用户名: 密码: 验证码:
功能化金属—有机大环的组装及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学的研究范围是由两个或更多的化学实体通过分子间弱相互作用而构建的高度有序及复杂性的体系。通过主客体之间的弱相互作用引起主体结构的变化,是分子识别,多相/均相催化的理论基础。金属-有机大环结构是一类人工合成的,旨在模拟和学习酶催化及识别过程的重要模型。在均相体系中,金属-有机大环结构的空腔不仅有利于对特定底物分子的选择性识别;同时还可以通过非共价弱相互作用将不同的底物分子限定在其中特定的区域、进而选择性的催化某些特定反应的进行,体现出纳米微反应器的功能。以具有高对称性及有机活性位点的金属-有机大环作为构筑模块、在不同溶剂或模板的作用下通过空间堆积、可以得到具有不同孔道结构的微孔分子材料,进而可以在非均相体系中对某些特定的底物分子进行选择性的吸附与包合,从而体现出选择性催化功能。本论文包含以下几方面研究内容:
     1.基于酰胺基团的金属-有机大环的组装及其对核苷、氨基葡萄糖的选择性识别:以具有良好发光性能及配位活性的喹啉基团作为配位基团及荧光信号输出单元、以酰胺基团作为氢键识别位点、合成了L1、L3和L4三种配体,通过与具有平面四配位构型的Pd2+进行组装,分别得到了正八面体构型的大环化合物CA1、以及三角形大环CA3和CA4。模拟酶的识别过程,通过酰胺基团与尿苷和氨基葡萄糖之间较强的互补型氢键、在CA1中实现了对尿苷和氨基葡萄糖分子的选择性荧光识别;同时在CA3中实现了对尿苷的选择性识别;在CA4中,作为给电子基团的柔性烷氧基团的引入使得该大环化合物对于胞苷具有选择性识别功能,并且胞苷与CA4之间的互补型氢键对于CA4的组装与反组装具有导向作用,因而实现了对不同生物分子的选择性识别。
     2.金属-有机大环为构筑模块的微孔分子材料在非均相催化中的应用:在柔性适中的四单齿配体L2中引入了具有氢键作用位点及弱碱催化性能的酰胺基团,在不同模板作用下与具有平面四配位构型的Pd2+进行组装,得到了以三元金属-有机大环作为构筑模块、具有不同孔道结构的微孔分子材料CA2、CA6。不同的孔道结构赋予了其不同的催化性能,其中CA2在非均相体系中对Knoevenagel缩合反应体现出了很好的尺寸选择性催化功能。在配体中引入柔性基团,考察了配体L5的柔性对于金属-有机大环结构稳定性的影响;研究了由L5与Pd2+组装得到的金属-有机大环结构CA7在溶液中的稳定性以及解离与重组过程。通过含有氨基活性基团的多齿席夫碱配体L6与具有平面四配位构型的Ni2+进行自组装得到了配体与金属节点的化学计量比为4:4的金属-有机大环CA8。该大环结构通过氨基与亚氨基之间的氢键作用、分子之间的p-p堆积作用形成了含有二维层状网络以及—围孔道的结构,同时多孔结构的特性使得该微孔分子材料对Knoevenagel缩合反应具有很好的尺寸选择性催化功能。
     3.正四面体金属-有机大环的组装及其在均相催化方面的应用:通过含有大的p共轭基团的三双齿席夫碱配体与正八面体配位构型的过渡金属离子Zn2+、Cd2+及Co2+进行组装得到了一系列具有正四面体孔穴结构的金属-有机大环化合物CA9、CA10及CA11,并通过荧光分析的方法研究了其主客体化学行为。含有正电荷的四面体大环化合物可通过静电作用、p-p堆积作用将两个具有大共轭基团的anthracene-9-carboxylicacid客体包合在其空腔内部特定的区域,催化其进行自身的二聚反应,体现出纳米微反应器功能。
The study field of supramolecular chemistry is high-order and complicated system constituted from two or more moleculars through weak interaction between different molecules. The weak interaction between host and guest could lead to the structure changing of host and is the base of molecule recognition and heterogeneous/homogeneous catalysis. Synthetic and functional metal-organic macrocycles are important models to realize the process of enzyme catalysis and recognition. In homogeneous system, these cavity-containing compounds can encapsulate and stabilize guest substrates through weak interaction with selective signal response and chemical transformations can be catalyzed within these "microreactor". Using the metal-organic macrocycles having high symmetry and organic active sites as building blocks, microporous molecular materials packed with different type of cavities could be obtained in presence of different solvents or templates. These materials would adsorb and encapsulate some special substrates, display the advantages of heterogeneous catalysis. The present paper contains following several aspects:
     1. Self-assembly of metal-organic macrocycles containing amide groups as active sites and their applications in the sensor of nucleoside and glucosamine:Quinoline groups in the well-moderated ligands act as both the fluorophore units and parts of the coordination sites, and the amide groups as hydrogen bonding triggers for guest molecules, a truncated octahedral and two triangle metal-organic macrocycles (CA1、CA3 and CA4) have been assemblied using three mono-dentate ligands (L1、L3 and L4) incorporating with Pd2+. CA1 and CA3 have achieved selective fluorescent detection for uridine because of the two-fold complementary hydrogen-bonding between uridine and amide is stronger than that of the other three riboneclosides, CA1 had also demonstrated fluorescent response for glucosamine. In present of flexible chain acted as electronic-donor, CA4 demonstrated selective fluorescent detection for cytidine. Furthermore, the hydrogen-bonding between cytidine and CA4 could induce disassociation and recomposition process of CA4 so as to realize selective recognition for different bio-molecular.
     2. Microporous molecular materials containing metal-organic macrocycles as building blocks and their applications in heterogeneous catalysis:Upon introducing the multiple amide groups into a proper-flexible tetra-monodentate ligand (L2) as hydrogen bonding and weak-base catalysis actived sites, we have obtained two microporous molecular materials (CA2 and CA6) having different cavities in present of different solvents or templates. CA2 demonstrated size-selective catalysis for Knoevenagel condensation reaction in heterogeneous system. Upon introducing a flexible chain into the ligand (L5) containing tetra-monodentate binding sites, we have studied the effection of the flexible ligand for the stability and recombinational prccess of CA7 assembled from L5 and Pd2+ in solution. A quadrangle macrocycle (CA8) has been obtained using multi-dentate ligand (L6) and Ni2+. This tetramer has amino groups as guest interaction and weak-base catalysis actived sites. The hydrogen bond between amino and imine group and p-p interaction in different tetramer lead to 2D network and 1D channel in the crystal structure of CA8. CA8 demonstrated size-selective catalysis for Knoevenagel condensation reaction in heterogeneous system.
     3. Self-assembly of tetrahedral metal-organic cycles and their application in homogeneus catalysis:a serious of new molecular tetrahedrons (CA9、CA10、CA11) were prepared via self-assembly between Zn2+、Cd2+、Co2+and tri-dimdentate schiff-base ligand (L7) containing large aromatic and conjugated group as p-p interaction sites. Host-guest complexation behaviour between the tetrahedron compound and anthracene-9-carboxylicacid was investigated using the methord of fluorometry titration. The cation tetrahedron host could encapsulate two anthracene-9-carboxylicacid vis static and p-p interaction, and the selective photodimerization reaction of typically unreactive substrates was engineered using a self-assembled molecular falsk. The molecular tetrahedron brang the reactions in close proximity、fixed their relative orientations within the restrictive cavity and demonstrated the ability of microreactor.
引文
[1]Lehn J M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules and Moleeular Devices (Nobel Lecture), Angew. Chem. Int. Ed,1988, 27:89-112.
    [2]Gokel G W. Advances in Supramolecular Chemistry, Greenwieh CT:JAI Pr.,1992
    [3]Lehn J M. Supramolecular Chemistry, VCH, New York,1995 and references herein.
    [4]Cram. D. Angew. Chem. Int. Ed. Engl,1986,25:1039.
    [5]Fisher E. Influence of Configuration on the Action of Enzymes. Chem. Ber,1894,27: 2985-2993.
    [6]Lehn J M. Perspectives in Supramolecular Chemistry From Molecular Recognition towards Molecular Information Processing and Self Organization. Angew. Chem. Int. Ed,1990,29:1304-1319.
    [7]Ghadiri M R, Granja J R, Buehler L K, Artificial Transmembrane Ion Channels from Self-assembling Peptide Nanotubes. Nature,1994,369:301-304.
    [8]Seto C T, Mathias J P, Whitesides G M, Molecular Self-assembly Through Hydrogen Bonding:Aggregation of Five Molecules to Form a Diserete Supramolecular Structure. J. Am. Chem. Soc,1993,115:1321-1329.
    [9]Vreekamp R H, Duynhoven J P M, Hubert M. Molecular Boxes Based on Calix(4) arene Double Rosettes. Angew. Chem. Int. Ed,1996,35:1215-218.
    [10]Zhao S, Luong J H T. A Novel Assembly of Cyclodextrins with 4,4',4",4",-(21H, 23H-porphine-5,10,15,20-tetrayl)Tetrakis(benzoic aeid) through Hydrogen Bonds. Chem. Comm,1994,2307-2308.
    [11]Humann B C, Shimizu K D, Rebek J Jr. Reversible Encapsulation of Guest Molecules in a Calixarene Dimer. Angew. Chem. Int. Ed,1996,35:1326-1329.
    [12]Kang J. Rebek J, Entropically Driven Binding in a Self-assembling Molecular Capsule. Nature,1996,382:239-241.
    [13]Grotzfeld R, Branda N, Rebek J J. Reversible Encapsulation of Disc-Shaped Guests by a Synthetic Self-Assembled Host, Seienee,1996,271:487-489.
    [14]Johnson M A, Maggiora G M. Concepts and Applications of Molecular Similarity. New-york:Wiley Pr.,1990.
    [15]Aoki S, Kimura E. Recent Progress in Artificial Receptors for Phosphate Anions in Aqueous Solution. Reviews in Molecular Biotechnology,2002,9:129-155.
    [16]Lipscomb W N, Strater N. Recent Advances in Zine Enzymology. Chem. Rev.1996,96: 2375-2434.
    [17]Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell Garland Science:New York,2002.
    [18]Li C, Numata M, Takeuchi, M, et al. A Sensitive Colorimetric and Fluorescent Probe Based on a Polythiophene Derivative for the Detection of ATP. Angew. Chem. Int. Ed. 2005,40:6371-6374.
    [19]Vial L, Dumy P, Fluorescent ADP Sensing in Physiological Conditions Based on Cooperative Inhibition of a Miniature Esterase. J. Am. Chem. Soc.,2007,129: 4884-4885.
    [20]Sivakova S, Rowan S J. Nucleobases as supramolecular motifs. Chem. Soc. Rev.2005, 34:9-21.
    [21]Hosseini M W, Blacker A J, Lehn J M. J. Am. Chem. Soc.1990,112:3896-3904.
    [22]Bazziealupi C, Biagini S, Bencini A ATP Recognition and Sensing with A Phenanthroline-Containing Polyammonium Receptor. Chem. Comm.2006,39:4087-4089.
    [23]Neelakandan P P, Hariharan M, Ramaiah D. Synthesis of a Novel Cyclic Donor-Acceptor Conjugate for Selective Recognition of ATP. Org. Lett.2005,26:5765-5768.
    [24]Neelakandan P P, Hariharan M, Ramaiah D. A Supramolecular ON-OFF-ON Fluorescence Assay for Selective Recognition of GTP., J. Am. Chem. Soc.,2006,128:11334-11335.
    [25]Kwon J Y, Singh N J, Kim H N, et al. Fluorescent GTP-Sensing in Aqueous Solution of Physiological pH. J. Am. Chem. Soc.,2004,126:8892-8893.
    [26]Xu Z, Singh N J, Lim J, et al. Unique Sandwich Stacking of Pyrene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH. J. Am. Chem. Soc.2009,131:15528-15533.
    [27]Chen X, Jou M J, Yoon J. An "Off-On" Type UTP/UDP Selective Fluorescent Probe and Its Application to Monitor Glycosylation Process. Org. Lett.2009,11:2181-2184.
    [28]Wu H M, Lin Z H, He C, Liu Y, Duan C Y. Metallohelical Triangles for Selective Detection of Adenosine Triphosphate (ATP) in Aqueous Media. Inorg. Chem.2009,48: 408-410.
    [29]Lindberg S E, Wallschlager D, Prestbo F M, et al. Methylated mercury species in municipal waste landfill gas sampled in Florida USA Atmospheric Environment.2001, 35:4011-4015.
    [30]Mallavarapu A, Sawin K, Mitchison T A, Switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Current Biology, 1999,9:1423-1428.
    [31]Imjun S, Lee W J, Sakamoto S, et al. Rotaxane-based molecular switch with fluorescence signaling [J]. Tetra. Lett.,2000,41:471-475.
    [32]Davis A P, Warehem R S. Carbohydrate recognition through Noncovalent Interactions:
    A Challenge for Biomimetic and Supramolecular Chemistry. Angew. Chem. Int. Ed., 1999,38:2978-2996.
    [33]Wilson G S, Enzyme-Based Biosensors for in Vivo Measurements. Chem. Rev.2000, 100:2693-2704.
    [34]James T D, Samankumara K R A S, Shinkai S. Saccharide Sensing with Molecular Rec eptors Base donoronic Acid [J]. Angew. Chem. Int. Ed.1996,35:1910-1922.
    [35]James T D, Samankumara S. K R A, Shinkai S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature,1995,27:345-347.
    [36]Sandanayake S K R A, James T D, Shinkai S. Two Dimensional Photoinduced Electron Transfer (PET) Fluorescence Sensor for Saccharides. Chemistry Letters,1995,24: 503-508.
    [37]Arimori S, Bell M L, Oh C S, et al. Modular fluorescence sensors for saccharides. Chem. Comm.2001,1836-1837.
    [38]Arimori S, Bell M L, Oh C S, et al. A Modular Fluorescence Intramolecular Energy Transfer Saccharide Sensor. Org. Lett.2002,4:4249-4251.
    [39]Zhang X, Chi L, Ji S, et al. Rational Design of d-PeT Phenyl-ethynylated-Carbazole Monoboronic Acid Fluorescent Sensors for the Selective Detection of r-Hydroxyl Carboxylic Acids and Monosaccharides. J. Am. Chem. Soc.2009,131:17452-17463.
    [40]Davis A P, Wareham R S. A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media. Angew. Chem. Int. Ed.1998,37:2270-2273.
    [41]Ferrand A, Klein E, Barwell N P, et al. A Synthetic Lectin for O-Linked b-N-Acetylglucosamine. Angew. Chem. Int. Ed.2009,48:1775-1779.
    [42]Ferrand Y, Crump M P, Davis A P. A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition. Science.2007,318:619-622.
    [43]He C, Lin Z H, He Z. Metal-Tunable Nanocages as Artificial Chemosensors. Angew. Chem. Int. Ed.2008,47:877-881.
    [44]Liu Y, Wu X, He C, Jiao Y, Duan C Y. Self-assembly of cerium-based metal-organic tetrahedrons for size-selectively luminescent sensing natural saccharides. Chem. Commun.2009,7554-7556.
    [45]Caulder D L, Powers R E, Parac T N, et al. The self-assembly of a predesigned tetrahedral M4L6 supramolecular cluster. Angew. Chem. Int. Ed.1998,37:1840-1843.
    [46]Refsum H, Ueland P M, Nygard 0 et al. Homocysteine and Cardiovascular Disease. Annual Review of Medicine.1998,49:31-62.
    [47]Seshadri S, Beiser A, Jelhub S. et. Al. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease. New England Journal of Medicin,2002,346: 476-483.
    [48]Shahrokhian S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical. Chemistry,2001,73:5972-5978.
    [49]Zhang M, Li M, Zhao Q, et al. Novel Y-type two-p Hoton active fluorop Hore:synthesis and application in fluorescent sensor for cysteine and homocysteine. Tetra. Lett., 2007,48:2329-2333.
    [50]Chen H, Zhao Q, Wu Y, et al. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(Ⅲ) Complex. Inorg. Chem.,2007,46:11075-11081.
    [51]Kim T K, Lee D N, Kim H J. Highly selective fluorescent sensor for homocysteine and cysteine. Tetra. Lett.,2008,49:4879-4881.
    [52]Li H L, Fan J L, Wang J Y, et al. A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem. Comm.,2009,39: 5904-5906.
    [53]Young H A, Lee J S, Chang Y T, Combinatorial Rosamine Library and Application to in Vivo Glutathione Probe. J. Am. Chem. Soc.2007,129:4510-4511
    [54]Pires M M, Chmielewski J. Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine. Org. Letters.,2008,10:837-840.
    [55]Chow C F, Chiu B K W, Lam M H W, et al. A Trinuclear Heterobimetallic Ru(II)/Pt(II) Complex as a Chemodosimeter Selective for Sulfhydryl-Containing Amino Acids and Peptides. J. Am. Chem. Soc.2003,125:7802-7803.
    [56]Kruppa M, Mandl C, Miltschitzky S, et al. A Luminescent Receptor with Affinity for N-Terminal Histidine in Peptides in Aqueous Solution. J. Am. Chem. Soc.2005, 127:3362-3365
    [57]Ojida A, Mito-oka Y, Inoue M A, et al. First Artificial Receptors and Chemosensors toward Phosphorylated Peptide in Aqueous Solution J. Am. Chem. Soc.6256-6258.
    [58]Blanco F J, Jimenez M A, Herranz J, et al. NMR Evidence of a Short Linear Peptide That Folds into a & Hairpin in Aqueous Solution. J. Am. Chem. Soc.1993,115: 5887-5888.
    [59]Tashiro S, Tominaga M, Kawano M. Sequence-Selective Recognition of Peptides within the Single Binding Pocket of a Self-Assembled Coordination Cage. J. Am. Chem. Soc. 2005,127:4546-4547.
    [60]Tashiro S, Kobayashi M, Fujita M. Folding of an Ala-Ala-Ala Tripeptide into a β-Turn via Hydrophobic Encapsulation. J. Am. Chem. Soc.2006,128:9280-9281.
    [61]Tashiro S, Tominaga M, Yamaguchi Y. et al. Folding a De Novo Designed Peptide into an a-Helix through Hydrophobic Binding by a Bowl-Shaped Host. Angew. Chem. Int. Ed.2006,45:241-244.
    [62]Evans O R, Lin W B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks. Ace. Chem. Res.2002,35:511-521.
    [63]Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science,2003,300:1127-1129.
    [64]Kesanli B, Cui Y, Smith M R, et al. Highly Interpenetrated Metal-Organic Frame-works for Hydrogen Storage. Angew. Chem. Int. Ed.2005,44:72-75.
    [65]Chen B, Zhao X, Putkham A, et al. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal-Organic Framework Material. J. Am. Chem. Soc.2008,130:6411-6423.
    [66]Pan L, Parker B, Huang X, et al. Zn(tbip) (H2tbip) 5-tert-Butyl Isophthalic Acid):A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability. J. Am. Chem. Soc.2006,128:4180-4181.
    [67]Chen B L, Wang L B, Zapata F, et al. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc.2008,130: 6718-6719.
    [68]Wu C D, Lin W B. Heterogeneous Asymmetric Catalysis with Homochiral Metal-Organic Frameworks:Network-Structure-Dependent Catalytic Activity. Angew. Chem. Int. Ed.2007,46:1075-1078.
    [69]Davis M E. New Vistas in Zeolite and Molecular Sieve Catalysis. Ace. Chem. Res. 1993,26:111-115.
    [70]Uemura T, Kitaura R, Ohta Y, et al. Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers. Angew. Chem. Int. Ed.2006, 45:4112-4116.
    [71]Cavka J H, Jakobsen S R, Olsbye U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc.2008, 130:13850-13851.
    [72]Farha 0 K, Spokoyny A M, Mulfort K L, et al. Synthesis and Hydrogen Sorption Properties of Carborane Based Metal-Organic Framework Materials. J. Am. Chem. Soc. 2007,129:12680-12681.
    [73]Fujita M, Kwon Y J, Washizu S, et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(Ⅱ) and 4,4'-Bipyridine. J. Am. Chem. Soc.1994,116:1151-1152.
    [74]Dinca M, Dailly A, Liu Y, et al. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. J. Am. Chem. Soc.2006,128: 16876-16883.
    [75]Horike S, Dine M, Tamaki M, et al. Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. J. Am. Chem. Soc.2008,130:5854-5855.
    [76]Francesc X, Llabres i X, Alberto A, et al. MOFs as catalysts:Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis.2007,250:294-298.
    [77]Fe'rey G, Draznieks C M, Serre C, et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science.2005,309:2040-2042.
    [78]Henschel A, Gedrich K, Kraehnertb R, et al. Catalytic properties of MIL-101. Chem. Commun.2008,4192-4194.
    [79]Metalloporphyrins in Catalytic Oxidations; Sheldon, R. A., Ed.; Marcel Dekker: New York,1994.
    [80]Suslick K S, Bhyrappa P, Chou J H, et al.3-D Molecular Assembly of Function in Titania-Based Composite Material Systems. Acc. Chem. Res.2005,38:263-271.
    [81]Abraham M S, Omar K F, Joseph T H, et al. A Catalytically Active, Permanently Microporous MOF with Metalloporphyrin. Struts. J. Am. Chem. Soc.2009,131: 4204-4205.
    [82]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature.2000,404:982-986.
    [83]Mazik M, Cavga H, Jones PG. Molecular Recognition of Carbohydrates with Artificial Rec-eptors:Mimicking the Binding Motifs Found in the Crystal Structures of Protein-Carbohydrate Complexes. J. Am. Chem. Soc.2005,127:9045-9052.
    [84]Abe H, Aoyagi Y, Inouye M. A Rigid C3v-Symmetrical Host for Saccharide Recognition:1,3,5-Tris(2-hydroxyaryl)-2,4,6-Trimethylbenzenes. Org. Lett.2005, 7:59-61.
    [85]Schmuck C, Schwegmann M. Recognition of Anionic Carbohydrates by an Artificial Receptor in Water. Org. Lett.2005,7:3517-3520.
    [86]Hasegawa S, Horike S, Matsuda R, et al. Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:Selective Sorption and Catalysis. J. Am. Chem. Soc.2007,129:2607-2614.
    [87]Wu C D, Hu A G, Zhang L, et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective eterogeneous Asymmetric Catalysis. J. Am. Chem. Soc.2005, 127:8940-8941.
    [88]Jiang Z Q, Liang Z A, Wu X Y, et al. Asymmetric aldol reactions catalyzed by tryptophan in water. Chem. Commun.2006,2801-2803.
    [89]B. List, The Direct Catalytic Asymmetric Three-Component Mannich Reaction. J. Am. Chem. Soc.2000,122:9336-9337.
    [90]Northrup A B, MacMillan D W C. Two-Step Synthesis of Carbohydrates by Selective Aldol Reactions. Science.2004,305:1752-1755.
    [91]Melchiorre P, Marigo M, Carlone A, et al. Asymmetric Aminocatalysis-Gold Rush in
    Organic Chemistry. Angew. Chem. Int. Ed.2008,47:6138-6171.
    [92]Dybtsev D N, Nuzhdin A L, Chun H, et al. A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity. Angew. Chem. Int. Ed.2006,45:916-920.
    [93]Wang M, Xie M H, Wu C D, et al. From one to three:a serine derivate manipulated homochiral metal-organic framework. Chem. Commun.2009,2396-2398.
    [94]Vaidhyanathan R, Bradshaw D, Rebilly J N, et al. A Family of Nanoporous Materials Based on an Amino Acid Backbone. Angew. Chem. Int. Ed.2006,45:6495-6499.
    [95]Ingleson M J, Barrio J P, Bacsa J, et al. Generation of a solid Bronsted acid site in a chiral framework. Chem. Commun.2008,1287-1289.
    [96]Banerjee M, Das S, Yoon M, et al. Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials. J. Am. Chem. Soc.2009,131:7524-7525.
    [97]W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York,1969.
    [98]Goff A L, Artero V, Jousselme B, et al. From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake. Science.2009,326: 1384-1387.
    [99]Itoh S, Kitamura M, Yamada Y, et al. Chiral Catalysts Dually Functionalized with Amino Acid and Zn2+ Complex Components for Enantioselective Direct Aldol Reactions Inspired by Natural Aldolases:Design, Synthesis, Complexation Properties, Catalytic Activities, and Mechanistic Study. Chem. Eur. J.2009,15:10570 10584.
    [100]Kuwabara J, Stern C L, Mirkin C A, A Coordination Chemistry Approach to a Multieffector Enzyme Mimic. J. Am. Chem. Soc.2007,129:10074-10075.
    [101]Javor S, Delort E, Darbre T, et al. A Peptide Dendrimer Enzyme Model with a Single Catalytic Site at the Core. J. Am. Chem. Soc.2007,129:13238-13246.
    [102]Wong C, Fujimori D G, Walsh C T, et al. Structural Analysis of an Open Active Site Conformation of Nonheme Iron Halogenase CytC3. J. Am. Chem. Soc.2009,131: 4872-4879.
    [103]Prieto M A, Biarne X, Vidossich P, et al. The Molecular Mechanism of the Catalase Reaction. J. Am. Chem. Soc.2009,131:11751-11761.
    [104]Wildeman S A D, Sonke T, Schoemaker H E, et al. Biocatalytic Reductions:From Lab Curiosity to "First Choice". Ace. Chem. Res.2007,40:1260-1266.
    [105]FujitaM, TominagaM, Hori A, et al. Coordination Assemblies from a Pd(Ⅱ)-Cornered Square Complex. Ace. Chem. Res.2005,38:369-378.
    [106]Fiedler D, Leung D H, Bergman R G, Selective Molecular Recognition, C-H Bond Activa-tion, and Catalysis in Nanoscale Reaction Vessels. Acc. Chem. Res.2005,38: 349-358.
    [107]Cram D J, Cram J M. Container Molecules and Their Guests, Royal Society of Chemistry, Cambridge,1994.
    [108]Steed J W, Atwood J L. Supramolecular Chemistry, Wiley, Chichester, UK,2000.
    [109]Fujita M, Yu S Y, Kusukawa T, et al. Self-Assembly of Nanometer-Sized Macro-tricyclic Complexes from Ten Small Component Molecules. Angew. Chem. Int. Ed.1998,37:2082-2085.
    [110]Kusukawa T, Fujita M. Encapsulation of Large, Neutral Molecules in a Self-Assembled Nanocage Incorporating Six Palladium(Ⅱ) Ions. Angew. Chem. Int. Ed.1998,37:3142-3144.
    [111]Yoshizawa M, Tamura M, Fujita M. Diels-Alder in Aqueous Molecular Hosts:Unusual Regioselectivity and Efficient Catalysis. Science.2006,312:251-254.
    [112]Yoshizawa M, Takeyama Y, Kusukawa T, et al. Cavity-Directed, Highly Stereo-selective [2+2] Photodimerization of Olefins within Self-Assembled Coordination Cages. Angew. Chem. Int. Ed.2002,41:1347-1349.
    [113]Yoshizawa M, Takeyama Y, Okano T, et al. Cavity-Directed Synthesis within a Self-Assembled Coordination Cage:Highly Selective [2+2] Cross-Photodimerization of Olefins. J. Am. Chem. Soc.2003,125:3243-3247.
    [114]Sessler, J. L.; Wang, B.; Springs, S. L.; Brown, C. T. In Comprehensive Supramolecular Chemistry; Murakami, Y., Ed.; Pergamon:Oxford,1996.
    [115]Yamaguchi T, Fujita M. Highly Selective Photomediated 1,4-Radical Addition to o-Quinones Controlled by a Self-Assembled Cage. Angew. Chem. Int. Ed.2008,47: 2067-2069.
    [116]Yoshizawa M, Miyagi S, Kawano M, et al. Alkane Oxidation via Photochemical Excitation of a Self-Assembled Molecular Cage. J. Am. Chem. Soc.2004,126: 9172-9173.
    [117]Caulder D L, Powers R E, Parac T N, et al. The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster. Angew. Chem. Int. Ed.1998,37:1840-1843.
    [118]Pluth M D, Bergman R G, Raymond K N. Acid Catalysis in Basic Solution:A Supramolecular Host Promotes Orthoformate Hydrolysis. Science.2007,316:85-88.
    [119]Pluth M D, Bergman R G, Raymond K N. Supramolecular Catalysis of Orthoformate Hydrolysis in Basic Solution:An Enzyme-Like Mechanism. J. Am. Chem. Soc.2008, 130:11423-11429.
    [120]Fiedler D, Bergman R G, Raymond K N. Supramolecular Catalysis of a Uni-molecular Transformation:Aza-Cope Rearrangement within a Self-Assembled Host. Angew. Chem. Int. Ed.2004,43:6748-6751
    [121]Fiedler D, Halbeek H, Bergman R G, et al. Supramolecular Catalysis of Uni-molecular Rearrangements:Substrate Scope and Mechanistic Insights. J. Am. Chem. Soc.2006,128:10240-10252.
    [122]Hastings C J, Fiedler D, Bergman R G, et al. Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled "Nanozyme". J. Am. Chem. Soc. 2008,130:10977-10983.
    [123]Burger P, Bergman R G. Facile intermolecular activation of carbon-hydrogen bonds in methane and other hydrocarbons and silicon-hydrogen bonds in silanes with the iridium(Ⅲ) complex Cp*(PMe3)Ir(CH3) (OTf). J. Am. Chem. Soc.1993,115: 10462-10463.
    [124]Arndtsen B A, Bergman R G. Unusually Mild and Selective Hydrocarbon C-H Bond Activation with Positively Charge Iridium(Ⅲ) Complexes. Science.1995,270: 1970-1973.
    [125]Luecke H F, Bergman R G. Synthesis and C-H Activation Reactions of Cyclometalated Complexes of Ir(Ⅲ):Cp*(PMe3)Ir(CH3)+ Does Not Undergo Intermolecular C+H Activation in Solution via a Cyclometalated Intermediate J. Am. Chem. Soc.1997, 119:11538-11539.
    [126]Leung D H, Fiedler D, Bergman R G, et al. Selective C-H Bond Activation by a Supramolecular Host-Guest Assembly. Angew. Chem. Int. Ed.2004,43:963-966
    [127]Leung D H, Fiedler D, Bergman R G, et al. Enthalpy-Entropy Compensation Reveals Solvent Reorganization as a Driving Force for Supramolecula Encapsulation in Water. J. Am. Chem. Soc.2008,130:2798-2805.
    [128]Prado A G S. Green chemistry, the chemical challenges of the new millenium. Quimic Nova.2003,26:738-744.
    [129]Evans P A. Modern Rhodium-Catalyzed Organic Reactions. Wiley-VCH:Wein-heim, 2005.
    [130]Uma R, Crevisy C, Gree R. Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chem. Rev.2003,103:27-52.
    [131]Leung D H, Bergman R G, Raymond K N. Highly Selective Supramolecular Catalyzed Allylic Alcohol Isomerization. J. Am. Chem. Soc.2007,129:2746-2747.
    [132]Halterman R L. Transition Metals in Organic Synthesi. Wiley-VCH, Weinheim,1998, 2:300-306.
    [133]Merlau M L, Mejia M P, Nguyen S T, et al. Artificial Enzymes Formed through Directed Assembly of Molecular Square Encapsulated Epoxidation Catalysts. Angew. Chem. Int. Ed.2001,40:4239-4242.
    [134]Oxford G A E, Curet-Arana M C, Majumder D, et al. Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares. Journal of Catalysis.2009,266:145-155.
    [135]Alberts B, Johnson A, Lewis J,. et al. Molecular Biology of the Cell, Garland Science, New York,4th edn,2002.
    [136]Watson J D, Baker T A, Bell S P,. et al. Molecular Biology of the Gene, Benjamin-Cummings, San Francisco,5th edn,2003.
    [137]Aoki S, Kimura E, Zinc-nucleic Acid Interaction, Chem. Rev.2004,104:769-787.
    [138]Sessler J L, Jayawickramarajah J, Functionalized base-pairs:versatile scaffolds for self-assembly. Chem. Commun.2005,1939-1949.
    [139]Sivakova S, Rowan S J, Nucleobases as supramolecular motifs. Chem. Soc. Rev.2005, 34:9-21.
    [140]Gasser G, Belousoff M J, Bond AM,. et al. Recognition of Thymine and Related Nucleosides by a Zn11-Cyclen Complex Bearing a Ferrocenyl Pendant. Inorg. Chem., 2007,46:1665-1674.
    [141]Wang S, Chang Y T, Combinatorial Synthesis of Benzimidazolium Dyes and Its Diversity Directed Application toward GTP-Selective Fluorescent Chemosensors. J. Am. Chem. Soc.2006,128:10380-10381.
    [142]Bazzicalupi C, Bencini A, Berni E,. et al. Protonated macrocyclic Zn(Ⅱ) complexes as polyfunctional receptors for ATP. Dalton Trans.2003,2564-2572.
    [143]Sessler J L, Kral V, Shishkanova T V,. et al. Proc. Natl. Acad. Sci. U. S. A., 2002,99:4848-4853.
    [144]Mancin F, Chin J, Evidence for Direct Attack by Hydroxide in Phosphodiester Hydrolysis. J. Am. Chem. Soc.,2002,124:10946-10947.
    [145]Conn M M, Deslongchamps G, Mendoza J,. et al. Convergent Functional Groups. 13. High-Affinity Complexation of Adenosine Derivatives within Induced Binding Pockets. J. Am. Chem. Soc.1993,115:3548-3557.
    [146]Inouye M, Konishi T, Isagawa K, Artificial Allosteric Receptors for Nucleotide Bases and Alkali-Metal Cations. J. Am. Chem. Soc.1993,115:8091-8095.
    [147]Sessler J L, Lawrence C M, Jayawickramarajah J, Molecular recognition via base-pairing. Chem. Soc. Rev.2007,36:314-325.
    [148]Hisamatsu Y, Hasada K, Amano F,. et al. Highly Selective Recognition of Adenine Nucleobases by Synthetic Hosts with a Linked Five-Six-Five-Membered Triheteroaromatic Structure and the Application to Potentiometric Sensing of the Adenine Nucleotide. Chem-Eur. J.2006,12:7733-7741.
    [149]Lafitte V G H, Aliev A E, Horton P N,. et al. Quadruply Hydrogen Bonded Cytosine Modules for Supramolecular Applications. J. Am. Chem. Soc.2006,128:6544-6545.
    [150]Schlund S, Mladenovic M, Janke E M B,. et al. Geometry and Cooperativity Effects in Adenosine-Carboxylic Acid Complexes. J. Am. Chem. Soc.2005,127:16151-16158.
    [151]Li S S, Yan H J, Wan L J,. et al. Control of Supramolecular Rectangle Self-Assembly with a Molecular Template. J. Am. Chem. Soc.2007,129:9268.
    [152]Seeman N C, Belcher A M, Proc. Natl. Acad. Sci. U.S.A.2002,99:6451.
    [153]Balzani V, Credi A, Venturi M, The Bottom-Up Approach to Molecular-Level Devices and Machines. Chem. Eur. J.2002,8:5524-5532.
    [154]Lee C M, Kumler W D, The Dipole Moment and Structure of the Imide Group. Ⅲ. Straight Chain Imides Hydrogen Bonding and a Case of Hydrogen Bonding. J. Am. Chem. Soc. 1962,84:571-578.
    [155]Bent H A, Structural Chemistry of Donor-Acceptor Interaction. Chem. Rev.1968, 68:587-648.
    [156]G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag:Berlin,1991.
    [157]Wu D Y, Xie L X, Zhang C L,. et al.Quinoline-based molecular clips for selective fluorescent detection of Zn2+. Dalton Trans.2006,3528-3533.
    [158]Ou S J, Lin Z H, Duan C Y,. et al. A sugar-quinoline fluorescent chemosensor for selective detection of Hg2+ ion in natural water. Chem. Commun.2006,4392-4394.
    [159]Jiang P, Guo Z, Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors. Coord. Chem. Rev.2004, 248:205-229.
    [160]Wu Z Q, Shao X B, Li C,. et al. Hydrogen-Bonding-Driven Preorganized Zinc Porphyrin Receptors for Efficient Complexation of C60, C70, and C60 Derivatives. J. Am. Chem. Soc.2005,127:17460-17468.
    [161]Uemura K, Kitagawa S, Fukui K,.et al. A Contrivance for a Dynamic Porous Framework Cooperative Guest Adsorption Based on Square Grids Connected by Amide-Amide Hydrogen Bonds. J. Am. Chem. Soc.2004,126:3817-3828.
    [162]Moon D, Kang S, Park J,. et al. Face-Driven Corner-Linked Octahedral Nanocages: M6L8 Cages Formed by C3-Symmetric Triangular Facial Ligands Linked via C4-Symmetric Square Tetratopic Pd" Ions at Truncated Octahedron Corners. J. Am. Chem. Soc.2006, 128:3530-3531.
    [163]Park J, Hong S, Moon D,. et al. Porous Metal-Organic Frameworks Based on Metal-Organic Polyhedra with Nanosized Cavities as Supramolecular Building Blocks: Two-Fold Interpenetrating Primitive Cubic Networks of [Cu6L8]12+Nanocages. Inorg. Chem.2007,46:10208-10213.
    [164]Addicott C, Das N, Stang P J. Self-Recognition in the Coordination Driven Self-Assembly of 2-D Polygons. Inorg. Chem.2004,43:5335-5338.
    [165]Northrop B H, Yang H B, Stang P J,. et al. Second-Order Self-Organization in Coordination-Driven Self-Assembly:Exploring the Limits of Self-Selection. Inorg. Chem.2008,47:11257-11268.
    [166]Zheng Y R, Yang H B, Northrop B H,. et al. Size Selective Self-Sorting in Coordination-Driven Self-Assembly of Finite Ensembles. Inorg. Chem.2008,47: 4706-4711.
    [167]Mazik M, Konig A. Mimicking the Binding Motifs Found in the Crystal Structures of Protein-Carbohydrate Complexes:An Aromatic Analogue of Serine or Threonine Side Chain Hydroxyl/Main Chain Amide. Eur. J. Org. Chem.2007,36:3271-3276.
    [168]Hrtner S R, Ritschel T, Stengl B,.et al. Potent Inhibitors of tRNA-Guanine Transglycosylase, an Enzyme Linked to the Pathogenicity of the Shigella Bacterium: Charge-Assisted Hydrogen Bonding. Angew. Chem. Int. Ed.2007,46:8266-8269.
    [169]Lin W W, Baron 0, Knochel P. Highly Functionalized Benzene Syntheses by Directed Mono or Multiple Magnesiations with TMPMgClaLiCl. Org. Lett.2006,8:5673-5676.
    [170]Collman J P, Brauman J I, Fitzgerald J P,. et al. Synthesis, Characterization, and X-ray Structure of the Ruthenium "Picnic-Basket" Porphyrins. J. Am. Chem. Soc.1988,110:3477-3486.
    [171]Drexler K E. Nanosystems Molecular Machinery Manufacturing and Computation, John Wiley & Sons, Inc., New York,1992
    [172]Regis E, Nano! Remarking the World Atom by Atom, Bantam, London,1995
    [173]Balzani V, Credi A, Venturi M. The Bottom-Up Approach to Molecular-Level Devicesand Machines. Chem. Euro. J.2002,8:5225-5232.
    [174]Garcia J I, Lopez-Sanchez B, Mayoral J A. Linking Homogeneous and Heterogeneous Enantioselective Catalysis through a Self-Assembled Coordination Polymer. Org. Lett.2008,10:4995;
    [175]Cho S H, Ma B Q, Nguyen S T,. et al. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun.2006,2563.
    [176]Ghosh S K, Bureekaew S, Kitagawa S. A Dynamic Isocyanurate-Functionalized Porous Coordination Polymer. Angew. Chem. Int. Ed.2008,47:3403-3406.
    [177]Kitagawa S, Uemura K,Dynamic porous properties of coordination polymers inspired by hydrogen bonds.Chem. Soc. Rev.2005,34:109-119
    [178]Lee E Y, Jiang S Y, Shu M P.Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal-Organic Framework [Zn4O(NTB) 2]. J. Am. Chem. Soc.2005,127, 6374.
    [179]Marciniak G, Delgado A, Leelere G,. et al. New 1,4-Dihydropyridine Derivatives
    Combining Calcium Antagonism and a-Adrenolytic Properties. J. Med. Chem.1989,32: 1402-1407.
    [180]Evdokimov N M, Kireev A S, Yakovenko A A,. et al. J. Org. Chem.2007,72:3443
    [181]Evdokimov N M, Kireev A S, Yakovenko A A,. et al. Convenient one-step synthesis of a medicinally relevant benzopyranopyridine system. Tetrahedron Lett.2006,47: 9309-9312.
    [182]Binev I J, Binev Y I, Stamboliyska B A,. et al. IR spectra and structure of benzylidenemalononitrile and its cyanide,methoxide and heptylamine adducts: experimental and ab initio studies. J. Mol. Struct.,1997,435,235-245.
    [183]Galzerano P, Bencivenni G, Pesciaioli F,. et al. Asymmetric Iminium Ion Catalysis with a Novel Bifunctional Primary Amine Thiourea:Controlling Adjacent Quaternary and Tertiary Stereocenters.Chem. Eur. J,2009,32:7846-7849.
    [184]Burtona S G, Dorringtonb R A. Hydantoin-hydrolysing enzymes for the enantioselective production of amino acids:new insights and applications Tetrahedron:Asymmetry,2004,15:2737-2741.
    [185]Arita S, Koike T, Kayaki Y,. et al. Aerobic Oxidative Kinetic Resolution of Racemic Secondary Alcohols with Chiral Bifunctional Amido Complexes. Angew. Chem. Int. Ed.2008,47:2447-2449.
    [186]Bao C Y, Lu R, Jin M,. et al. Helical Stacking Tuned by Alkoxy Side Chains in p-Conjugated Triphenylbenzene Discotic Derivatives. Chem. Eur. J.2006,12, 3287-3294.
    [187]Johnston L J, Schepp N P, Reactivities of Radical Cations:Characterization of Styrene Radical Cations and Measurements of Their Reactivity toward Nucleophiles. J. Am. Chem. Soc.1993,115:6564-6571.
    [188]Lewis F D, Kojima M, Electron Transfer Induced Photoisomerization, Dimerization, and Oxygenation of trans-and cis-Anethole. The Role of Monomer and Dimer Cation Radicals. J. Am. Chem. Soc.1988,110:8664-8670.
    [189]Becker H D, Unimolecular Photochemistry of Anthracenes. Chem. Rev.1993,93: 145-172.
    [190]Laurent H B, Castellan A, Desvergne J P,. et al. Photodimerization of anthracenes in fluid solution:structural aspects. Chem. Soc. Rev.2000,29:43-55.
    [191]Laurent H B, Castellan A, Desvergne J P,. et al. Photodimerization of anthracenes in fluid solutions:(part 2) mechanistic aspects of the photocycloaddition and of the hotochemical and thermal cleavage. Chem. Soc. Rev.,2001,30:248-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700