matsumura Y., de Silva A. P., Iwai K. Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-Responsive Benzofurazans. Anal Chem.2003,75(20):5926-5935.
    [102]Iwai K., Matsumura Y., Uchiyama S., de Silva A. P. Development of fluorescent microgel thermometers based on thermo-responsive polymers and their modulation of sensitivity range. J. Mater. Chem.2005,15(27-28):2796-2800.
    [103]Koopmans C., Ritter H. Color Change of N-Isopropylacrylamide Copolymer Bearing Reichardts Dye as Optical Sensor for Lower Critical Solution Temperature and for Host-Guest Interaction with P-Cyclodextrin. J. Am. Chem. Soc.2007,129(12): 3502-3503.
    [104]Matsubara K., Watanabe M., Takeoka Y. A thermally adjustable multicolor-photochromic hydrogel. Angew Chem Int Ed.2007,46(10):1688-1692.
    [105]Maeda S, Hara Y, Yoshida R, Hashimoto S. Peristaltic motion of polymer gels. Angew. Chem. Int. Ed.2008,47(35):6690-6693.
    [106]Tanaka T. Gels. Sci Am,1981,224:110-122.
    [107]Tanaka T, Fillmore D J, Sun S T. Phase transitions in ionic gels. Phy Rev Let.1980, 45:1636-1639.
    [108]Miyamoto M. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules.1984,17(3):265-268.
    [109]Taylor L. D., Ceranowski L. D. Preparation of films exhibiting a balance temperature dependence to permeation by aqueous solutions-a study of lower consolute behavior. J Polym Sci.1975,13:2551-2570.
    [110]Ringsdorf H., Simon J., Winnik F. M. Hydrophobically-modified poly (N-isopropylacrylamides) in water:probing of the microdomain composition by nonradiative energy transfer. Macromolecules.1992,25 (20):5353-5361.
    [111]Chen G, Hoffman A. S., Academic Journal Graft polymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature.1995,373:49-52.
    [112]Hahn M., Gornitz E., Dautzenberg H. Synthesis and Properties of Ionically Modified Polymers with LCST Behavior. Macromolecules.1998,31(17):5616-5623.
    [113]Ito T., Hioki T., Yamaguchi T. Development of a molecular recognition ion gating membrane and estimation of its pore size control. J. Am. Chem. Soc.2002,124(26): 7840-7846.
    [114]Yamaguchi T., Ito T., Sato T. Development of a fast response molecular recognition ion gating membrane. J. Am. Chem. Soc.1999,121(16):4078-4079.
    [115]Ito T., Yamaguchi T. Osmotic pressure control in response to a specific ion signal at physiological temperature using a molecular recognition ion gating membrane. J Am Chem Soc.2004,126(20):6202-6203.
    [116]Avoce D., Liu H. Y., Zhu X. X. N-Alkylacrylamide copolymers with (methyl)acrylamide derivatives of cholic acid:synthesis and thermosensitivity. Polymer. 2003,44(4):1081-1087.
    [117]Zhang J., Jiang X., Zhang Y., Li Y., Liu S. Facile Fabrication of Reversible Core Cross-Linked Micelles Possessing Thermosensitive Swellability. Macromolecules.2007, 40(25):9125-9132.
    [118]Wang S., Choi M. S., Kim S. H. Multiple switching photochromic poly (N-isopropylacrylamide) with spironaphthoxazine hydrogel. Dyes Pigments.2008,78(1): 8-14.
    [119]Shiraishi Y.; Miyamoto R.; Zhang X., Hirai T.Rhodamine-Based Fluorescent Thermometer Exhibiting Selective Emission Enhancement at a Specific Temperature Range. Org. Lett.2007,9(20):3921-3924.
    [120]Iwai K., Matsumoto N., Niki M., Yamamoto M. Fluorescence Probe Studies of Thermosensitive N-Isopropylacrylamide Copolymers in Aqueous Solutions. Mol Cryst Liq Cryst.1998,315:53-58.
    [121]Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 1989,93(8):3311-3313.
    [122]Winnik, F. M, Ringsdorf, H, Venzmer, J. Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide). Macromolecules.1990,23(8):2415-2416.
    [123]Schild H. G., Muthukumar M., Tirrell D. A. Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules.1991,24(4); 948-952.
    [124]Feil H., Bae H. Y., Feijen J., Kim S. W. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules.1993,26(10):2496-2500.
    [125]P. A. Gale, S. E. Garcia-Garrido, J. Garric. Anion receptors based on organic frameworks:highlights from 2005 and 2006. Chem. Soc. Rev.2008,37,151-190.
    [126]Yoon J., Kim S. K., Singh N. J., Kim K. S. Imidazolium receptors for the recognition of anions. Chem. Soc. Rev.2006,35,355-360.
    [127]Gale P. A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors. Acc. Chem. Res.2006,39(7):465-475.
    [128]Beer P. D., Gale P. A. Anion Recognition and Sensing:The State of the Art and Future Perspectives. Angew. Chem. Int. Ed.2001,40(3):486-516.
    [129]Fabbrizzi L., Licchelli M., Rabaioli G., Taglietti A. The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev.2000,205(1):85-108.
    [130]Schmidtchen F. P., M. Berger. Artificial Organic Host Molecules for Anions. Chem. Rev.1997,97(5):1609-1646.
    [131]Ojida A., Miyahara Y, Wongkongkatep J., Tamaru S. I., Sada K., Hamachi I., Design of Dual-Emission Chemosensors for Ratiometric Detection of ATP Derivatives. Chem. Asian. J.2006,1(4):555-563.
    [132]Davis F., Collyer S. D., Higson, S. P. J. The construction and operation of anion sensors:current status and future perspectives. Topic. In. Curr. Chem.2005,255:97-124.
    [133]Kim S. K., Lee D. H., Hong J. I., Yoon, J. Chemosensors for Pyrophosphate. Acc. Chem. Res.2009,42 (1):23-31.
    [134]Vance D. H., Czarnik A. W. Real-Time Assay of Inorganic Pyrophosphatase Using a High-Affinity Chelation-Enhanced Fluorescence Chemosensor. J. Am. Chem.Soc:1994, 116(20):9397-9398.
    [135]Lee D. H., Kim S. Y., Hong J. I. A Fluorescent Pyrophosphate Sensor with High Selectivity over ATP in Water. Angew. Chem. Int. Ed.2004,43(43):4777-4780.
    [136]Lee H. N., Xu Z., Kim S. K., Swamy K. M., K, Kim Y., Kim S. J., Yoon J. Pyrophosphate Selective Fluorescent Chemosensor at Physiological pH:A Unique Excimer Formation upon the Addition of Pyrophosphate. J. Am. Chem. Soc.2007, 129(13):3828-3829.
    [137]Fabbrizzi L., Marcotte N., Stomeo F., Taglietti A. Pyrophosphate Detection in Water by Fluorescence Competition Assay:Inducing Selectivity through the Choice of the Indicator. Angew. Chem. Int. Ed.2002,41(20):3811-3814.
    [138]McQuade D. T., Pullen A. E., Swager T. M. Conjugated Polymer-Based Chemical Sensors. Chem. Rev.2000,100(7):2537-2574.
    [139]Thomas S. W., Joly G. D., Swager T. M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem Rev.2007,107(4):1339-1386.
    [140]Liu Y, Schanze K. S. Conjugated Polyelectrolyte-Based Real-Time Fluorescence Assay for Alkaline Phosphatase with Pyrophosphate as Substrate. Anal. Chem.2008, 80(22):8605-8612.
    [141]Liu Y, Schanze K. S. Conjugated Polyelectrolyte Based Real-Time Fluorescence Assay for Adenylate Kinase. Anal. Chem.2009,81(1):231-239.
    [142]Zhao X., Liu Y., Schanze K.S. Conjugated polyelectrolyte-based fluorescence sensor for pyrophosphate. Chem Commun.2007,28:2914-2916.
    [143]Huang X. M., Guo Z. Q., Zhu W. H., Xie Y. S., Tian H. A colorimetric and fluorescent turn-on sensor for pyrophosphate ions based on dicyanomethylene-4H-chromene framework. Chem. Commum.2008,41:5143-5145.
    [144]Montheard J. P., Chatzopoulos M., Chappard D.2-Hydroxyethyl methacrylate (HEMA):chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev.1992, C32:1-34.
    [145]Bayramoglu G., Arica M. Y. A novel pH sensitive porous membrane carrier for various biomedical applications based on pHEMA/chitosan:Preparation and its drug release characteristics. Macromolecular Symp.2003,203:213-218.
    [146]Filmon R., Grizon F., Basle M. F., Chappard D. Effects of negatively charged groups (carboxymethyl) on the calcification of poly (2-hydroxyethyl) methacrylate. Biomaterials.2002,23(14):3053-3059.
    [147]Shen L. J., Zhu W. H., Meng X. L., Guo Z. Q., Tian H. A hydrophilic fluorescent polymer containing naphthalimide moiety as chemosensor for microbioreactors. Science in China Series B:Chemistry.2009,52:821-826.
    [148]Tian H., Gan J., Chen K., He J., Song Q. L., Hou X. Y. Positive and negative fluorescent imaging induced by naphthalimide polymers. J. Mater. Chem.2002,12 (5): 1262-1267.
    [149]Erragh F., Boukhari A., Abraham F., Elouadi B. The Crystal Structure of α-and β-Na2CuP2O7. J. Solid. State. Chem.1995,120(1):23-31.
    [150]Chae M. Y., Czarnik A. W. Fluorimetric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc.1992, 114(24):9704-9705.
    [151]Liu B., Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun.2005,25:3156-3158.
    [152]Yang Y. K., Yook K. J., Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ions in aqueous.media. J. Am. Chem. Soc. 2005,127(48):16760-16761.
    [153]Ko S. K., Yang Y. K., Tae J., Shin I. In vivo monitoring of mercury ions using a Rhodamine-Based molecular probe. J. Am. Chem. Soc.2006,128(43):14150-14155.
    [154]Ros-Lis J., Marcos M. D., Martinez-Manez R., Rurack K., Soto J. A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg2+Ions. Angew. Chem. Int. Ed.2005,44(28): 4405-4407.
    [155]Song K. C, Kim J. S.,Park S. M., Chung K. C., Ahn S., Chang S. K. Fluorogenic Hg2+-aelective chemodosimeter derived from 8-Hydroxyquinoline. Org Lett.2006,8(16): 3413-3416.
    [156]Wu J. S., Hwang I. C., Kim K. S., Kim J. S. Rhodamine-based Hg-selective chemodosimeter in aqueous solution:Fluorescent off-on. Org. Lett.2007,9(6):907-910.
    [157]Lee M. H., Cho B. K., Yoon J., Kim J. S. Selectively chemodosimetric detection of Hg(II) in aqueous media. Org. Lett.2007,9(22):4515-4518.
    [158]Zhang X., Xiao Y, Qian X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+Ions in Living Cells. Angew. Chem. Int. Ed.2008,47(42):8025-8029.
    [159]Yu M., Shi M., Chen Z., Li F., Li X., Cao Y, Xu J., Yang H., Zhou Z., Yi T., Huang C., Highly Sensitive and Fast Responsible Fluorescence Turn-on Chemodosimeter for Cu2+and its Application in Living Cell Imaging. Chem. Eur. J.2008,14(23):6892-6900.
    [160]Shi W., Ma H., Rhodamine B thiolactone:a simple chemosensor for Hg2+in aqueous media. Chem. Commun.2008,16:1856-1858.
    [161]Zhan X. Q., Qian Z. H., Zheng H., Su B. Y., Lan Z., Xu J. G. Rhodamine thiospirolactone:Highly selective and sensitive reversible sensing of Hg(II). Chem. Commun.2008,16:1859-1861.
    [162]Chen X., Nam S. W., Jou M. J., Kim Y., Kim S. J., Park S., Yoon J. Hg2+Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging. Org. Lett.2008,10(22):5235-5238.
    [163]Lee M. H., Lee S. W., Kim S. H., Kang C., Kim J. S. Org. Lett.2009,11(10): 2101-2104.
    [164]Song F., Watanabe S., Floreancig P. E., Koide K. Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc.2008,130(49): 16460-16461.
    [165]Santra M., Ryu D., Chatterjee A., Ko S. K., Shin I., Ahn K. H. A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chem. Commun.2009,16:2115-2117.
    [166]del Campo O., Carbayo A., Cuevas J., V., Munoz A., Garcia-Herbosa G, Moreno D., Ballesteros E., Basurto S., Gomez T., Torroba T. An organopalladium chromogenic chemodosimeter for the selective naked-eye detection of Hg2+and MeHg+in water-ethanol 1:1 mixture. Chem. Commun.2008,36:4576-4578.
    [167]Frangioni J. V., Quantum dots Nano-sized probes for the exploration of cellular and intracellular targeting. Curr. Opin. In. Chem. Biol.2003,626-634.
    [168]Bouteiller C., Clave G, Bernardin A., Chipon B., Massonneau M., Renard P. Y, RomieuA. Bioconjugate. Chem.2007,18:1303-1317.
    [169]Dempsey G T., Bates M. Kowtoniuk, W. E., Liu D. R., Tsien R. Y, Zhuang X., Photoswitching Mechanism of Cyanine Dyes. J. Am. Chem. Soc.2009,131(51): 18192-18193.
    [170]Mayerhoffer U., Deing K., Gruβ K., Braunschweig H., Meerholz K., Wurthner F. Outstanding Short-Circuit Currents in BHJ Solar Cells Based on NIR-Absorbing Acceptor-Substituted Squaraines. Angew. Chem. Int. Ed.2009,48(46):8776-8779.
    [171]Oushiki D., Kojima H., Terai T., Arita M., Hanaoka K., Urano Y, Nagano T. Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes. J. Am. Chem. Soc.2010, 132(8):2795-2801.
    [172]Li X., Shi W., Chen S., Jia J., Ma H., Wolfbeis. O. S. A near-infrared fluorescent probe for monitoring tyrosinase activity. Chem. Commun.2010,15:2560-2562.
    [173]Ramsay N., Jemth A., Brown A., Crampton N., Dear P., Holliger P. CyDNA: Synthesis and Replication of Highly Cy-Dye Substituted DNAby an Evolved Polymerase. J. Am. Chem. Soc.2010,132(14):5096-5014.
    [174]Strekowski L., Lipowska M., Patonay G. Substitution reactions of a nucleofugal group in heptamethine cyanine dyes. Synthesis of an isbthiocyanato derivative for labeling of proteins with a near-infrared chromophore. J. Org. Chem.1992,57(17): 4578-4580.
    [175]Lee H., Mason J. C., Achilefu S. Heptamethine Cyanine Dyes with a Robust C-C Bond at the Central Position of the Chromophore. J. Org. Chem.2006,71(20): 7862-7865.
    [176]Sasaki E., Kojima H., Nishimatsu H., Urano Y, Kikuchi K., Hirata Y, Nagano T. Highly Sensitive Near-Infrared Fluorescent Probes for Nitric Oxide and Their Application to Isolated Organs. J. Am. Chem. Soc.2005,127(11):3684-3685.
    [177]Kiyose K., Kojima H., Urano Y, Nagano T. Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore. J. Am. Chem. Soc.2006,128(20):6548-6549.
    [178]Tang B., HuangH., Xu K., Tong L., Yang G, Liu X., An L. Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells. Chem. Commun.2006,34:3609-3611.
    [179]Tatay S., Gavina P., Coronado E., Palomares E. Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye. Org. Lett.2006,8(17):3857-3860.
    [180]Tang B., Cui L. J., Xu K. H., Tong L. L., Yang G W., An L. G. A Sensitive and Selective Near-Infrared Fluorescent Probe for Mercuric Ions and Its Biological Imaging Applications. Chem. Bio. Chem.2008,9(7):1159-1164.
    [181]Shunmugam R., Gabriel G. J., Smith C. E., Aamer K. A.,Tew G. N. A Highly Selective Colorimetric Aqueous Sensor for Mercury. Chem. Eur. J.2008,14(13): 3904-3907.
    [182]Tang B., Yu F., Li P., Tong L., Duan X., Xie T., Wang X. A Near-Infrared Neutral pH Fluorescent Probe for Monitoring Minor pH Changes:Imaging in Living HepG2 and HL-7702 Cells. J. Am. Chem. Soc.2009,131(8):3016-3023.
    [183]Nolan E. M., Lippard S. J. Tools and Tactics for the Optical Detection of Mercuric Ion. Chem. Rev.2008,108(9):3443-3480 and its references.
    [184]Yoon S., Albers A. E., Wong A. P., Chang C. J. Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor. J. Am. Chem. Soc.2005,127(46): 16030-16031.
    [185]Coskun A., Akkaya E. U. Signal Ratio Amplification via Modulation of Resonance Energy Transfer:Proof of Principle in an Emission Ratiometric Hg(II) Sensor. J. Am. Chem. Soc.2006,128(45):14474-14475.
    [186]Wegner S. V., Okesli A., Chen P., He C. Design of an Emission Ratiometric Biosensor from MerR Family Proteins:A Sensitive and Selective Sensor for Hg2+. J. Am. Chem. Soc.2007,129(12):3474-3475.
    [187]Leevy W., Gammon S. T., Jiang H., Johnson J. R., Maxwell D. J., Jackson E. N., Marquez M., Worms D., Smith B. D. Optical Imaging of Bacterial Infection in Living Mice Using a Fluorescent Near-Infrared Molecular Probe. J. Am. Chem. Soc.2006, 128(51):16476-16477.
    [188]Zhang Z. R., Achilefu S. Synthesis and Evaluation of Polyhydroxylated Near-Infrared Carbocyanine Molecular Probes. Org. Lett.2004,6(12):2067-2070.
    [189]Li C., Greenwood T. R., Bhujwalla Z. M., Glunde K. Synthesis and Characterization of Glucosamine-Bound Near-Infrared Probes for Optical Imaging. Org. Lett.2006,8(17): 3623-3626.
    [190]Peng X., Song F., Lu E., Wang Y., Zhou W., Fan J., Gao Y. Heptamethine Cyanine Dyes with a Large Stokes Shift and Strong Fluorescence:A Paradigm for Excited-State Intramolecular Charge Transfer. J. Am. Chem. Soc.2005,127(12):,4170-4171.
    [191]宋锋玲.博士毕业论文.大连理工大学(2005年)
    [192]Bouit P. A., Aronica C., Toupet L., Guennic B. L., Andraud C., Maury O. Continuous Symmetry Breaking Induced by Ion Pairing Effect in Heptamethine Cyanine Dyes: Beyond the Cyanine Limit. J. Am. Chem. Soc.2010,132,4328-4335.
    [193]Benesi H. A., Hildebrand J. H., A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc.1949,71(8): 2703-2707.
    [194]Barra M., Bohne C., Scaiano J. C. Effect of Cyclodextrin Complexation on the Photochemistry of Xanthone. Absolute Measurement of the Kinetics for Triplet-State Exit. J. Am. Chem. Soc.1990,112(22):8075-8579.
    [195]Escobedo J. O., Rusin O.,Lim S., Strongin R. M., NIR dyes for bioimaging applications. Curr. Opin. In. Chem. Biol.2010,14:64-70.
    [196]Yang Y. K., Ko S. K., Shin I., Tae J. Fluorescent detection of methylmercury by desulfurization reaction of rhodamine hydrazide derivatives. Org. Biomol. Chem.2009,7: 4590-4593.
    [197]Chiang C. L., Tseng S. M., Chen, C. T., Hsu C. P., Shu C. F. Influence of Molecular Dipoles on the Photoluminescence and Electroluminescence of Dipolar Spirobifluorenes. Adv. Funct. Mater.2008,18(1):248-257.
    [198]Yi W., Chen C. T., Doubly Ortho-Linked cis-4,4'-Bis(diarylamino)-stilbene/Fluorene Hybrids as Efficient Nondoped, Sky-Blue Fluorescent Materials for Optoelectronic Applications. J. Am. Chem. Soc.2007,129(24):7478-7479.
    [199]Dreuw A., Ploner J., Lorenz L., Wachtveitl J., Djanhan J. E., Bruning J., Metz T., Bolte M., Schmidt M. U. Molecular mechanism of the solid-state fluorescence behavior of the organic pigment yellow 101 and its derivatives. Angew. Chem.Int. Ed. 2005, 44(47):7783-7786.
    [200]Mizukami S., Houjou H., Sugaya K., Koyama E., Tokuhisa H., Sasaki T., Kanesato M. Fluorescence color modulation by intramolecular and intermolecular pi-pi interactions in a helical zinc(II) complex. Chem. Mater.2005,17(1):50-56.
    [201]Luo J. D., Xie Z. L., Jacky W., Lam Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun.2001,18:1740-1741.
    [202]Chen J., Law C. C. W., Lam J. W. Y, Dong Y, Lo S. M. F., Williams I. D., Zhu D., Tang B. Z. Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater.2003,15(7): 1535-1546.
    [203]Yu G., Yin S., Liu Y., Chen J., Xu X., Sun X., Ma.D., Zhan X., Peng.Q.,Shuai Z., Tang B. Z., Zhu D., Fang W., Luo Y. Structures, Electronic States, Photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J. Am. Chem. Soc.2005,127(17):6335-6346.
    [204]Zeng Q., Li Z., Dong Y. Q., Di C. A., Qin A. J., Hong Y. N., Ji L., Zhu Z. C., Jim C. K. W., Yu G., Li Q. Q., Z. G Li, Y. Q. Liu, Qin J. G, Tang B. Z. Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects. Chem. Commun.2007,1:70-72.
    [205]Tong H., Hong Y., Dong Y., Haeussler M., Li Z., Lam J. W. Y, Dong Y, Sung H. H. Y, Williams I. D., Tang B. Z. Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics. J. Phys. Chem. B.2007,111(40):11817-11823.
    [206]Hong Y, Hauβer M., Lam J. W. Y, Li Z., Sin K. K., Dong Y, H. Tong, Liu J., Qin A., Renneberg R., Tang B. Z. Label-Free fluorescent probing of g-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chem. Eur. J.2008,14(21):6428-6437.
    [207]Tong H., Hong Y. N., Dong Y. Q., Ren Y, Matthias H., Lam J. W. Y, Wong K. S., Tang B. Z. Color-Tunable, Aggregation-induced emission of a butterfly-shaped molecule comprising a pyran skeleton and two cholesteryl wings. J. Phys. Chem. B.2007,111(8): 2000-2007.
    [208]Ning Z. J., Chen Z., Zhang Q., Yan Y. L., Qian S. Cao X., Y, Tian H. Aggregation-induced emission (aie)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and c12 gas chemodosimeter. Adv. Funct. Mater.2007,17(18):3799-3807.
    [209]Yuan C. X., Tao X. T., Ren Y. Synthesis, structure, and aggregation-induced emission of a novel lambada (A)-shaped pyridinium salt based on trollger's base. J. Phys. Chem. C. 2007,111(34):12811-12816.
    [210]An B. K., Kwon S. K., Jung S. D., Park S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc.2002,124(48):14410-14415.
    [211]Liu Y, Tao X. T., Wang F. Z., Shi J. H., Sun J. L., Yu W. T., Ren Y, Zou D, Jiang M. H. Intermolecular hydrogen bonds induce highly emissive excimers:Enhancement of solid-state luminescence. J. Phys. Chem. C.2007,111(17):6544-6549.
    [212]Yuan C. X., Tao X. T., Wang L., Yang J. X., Jiang M. H. Fluorescent turn-on detection and assay of protein based on lambda (A)-shapedpyridinium salts with aggregation-induced emission characteristics. J. Phys. Chem. C.2009,113(16): 6809-6814.
    [213]Granzhan A., Ihmels H. and Viola G.9-donor-substituted acridizinium salts:versatile environment-sensitive fluorophores for the detection of biomacromolecules. J. Am. Chem. Soc.2007,129(5):1254-1267.
    [214]Giepmans B. N. G., Adams S. R., Ellisman M. H. Review-The fluorescent toolbox for assessing protein location and function. Science.2006,312:217-224.
    [215]Pinaud F. F., Bentolila L. A. Quantum dots for live cells, in vivo imaging, and diagnostics. Science.2005,307:538-544.
    [216]Peng L., Wang M., Zhang G, Zhang D., Zhu D. A Fluorescence Turn-on Detection of Cyanide in Aqueous Solution Based on the Aggregation-Induced Emission. Org. Lett., 2009,11(9):1943-1946.
    [217]Qian J., Qian X., Xu Y. Selective and Sensitive Chromo-and Fluorogenic Dual Detection of Anionic Surfactants in Water Based on a Pair of "On-Off-On" Fluorescent Sensors. Chem. Eur. J.2009,15(1):319-323.
    [218]Coll C., Martinez-Maez R., Marcos M. D., Sancenon F, Soto J. A Simple Approach for the Selective and Sensitive Colorimetric Detection of Anionic Surfactants in Water. Angew. Chem.2007,119(10):1705-1708.
    [219]Santos Clementina M M, Silva Artur M S, Cavaleiro Jose A S. New Synthesis of 2,3-Diarylxanthones. Syn. Lett.2005,20:3095-3098.
    [220]Kido J., Hongawa K., Okuyama K., Nagai K. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett.1994,64:815-819.
    [221]Pardall A. C., Ramos S. S., Santos P. F., Reis L. V., Almeida P. Synthesis and Spectroscopic Characterisation of N-Alkyl Quaternary Ammonium Salts Typical Precursors of Cyanines. Molecules.2002,7:320-330.
    [222]Palmer B. D., Wilson W. R., Pullen S. M., Denny W. A. Hypoxia-selective antitumor agents.3. Relationships between structure and cytotoxicity against cultured tumor cells for substituted N,N-bis(2-chloroethyl)anilines. J. Med. Chem.1990,33(1):112-121.
    [223]Sams C. K., Somoza F., Bernal I., Toftlund H. Coordination chemistry of transition metal complexes of a novel pentadentate ligand. Inorg. Chimi. Acta.2001,318(1-2): 45-52.
    [224]Gunnlaugsson T., Lee T. C., Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron.2004,60(49):11239-11249.
    [225]Qian F., Zhang C., Zhang Y., He W., Gao X., Hu P., Guo Z. Visible Light Excitable Zn2+Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application. J. Am. Chem. Soc.2009,131(4):1460-1468.
    [226]HanaokaK., Muramatsu Y, Urano.Y.Terai T.,.Nagano T. Designand Synthesis of a Highly Sensitive Off-On Fluorescent Chemosensor for Zinc Ions Utilizing Internal Charge Transfer. Chem. Eur. J.2010,16(2):568-572.
    [227]Xu Z., Baek K. H., Kim H. N., Cui J., Qian X., Spring D. R., Shin I., Yoon J. Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. J. Am. Chem. Soc.2010,132(2): 601-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700