用户名: 密码: 验证码:
有机光电材料分子结构与载流子传输性质关系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机光电材料的载流子传输性质是影响有机半导体器件性能的重要因素。研究其结构对载流子的传输性质的影响对开发和应用新型有机光电材料至关重要。本论文以几类有机光电材料固态晶体结构的载流子迁移率为主要研究内容,深入探讨了材料的结构(如取代基,共轭π分子体系的大小,分子的堆积模式等)对其传输性质的影响。预测的固态载流子的迁移率与实验值具有可比性,为设计和合成新的具有高载流子迁移性质的有机光电材料提供了理论依据。论文从研究有机光电材料分子的几何结构和电子结构入手,计算了分子的重组能,分析了其在品体结构中主要的传输路径和电荷转移积分,由此预测材料的迁移率。主要包括以下四部分内容:
     1以三联苯为骨架十字交叉型π共轭体系,其空穴重组均小于电子的,更利于空穴传输;空穴的传输主要是通过三联苯方向上两端苯环的“边对面”的相互作用及分子中心π体系的错位重叠相互作用来实现。取代基不同,其电荷分布有很大区别,引入适当的取代基,更利于电荷的二维离域;引入氰基后,空间位阻增大,传输路径明显减少,但分子间的有效重叠较大,迁移率明显提高,空穴迁移率提高10倍以上,电子迁移率提高近3倍;DDBB与DPDSB传输路径相同,但其空穴迁移率比DPDSB高30倍,电子迁移率高100倍。
     2蒽类衍生物具有较高的载流子迁移率,理论计算与实验结果相符。由于侧链取代基有较强的分子间范德华力,分子间堆积比较紧密,有利于载流子传输。引入适当的取代基,可以提高载流子的迁移率,同时可以实现材料由空穴传输向电子传输的转变。
     3含有"chalcogenophene"的杂环芳化合物,在侧链引入对称取代基后,重组能增大,空穴传输积分减小,电子传输积分略有增大;以BTBT为基体的化合物具有更好的电荷传输能力;引入共轭性好的取代基(DNTT),可增大分子的共轭,形成更大的离域π键,形成更密集的分子堆积,更利于分子间电荷的有效传输;引入苯基后,其空间位阻大大增大,虽然通过引入苯基可以提高其共轭能力,但其空间位阻效应对载流子传输的影响更大,因此,引入取代基要同时考虑引入取代基后的共轭效应和空间位阻效应的影响。
     4不对称杂环并苯Ar-BFC,其HOMO轨道较均匀的分布在整个共轭体系中,而LUMO轨道主要在共面的杂并苯环上;化合物Ph-BFC是很好的双极性材料,引入烷氧基后,其重组能增大,但空穴传输能力增强,而电子的传输能力减弱;对传输能力其决定性作用的是其传输路径。分子间的共面不平行的堆积对电荷传输起决定性作用。
Charge Carrier transfer property of organic optoelectronic material is an important factor affecting the performance of an organic semiconductor, and therefore it is crucial to study the effect of the structure of organic optoelectronic materials on carrier transport property for development and application of new organic photovoltaic materials. This thesis focuses on the mobility of the carriers of several types of organic optoelectronic materials with solid-state crystal structure and deals with the effects of structures(such as substituent, the size of theπconjugated molecular system and molecular stacking) on the transport properties. It can provide a theoretical basis for experimental design. We studied the impact of substituent groups on molecular and electron structure, calculated the reorganization energy, analyzed molecular transfer path and calculated the transfer integral of each path, and predicted the mobility of the solid state carriers. This thesis mainly covers the following parts:
     1 We researched electronic structure and crystal carrier transport properties of the cross typeπ-conjugated molecules DPDSB, CNDPDSB and DDBB. We mainly explored impact of three different kinds type terphenyl of substituents on the cross molecule for skeleton. The results show that, the hole reorganization energy are all less than that of an electron, which is beneficial to the hole transport.. Charge distribution of a molecule with different substituents is very different. The introduction of appropriate substituents can reach the two-dimensional molecular structure of conjugation, which is conductive to the space charge delocalization. Different substituents of molecules have quite different transfer paths. Because the effective overlap between the molecules is larger, the mobility of hole has increased by 10 times and 3 times for electron. For molecule DDBB, having a more delocalized charge distribution, its hole mobility is 30 times higher than that of DPDSB,100 times higher than that of electron.
     2 We researched molecular and electronic structure, reorganization energy and charge-transfer integral of symmetric substituted anthracene derivates, and using Einstein relation calculated the carrier mobility at room temperature. The results show that anthracene derivates has a high carrier mobility as the same as pentacene. Calculation value is consistent with the experiment results. Due to strong intermolecular interaction, the intermolecular stacking is denser, it is conductive to the carrier transport. But also it can be found by calculating that the introduction of appropriate substituents, the change from hole transfer to electronic transfer can be achieved. This is to provide for a theoretical basis for their applications. The introduction of the appropriate substutuents, in enhancing the stability of the materials, at the same time, is more conductive to the transfer of carrier. These studies can provide a theoretical basis for the practical application of three anthracene derivates.
     3 Heterocyclic aryl compounds containing "chalcogenophene" BSBS, DNTT, Ph-BSBS, C12BTBT and C12BSBS are researched, we studied the molecular and electronic structure, calculated the reorganization energy, transfer integral and carrier mobility of the crystal structure. The results show that after introduction of symmetrical substituents in the side chain of BSBS, the molecules steric hinderance increases, the reorganization of the molecules increases, the intermolecular hole transfer integral decreases, and the electrons transfer slightly increases, the introduction of substituents greatly enhances the solvency of compounds. BTBT as the base compound has a better charge transfer capacity than BSBS. furthermore, BTBT can reduce costs in the application, at the same time, can avoid toxicity and pollution caused by selenium. This provides theoretical basis for design of new materials. Introducing well conjugated groups in the matrix can greatly increase the performance of molecular conjugation, so molecules form a larger delocalizedπbond, and form a more dense molecular stacking, while reduce the molecular reorganization energy. So is more conducive to the effective intermolecular charge transfer. For DPh-BSBS, after the introducing of phenyl, its steric greatly increases. Although the introducing of phenyl can enhance the ability of conjugation, the steric hinderance has more effect on the transport of charge carrier. We calculated that the mobility at room temperature is less than without substituents or with alkyl, but is slightly enlarged for electronic mobility. It was found that the introducing of appropriate substituents, in enhancing the stability of the materials, at the same time, is more conductive to the transfer of carrier. The introduction of the substituent needs to consider both the conjugation and the steric hindrance effect.
     4 We researched the molecular and electronic structure, molecular reorganization energy, charge transfer integral of the asymmetric heterocyclic acene containing pyrrole and furan rings Ar-BFC(1.R=H,2.R=OC6H13,3.R=OC10H21), using Einstein relation we calculated the carrier mobility at room temperature. The results show that Ph-BFC is a preferable bipolar material。The mobility of hole at room temperature is 0.88 cm2/V·s, and is 0.53 cm2/V·s for that of electron. After introducing the alkoxy, the ability of hole transfer enchances for molecules 4-OC6H13-Ph-BFC and OC10H21-Ph-BFC, while it weakens for electronic transfer, for 4-OC10H21-Ph-BFCthe mobility of hole is 1.75 cm2/V·s, and is 0.10 cm2/V·s for that of electron at room temperature. So it is more conducive for hole transfer. Interaction of intermolecular non-parallel coplanar for heterocyclic acene and edge to face interaction of side benzene ring and common-plane heterocyclic acene are major factor effecting the hole transfer. Interaction of intermolecular non-parallel coplanar for heterocyclic acene is key factor for electronic transfer. So the interaction of intermolecular non-parallel coplanar for heterocyclic acene is the crucial factor for the transfer of carrier. This provides a new way of design high mobility carrier-transporting materials. This is also provides a theoretical basis for the molecules in organic field-effect transistors as the active layer of the potential application.
引文
[1]ShirotaY, Kageyama H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices [J]. Chem. Rev.,2007,107:953-1010.
    [2]Coropceanu V, Cornil J, da Silva Filho D. A, Olivier Y, Silbey R, Bredas J-L. Charge Transport in Organic Semiconductors [J]. Chem. Rev.,2007,107: 926-952.
    [3]Forrest S R, Thompson M E. Introduction:Organic Electronics and Opto-electronics [J]. Chem. Rev.,2007,107:923-925.
    [4]Podzorov V, Pudalov V M, Gershenson M E. Field-effect transistors on rubrene single crystals with parylene gate insulator [J]. Appl. Phys. Lett.,2003,82:1739-1741.
    [5]Karl N. Charge carrier transport in organic semiconductors [J]. Synthetic. Met., 2003,133:649-657.
    [6]Warta W, Karl N. Hot holes in naphthalene:High electric-field-dependent mobilities [J]. Phys. Rev. B,1985,32:1172-1182.
    [7]Shirota Y. Photo-and electroactive amorphous molecular materials-molecular design, syntheses, reactions, properties, and applications [J]. J. Mater. Chem., 2005,15:75-93.
    [8]Kreouzis T, Poplavskyy D, Tuladhar S M, Campoy-Quiles M, Nelson J, Campbell A J, Bradley D D C. Temperature and field dependence of hole mobility in poly-(9,9-dioctylfluorene) [J]. Phys. Rev. B,2006,73:235206-235220.
    [9]Facchetti A, Deng Y, Wang A C, Koide Y, Sirringhaus H, Marks T J, Friendl R H. Tuning the Semiconducting Properties of Sexithiophene by α,ω-Substitution-α,ω-Diperfluorohexylsexithiophene:The First n-Type Sexithiophene for Thin-Film Transistors [J]. Angew. Chem. Int. Edit,2000,39:4547-4551.
    [10]Yamashita K, Harima Y, Matsubayashi T. Conductance control of porphyrin solids by molecular design and doping [J]. J. Phys. Chem.,1989,93:5311-5315.
    [11]Jurchescu O D, Baas J, Palstra T T M. Effect of impurities on the mobility of single crystal pentacene [J]. Appl. Phys. Lett.,2004,84:3061-3063.
    [12]de Boer R W I, Gershenson M E, Morpurgo A F, Podzorov V. Organic single-crystal field-effect transistors[J]. Phys. Stat. Sol. (a),2004,201:1302-1331.
    [13]Pope M, Swenberg C E. Electronic Processes in Organic Crystals and Polymers [M]. New York:Oxford University Press,1999.
    [14]Rutenberg I M, Scherman O A, Grubbs R H, Jiang W R, Garfunkel E, Bao Z N. Synthesis of Polymer Dielectric Layers for Organic Thin Film Transistors via Surface-Initiated Ring-Opening Metathesis Polymerization [J]. J. Am. Chem. Soc,2004,126:4062-4063.
    [15]Mattheus C C, de Wijs G A, de Groot R A, Palstra T T M. Modeling the Polymorphism of Pentacene [J]. J. Am. Chem. Soc,2003,125:6323-6330.
    [16]Podzorov V, Sysoev S E, Loginova E, Pudalov V M, Gershenson M E. Single-crystal organic field effect transistors with the hole mobility-8 cm2/V s [J]. Appl. Phys. Lett.,2003,83:3504-3506.
    [17]Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E. Intrinsic Charge Transport on the Surface of Organic Semiconductors [J]. Phys. Rev. Lett.,2004,93:086602.
    [18]Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L. Someya T, Gershenson M E, Rogers J A. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals [J]. Science,2004,303:1644-1646.
    [19]Zeis R, Besnard C, Siegrist T, Schlockermann C, Chi X L, Kloc C. Field Effect Studies on Rubrene and Impurities of Rubrene [J]. Chem. Mater.,2006,18: 244-248.
    [20]Pope M, Kallmann H P, Magnante P. Electroluminescence in Organic Crystals [J]. J. Chem. Phys.,1963,38:2042-2043.
    [21]Vincett P S, Barlow W A, Hann R A, Roberts G G. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films,1982,94:171-183.
    [22]Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987,51:913-915.
    [23]Tang C W, Vanslyke S. A, Chen C H. Electroluminescence of doped organic thin films [J].J.Appl. Phys.,1989,65:3610-3616
    [24]Mas-Torrent M, Hadley P, Bromley S T, Crivillers N, Veciana J, Rovira C. Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene [J]. Appl. Phys. Lett,2005,86:012110.
    [25]Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors [J]. J. Am. Chem. Soc,2004,126:984-985.
    [26]Naka S, Okada H, Onnagawa H. High electron mobility in bathophenanthroline [J]. Appl. Phys. Lett.,2000,76:197-199.
    [27]Bulovic V, Shoustikov A, Baldo M A, Bose E, Kozlov V G Thompson M E, Forrest S R. Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts [J]. Chem. Phys. Lett.,1998,287: 455-460.
    [28]Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H.-E, Adachi C, Burrows P E, Forrest S R, Thompson M E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc,2001,123: 4304-4312.
    [29]Chabinyc M L Salleo A. Materials Requirements and Fabrication of Active Matrix Arrays of Organic Thin-Film Transistors for Displays [J]. Chem. Mater., 2004,16:4509-4521.
    [30]McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc M L, Kline R J, McGehee M D, Toney M F. Liquid-crystalline semiconducting polymers with high charge carrier mobility [J]. Nature Materials,2006,5:328-333.
    [31]Li W J, Katz H E, Lovinger A J, Laquindanum J G. Field-Effect Transistors Based on Thiophene Hexamer Analogues with Diminished Electron Donor Strength [J]. Chem. Mater.,1999,11:458-465.
    [32]Schon J H, Kloc C, Laudise R A, Batlogg B. Surface and bulk mobilities of oligothiophene single crystals [J]. Appl. Phys. Lett.,1998,73:3574-3576.
    [33]Laquindanum J G, Katz H E, Lovinger A J. Synthesis Morphology and Field-Effect Mobility of Anthradithiophenes [J]. J. Am. Chem. Soc,1998,120: 664-672.
    [34]Barbarella G, Zambianchi M, Antolini L, Ostoja P, Maccagnani P, Bongini A, Marseglia E A, Tedesco E, Gigli G, Cingolani R. Solid-State Conformation, Molecular Packing, and Electrical and Optical Properties of Processable β-Methylated Sexithiophenes [J]. J. Am. Chem. Soc,1999,121:8920-8926.
    [35]Schon J H, Berg S, Kloc Ch, Batlogg B. Ambipolar Pentacene Field-Effect Transistors and Inverters [J]. Science,2000,287:1022-1023.
    [36]DimitrakopoulosC D, Purushothaman S, Kymissis J, Callegari A, Shaw J M. Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators [J]. Science,1999,283:822-824.
    [37]Zhang J, Wang J, Wang H B, Yan D H. Organic thin-film transistors in sandwich configuration [J]. Appl. Phys. Lett.,2004,84:142-144.
    [38]Wang H B, Zhu F, Yang J L, Geng Y H, Yan D H. Weak Epitaxy Growth Affording High-Mobility Thin Films of Disk-Like Organic Semiconductors [J]. Adv. Mater.,2007, 19:2168-2171.
    [39]Wang H B, Song D, Yang J L, Yu B, Geng Y H, Yan D H. High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors [J]. Appl. Phys. Lett.,2007,90:253510-1-253510-3.
    [40]Bao Z. Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits [J]. Adv. Mater.,2000,12:227-230.
    [41]Gilles H. Organic Field-Effect Transistors [J]. Adv. Mater.,1998,10:365-377.
    [42]Katz H E, Bao Z, Gilat S L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors [J]. Accounts. Chem. Res., 2001,34:359-369.
    [43]Katz H E. Organic molecular solids as thin film transistor semiconductors [J]. J. Mater. Chem.,1997,7:369-376.
    [44]Chen L H, McBranch D. W, Wang H L, Helgeson R, Wudl F, Whitten D G.
    Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96:12287-12292.
    [45]Timothy M S. The Molecular Wire Approach to Sensory Signal Amplification [J]. Accounts. Chem. Res.,1998,31:201-207.
    [46]Liu B. Bazan G C. Homogeneous Fluorescence-Based DNA Detection with Water-Soluble Conjugated Polymers [J]. Chem. Mater..2004,16:4467-4476.
    [47]Heeger P S, Heeger A J. Making sense of polymer-based biosensors [J]. Proceedings of the National Academy of Sciences of the United States of America 1999,96:12219-12221.
    [48]Sutherland R L. Handbook of Nonlinear Optics,2nd [M]. New York:CRC.2003.
    [49]Miller J S, Epstein A J, Reiff W M. Ferromagnetic molecular charge-transfer complexes [J]. Chem. Rev.,1988,88:201-220.
    [50]Allemand P-M, Khemani K C, Koch A, Wudl F, Holczer K, Donovan S, GrUner G, Thompson J D. Organic Molecular Soft Ferromagnetism in a Fullerene C60 [J]. Science,1991,253:301-303.
    [51]McCreery R L. Molecular Electronic Junctions [J]. Chem. Mater.,2004,16: 4477-4496.
    [52]Kelley T W, Baude P F, Gerlach C, Ender D E, Muyres D, Haase M A, Vogel D E, Theiss S D. Recent Progress in Organic Electronics:Materials, Devices, and Processes [J]. Chem. Mater.,2004,16:4413-4422.
    [53]Holstein T. Studies of polaron motion:Part Ⅱ. The "small" polaron [J]. Ann. Phys.,1959,8:343-389.
    [54]Pope M, Swenberg C. E. Electronic Processes in Organic Crystals [M]. New York:Oxford University Press,1982.
    [55]Silinsh E A, Capek V. Organic Molecular Crystals:Interaction. Localization and Transport Phenomena, American Institute of Physics [M]. New York:AIP Press 1994.
    [56]Bre'das J-L, Beljonne D, Coropceanu V, Cornil J. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:A Molecular
    Picture [J]. Chem. Rev.,2004,104:4971-5003.
    [57]Cheung D L, Troisi A. Modelling charge transport in organic semiconductors: from quantum dynamics to soft matter [J]. Phys. Chem. Chem. Phys.,2008.10: 5941-5952.
    [58]Gershenson M E, Podzorov V. Colloquium:Electronic transport in single-crystal organic transistors [J]. Rev. Mod. Phys.,2006,78:973-989.
    [59]Podzorov V, Menard E, Rogers J A, Gershenson M E. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors [J]. Phys. Rev. Lett.,2005,95:226601.
    [60]Cheng Y C, Silbey R J, da Silva Filho D A, Calbert J P, Cornil J, Bredas J-L.Three-dimensional band structure and bandlike mobility in oligoacene single crystals:A theoretical investigation [J]. J. Chem. Phys.,2003,118:3764-3774.
    [61]Hannewald K, Bobbert P A. Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals [J]. Phys. Rev. B:Condens. Matter. Mater. Phys.,2004,69:075212.
    [62]Wang L J, Peng Q, Li Q K, Shuai Z. The Roles of Inter-and Intra-molecular Vibrations and Band-Hopping Crossover in the Charge Transport in Naphthalene Crystal [J]. J. Chem. Phys.,2007,127:044506.
    [63]Wang L J, Li Q K, Shuai Z. Effects of pressure and temperature on the carrier transports in organic crystal:a first-principles study [J]. J. Chem. Phys.,2008, 128:194706.
    [64]Hannewald K, Stojanovic'V M, Schellekens J M T, Bobbert P A, Kresse G, Hafner J. Theory of polaron bandwidth narrowing in organic molecular crystals [J]. Phys. Rev. B:Condens. Matter Mater. Phys.,2004,69:075211.
    [65]Bassler H. Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study [J]. Phys. Status Solidi B,1993,175:15-56.
    [66]Eley D D, Inokuchi H, Willis M R. The semi-conductivity of organic substances. Part 4.—Semi-quinone type molecular complexes [J]. Discuss. Faraday Soc, 1959,28:54-63.
    [67]Nan G J, Yang X D, Wang L J, Shuai Z, Zhao Y. Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene [J]. Phys. Rev. B:Condens. Matter Mater. Phys.,2009,79:115203.
    [68]Glaeser R M, Berry R S. Comparison of Band and Hopping Models [J]. J. Chem. Phys.,1966,44:3797-3810.
    [69]Troisi A, Orlandi G. Dynamics of the Intermolecular Transfer Integral in Crystalline Organic Semiconductors [J]. J. Phys. Chem. A,2006,110:4065-4070.
    [70]Troisi A, Orlandi G. Charge-Transport Regime of Crystalline Organic Semi-conductors:Diffusion Limited by Thermal Off-Diagonal Electronic Disorder [J]. Phys. Rev. Lett.,2006,96:086601.
    [71]Song Y B, Di C A, Yang X D, Li S P, Xu W, Liu Y Q, Yang L M, Shuai Z, Zhang D Q. Zhu D B. A Cyclic Triphenylamine Dimer for Organic Field-Effect Transistors with High Performance [J]. J. Am. Chem.Soc,2006,128:15940-15941.
    [72]Yang X D, Li Q K, Shuai Z G. Theoretical modelling of carrier transports in molecular semiconductors:molecular design of triphenylamine dimer systems [J]. Nanotechnology,2007,18:424029.
    [73]Yang X D, Wang L. Wang C L, Long W, Shuai Z G. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors:Oligothiophenes [J]. Chem. Mater.,2008,20:3205-3211.
    [74]Deng W-Q, Goddard Ⅲ W A. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations [J]. J. Phys. Chem. B,2004,108:8614-8621.
    [75]Zhang Y X, Cai X, Bian Y Z, Li X Y, Jiang J Z, Heteroatom Substitution of Oligothienoacenes:From Good p-Type Semiconductors to Good Ambipolar Semi-conductors for Organic Field-Effect Transistors [J]. J. Phys.Chem. C,2008, 112:5148-5159.
    [76]Hutchison G. R, Ratner M A, Marks T J. Hopping Transport in Conductive Heterocyclic Oligomers:Reorganization Energies and Substituent Effects [J]. J. Am. Chem. Soc,2005,127:2339-2350.
    [77]Kuo M Y, Chen H Y, Chao I. Cyanation:Providing a Three-in-One Advantage for the Design of n-Type Organic Field-Effect Transistors [J]. Chem.-Eur. J., 2007,13:4750-4758.
    [78]Tan L, Zhang L, Jiang X, Yang X D, Wang L J, Wang Z H, Li L Q, Hu W P, Shuai Z, Li L, Zhu D. B. a Densely and Uniformly Packed Organic Semiconductor Based on Annelated β-Trithiophenes for High-Performance Thin Film Transistors [J]. Adv. Funct. Mater.,2009,19:272-276.
    [79]Nan G J, Wang L J, Yang X D, Shuai Z, Zhao Y. Charge transfer rates in organic semiconductors beyond first-order perturbation:From weak to strong coupling regimes [J]. J. Chem. Phys.,2009,130,024704.
    [80]帅志刚,邵久书.理论化学原理与应用[M].北京:科学出版社,2008.
    [81]Holstein T. Studies of polaron motion:Part I. The molecular-crystal model [J]. Ann. Phys.,1959,8:325-342.
    [82]Hannewald K, Bobbert P A. Ab initio theory of charge-carrier conduction in ultrapure organic crystals [J]. Appl. Phys. Lett.,2004,85:1535-1537.
    [83]Munn R W, Silbey R. Theory of electronic transport in molecular crystals III. Diffusion coefficient incorporating nonlocal linear electron-phonon coupling [J]. J. Chem. Phys.,1985,83:1854-1864.
    [84]Kenkre V M, Andersen J D, Dunlap D H, Duke C B. Unified theory of the mobilities of photoinjected electrons in naphthalene [J]. Phys. Rev. Lett.,1989, 62:1165-1168.
    [85]Hush N. S. Adiabatic theory of outer sphere electron-transfer reactions in solution [J]. Transactions of the Faraday Society,1961,57:557-580.
    [86]Jortner J. Temperature dependent activation energy for electron transfer between biological molecules [J]. J. Phys. Chem.1976,64:4860-4867.
    [87]Marcus R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer [J]. J. Chem. Phys.1956,24:966-978.
    [88]Schein L B, McGhie A. R. Band-hopping mobility transition in naphthalene and deuterated naphthalene [J]. Phys. Rev. B,1979,20:1631-1639.
    [89]Bixon M, Jortner J. Electron transfer:from isolated molecules to biomolecules [M]. In Adv. Chem. Phys., New York:Wiley,1999, Vol.106-107.
    [90]Balzani V. Electron transfer in chemistry [M]. Weinheim:Wiley-vch,2001.
    [91]Marcus R. A. Electron transfer reactions in chemistry Theory and experiment [J]. Rev. Mod. Phys.,1993,65:599-610.
    [92]Newton M D, Sutin N. Electron Transfer Reactions in Condensed Phases [J]. Annu. Rev. Phys. Chem.,1984,35:437-480.
    [93]Brunschwig B S, Logan J, Newton M D, Sutin N. A semiclassical treatment of electron-exchange reactions Application to the hexaaquoiron(Ⅱ)-hexaaquoiron(Ⅲ) system [J]. J. Am. Chem. Soc,1980,102:5798-5809.
    [94]Siders P, Marcus R A. Quantum effects for electron-transfer reactions in the inverted region [J]. J. Am. Chem. Soc,1981,103:748-752.
    [95]Marcus R. A. On the Theory of Electron-transfer Reactions. Ⅵ. Unified Treatment for Homogeneous and Electrode Reactions [J]. J. Chem. Phys.,1965, 43:679-701.
    [96]Norton J E, Bredas J-L. Polarization Energies in Oligoacene Semiconductor Crystals [J]. J. Am. Chem. Soc,2008,130:12377-12384.
    [97]Vilfan I. Small polaron model of the electron motion in organic molecular crystals [J]. Physica Status Solidi (b) 1973,59:351-360.
    [98]Liang C X, Newton M D.ab initio studies of electron transfer.2. Pathway analysis for homologous organic spacers [J]. J.Phys.Chem.,1993,973199-3211.
    [99]Farazdel A, Dupuis M, Clementi E, Aviram A. Electric-field induced intramolecular electron transfer in spiroπ-electron systems and their suitability as molecular electronic devices. A theoretical study [J]. J. Am. Chem. Soc,1990, 112:4206-4214.
    [100]Zener C. Non-Adiabatic Crossing of Energy Levels [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1932,137: 696-702.
    [101]Rodriguez-Monge L, Larsson S. Conductivity in polyacetylene. Ⅳ. ab initio calculations for a two-site model for electron transfer between allyl anion and allyl [J]. Int. J. Quantum. Chem.,1997,61:847-857.
    [102]RodriguezMonge L, Larsson S. In Conductivity in polyacetylene 3. Ab initio calculations for a two-site model for electron transfer. International Conference on Molecular Quantum Mechanics-Methods and Applications, in Memory of Samuel Francis Boys and in Honor of Isaiah Shavitt [C]. Cambridge, England, 1995:6298-6303.
    [103]Larsson S. Electron transfer in chemical and biological systems, Orbital rules for nonadiabatic transfer [J]. J. Am. Chem. Soc,1981,103:4034-4040.
    [104]Siddarth P, Marcus R. A. Comparison of experimental and theoretical electronic matrix elements for long-range electron transfer [J]. Journal of Physical Chemistry,1990,94:2985-2989.
    [105]Lowdin P-O. Studies in perturbation theory:part I an elementary iteration-varibation procedure for solving the Schrodinger equation by partintioning technique [J]. J. Mol. Spectrosc,1963,10:12-33.
    [106]Hush N S. Homogeneous and heterogeneous optical and thermal electron transfer [J]. Electrochim. Acta,1968,13:1005-1023.
    [107]Creutz C, Newton M D, Sutin N. Metal-lingad and metal-metal coupling elements [J]. J. Photoch. Photobio. A,1994,82:47-59.
    [108]Hush N. S. Intervalence-Transfer Absorption. Part 2. Theoretical Considerations and Spectroscopic Data [M], In Prog. Inorg. Chem., John Wiley & Sons, Inc., 1967, Vol.8:391.
    [109]Cave R J, Newton M D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements [J]. Chem. Phys. Lett.,1996,249: 15-19.
    [110]Cave R J, Newton M D. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions:Comparison of the generalized Mulliken-Hush and block diagonalization methods [J]. J. Chem. Phys.,1997,106:9213-9226.
    [111]Kryachko E S. on Generalized Mulliken-Hush Approach of Electronic Transfer: Inclusion of Non-Zero Off-Diagonal Diabatic Dipole Moment [J]. J. Phys. Chem.
    A,1999,103:4368-4370.
    [112]Bre'das J-L, Calbert J P, da Silva Filho D A, Cornil J. Organic semiconductors:A theoretical characterization of the basic parameters governing charge transport [J]. Proc. Natl. Acad. Sci. U. S. A.,2002,99:5804-5809.
    [113]Cornil J, Lemaur V, Calbert J P, Bre'das J.-L. Charge Transport in Discotic Liquid Crystals:A Molecular Scale Description [J]. Adv. Mater.,2002,14:726-729.
    [114]Lemaur V, da Silva Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, van de Craats A M, Senthilkumar K, Siebbeles L D A, Warman J M, Bre'das J-L, Cornil J. Charge Transport Properties in Discotic Liquid Crystals:A Quantum-Chemical Insight into Structure-Property Relationships [J]. J. Am. Chem. Soc,2004,126:3271-3279.
    [115]Norton J E, Bre'das J-L. Theoretical Characterization of Titanyl Phthalocyanine as a P-Type Organic Semiconductor:Short Intermolecular π-π Interactions Yield Large Electronic Couplings and Hole Transport Bandwidths [J]. J. Chem. Phys., 2008,128:034701/1-034701/7
    [116]Anthony J. E. Functionalized acenes and heteroacenes for organic electronics [J]. Chem. Rev.,2006,106:5028-5048.
    [117]Anthony J E. The Larger Acenes:Versatile Organic Semiconductors [J]. Angew. Chem., Int. Ed.,2008,47,452-483.
    [118]Reese C, Bao Z N. Organic single-crystal field-effect transistors [J]. Materials Today,2007,10:20-27.
    [119]Wang L J. Nan G J, Yang X D, Peng Q, Li Q K, Shuai Z G. Computational methods for design of organic materials with highcharge mobility [J]. Chem. Soc. Rev.,2010,39:423-434.
    [120]Mas-Torrent M, Hadley P, Bromley S T, Ribas X, Tarre's J, Mas M, Molins E, Veciana J, Rovira C. Correlation between Crystal Structure and Mobility in Organic Field-Effect Transistors Based on Single Crystals of Tetrathiafulvalene Derivatives [J]. J. Am. Chem. Soc,2004,126:8546-8553.
    [121]Schrodinger E. an Undulatory Theory of the Mechanics of Atoms and Molecules
    [J]. Physical Review,1926,28:1049-1070.
    [122]Born M, Huang K. Dynamical Theory of Crystal Lattices [M]. New York:Oxford University Press,1954.
    [123]]Born M, Oppenheimer J R. Zur quantentheorie der molekeln [J]. Ann. Phys berlin,1927,84:457-484.
    [124]Hartree D. R. Calculations of Atomic Structure [M]. New York:Wiley,1957.
    [125]Roothaan C. C. J. New Developments in Molecular Orbital Theory [J]. J. Rev. Mod. Phys.,1951,23:69-89.
    [126]Pople J A, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. Ⅱ. Calculations with Complete Neglect of Differential Overla [J]. J. Chem. Phys., 1965,43:S136-S151.
    [127]Pople J A, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. Ⅲ. CNDO Results for AB2 and AB3 Systems [J]. J. Chem. Phys.,1966,44:3289-3296.
    [128]江元生译.分子轨道近似方法理论[M].北京:科学出版社,1976.
    [129]Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. Development and use of quantum mechanical molecular models.76. AM1:a new general purpose quantum mechanical molecular model [J]. J. Am. Chem. Soc,1985,107: 3902-3909.
    [130]Stewart J J P. Optimization of parameters for semiempirical methods I. Method [J]. J. Comput. Chem.1989,10:209-220.
    [131]Koch W, Holthausen M C.A Chemist's Guide to Density Functional Theory [M]. Weinheim:WILEY-VCH,2000.
    [132]Deng L Q, Branchadell V, Ziegler T. Potential Energy Surfaces of the Gas-Phase SN2 Reactions X-+CH3X=XCH3+X-(X=F, Cl, Br, I):A Comparative Study by Density Functional Theory and ab Initio Methods [J]. J. Am. Chem. Soc, 1994,116:10645-10656.
    [133]Hong G Y, Lin X J, Li L M, Xu G X. Linkage Isomerism and the Relativistic Effect in Interaction of Lanthanoid and Carbon Monoxide [J]. J. Phys. Chem. A, 1997,101:9314-9317.
    [134]Foresman J B, Head-Gordon M, Pople J A, Frisch M J. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem.,1992,96:135-149.
    [135]Lu H G, Li L M. Density functional study on zerovalent lanthanide bis-(arene)-sandwich complexes[J]. Theor. Chem. Acc.,1999,102:121-126.
    [136]Roy A K, Singh R, Deb B M. Density functional calculations on triply excited states of lithium isoelectronic sequence [J]. Int. J. Quantum. Chem.,1997,65: 317-332.
    [137]Raghavachari K, Pople J A, Replogle E S, el al. In 5th-Order Moller-Plesset Perturbation-Theory-Comparison of Existing Correlation Methods and Implementation of New Methods Correct to 5th-Order, International Conf in Honor of Professor John a Pople [C]. Forty Years of Quantum Chemistry, Athens, Ga,5579-5586.
    [138]Hohenberg P, Kohn W. In Homogeneous Electron Gas [J]. Phys. Rev.1964.136: B864-B871.
    [139]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phy. Rev.,1965,140:A1133-A1138.
    [140]Thomas L. H. The calculation of atomic fields [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1927,23:542-550.
    [141]Kumar K, Kurnikov I V, Beratan D N, Waldeck D H, Zimmt M B. Use of Modern Electron Transfer Theories to Determine Electronic Coupling Matrix Elements in Intramolecular Systems [J]. J. Phys. Chem. A,1998,102:5529-5541.
    [142]Kurnikov I V, Zusman L D. Kurnikova M G, Farid R S, Beratan D N. Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control of Intramolecular Electron Transfer:The Surprising Case of Electron Transfer in a d8-d8 Bimetallic System [J]. J. Am. Chem. Soc,1997,119:5690-5700.
    [143]Valeev E F, Coropceanu V. da Silva Filho D A, Salman S, Bredas J-L. Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors [J]. J. Am. Chem. Soc,2006,128:9882-9886.
    [144]Troisi A, Orlandi G. The hole transfer in DNA:calculation of electron coupling
    between close bases [J]. Chem. Phys. Lett.,2001,344:509-518.
    [145]Yin S W, Yi Y P, Li Q X, Yu G, Liu Y Q, Shuai Z G. Balanced Carrier Transports of Electrons and Holes in Silole-Based CompoundsA Theoretical Study [J]. J. Phys. Chem. A,2006,110:7138-7143.
    [146]Shirakawa H, Louis E J, Macdiarmid A G, Chiang K, Heeger A. Synthesis of Electrically Conducting Organic Polymers—Halogen Derivatives of Polyacetylene, (Ch)X [J]. J. Journal of the Chemical Society-Chemical Communications,1977:578-580.
    [147]Chiang C K, Fincher Jr C R, Park Y W, Heeger A J. Electrical Conductivity in Doped Polyacetylene [J]. Phys. Rev. Lett.,1977,39:1098-1101.
    [148]Su W P, Schrieffer J R, Heeger A, J. Solitons in Polyacetylene [J]. J. Phys. Rev. Lett.,1979,42:1698.
    [149]Pond S J K, Tsutsumi O, Rumi M, Kwon O, Zojer E, Bredas J-L, Marder S R, Perry J W. Metal-Ion Sensing Fluorophores with Large Two-Photon Absorption Cross Sections:Aza-Crown Ether Substituted Donor-Acceptor-Donor Distyrylbenzenes [J]. J. Am. Chem. Soc.,2004,126:9291-9306.
    [150]Kadashchuk A, Vakhnin A, Blonski I, Beljonne D, Shuai Z, Bredas J-L, Arkhipov V I, Heremans P, Emelianova E V, Bassler H. Singlet-Triplet Splitting of Geminate Electron-Hole Pairs in Conjugated Polymers [J]. Phys. Rev. Lett., 2004,93:066803-066807.
    [151]Beljonne D, Ye A, Shuai Z, Bredas J-L. Chain-Length Dependence of Singlet and Triplet Exciton Formation Rates in Organic Light-Emitting Diodes [J]. Adv. Funct. Mater.,2004,14:684-692.
    [152]Peng Q, Yi Y P, Shuai Z G. Excited state radiationless decay process with Duschinsky rotation effect:Formalism and implementation [J]. J. Chem. Phys., 2007,126:114302-1-114302-8
    [153]Peng Q, Yi Y P, Shuai Z G, Shao J S. Toward Quantitative Prediction of Molecular Fluorescence Quantum Efficiency:Role of Duschinsky Rotation [J]. J. Am. Chem. Soc,2007,129:9333-9339.
    [154]Prins P, Grozema F C, Nehls B S, Farrell T, Scherf U, Siebbeles L D A. Enhanced
    charge-carrier mobility in β-phase polyfluorene [J]. Phys. Rev. B,2006,74: 113203.
    [155]Akamatu H, Inokuchi H. On the Electrical Conductivity of Violanthrone, Iso-Violanthrone, and Pyranthrone [J]. J. Chem. Phys.,1950,18:810-811.
    [156]Eley D. D. Phthalocyanines as Semiconductors [J]. Nature,1948,162:819-819.
    [157]Akamatu H, Inokuchi H. Photoconductivity of Violanthrone [J]. J. Chem. Phys., 1952,20:1481-1483.
    [158]LeBlanc Jr O. H. Hole and Electron Drift Mobilities in Anthracene [J]. J. Chem. Phys.,1960,33:626-627.
    [159]LeBlanc Jr. O. H. Band Structure and Transport of Holes and Electrons in Anthracene [J]. J. Chem. Phys.,1961,35:1275-1280.
    [160]Silbey R, Jortner J, Rice S A, Vala Jr M T. Exchange Effects on the Electron and Hole Mobility in Crystalline Anthracene and Naphthalene [J]. J. Chem. Phys., 1965,42:733-737.
    [161]Katz J L, Rice S A, Choi S, Jortner J. On the Excess Electron and Hole Band Structures and Carrier Mobility in Naphthalene, Anthracene, and Several Polyphenyls [J]. J. Chem. Phys.,1963,39:1683-1697.
    [162]Silbey R, Munn R.W. General theory of electronic transport in molecular crystals. I. Local linear electron-phonon coupling [J]. J. Chem. Phys.,1980,72:2763-2773.
    [163]Burland D. M. Cyclotron Resonance in a Molecular Crystal —Anthracene [J]. Phys. Rev. Lett.,1974,33:833-835.
    [164]Karl N, Stehle R, Warta W. Organic Conductors Versus Organic Photoconductors—Similarities and Differences in Their Charge Carrier Transport [J]. Mol. Cryst. Liq. Cryst.,1985,120:247-250.
    [165]Chance R R, Braun C L. Temperature dependence of intrinsic carrier generation in anthracene single crystals [J]. J. Chem. Phys.,1976,64:3573-3581.
    [166]Warta W, Stehle R, Karl N. Ultrapure, High Mobility Organic Photoconductors [J]. Appl. Phys. A—Mater.,1985,36:163-170.
    [167]Schein L.B. Electron drift mobilities over wide temperature ranges in anthracene, deuterated anthracene and As2S3 [J]. Chem. Phys. Lett.,1977,48:571-575.
    [168]Braun C L, Scott T W. Picosecond measurements of time-resolved geminate charge recombination [J]. Journal of Physical Chemistry,1983,87:4776-4778.
    [169]Schein L B, Duke C B. Observation of the Band-Hopping Transition for Electrons in Naphthalene [J]. Phys. Rev. Lett.,1978,40:197-200.
    [170]Schein L B, Warta W, McGhie A R, Karl N. Mobilities of electrons and holes in naphthalene and perdeuterated naphthalene [J]. Chem. Phys. Lett.,1983,100:34-36.
    [171]Parris P E, Kenkre V M, Dunlap D H. Nature of Charge Carriers in Disordered Molecular Solids:Are Polarons Compatible with Observations [J]. Phys. Rev. Lett.,2001,8712.
    [172]Scher H, Lax M. Stochastic Transport in a Disordered Solid. I. Theory [J]. Phys. Rev. B,1973,7:4491-4502.
    [173]Silver M, Schoenherr G, Baessler H. Dispersive Hopping Transport from an Exponential Energy Distribution of Sites [J]. Phys. Rev. Lett.,1982,48:352-355.
    [174]Bassler H, Schonherr G, Abkowitz M, Pai D M. Hopping transport in prototypical organic glasses [J]. Phys. Rev. B,1982,26:3105-3113.
    [175]Bassler H. Charge transport in molecularly doped polymers [J]. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties,1984,50:347-362.
    [176]Haarer D. In Photoconductive Polymers-Structure, Mechanisms and Properties. Meeting on Polymers and Light [C]. Bad Nauheim, Fed Rep Ger,1990:197-220.
    [177]Haarer D. In Photoconductive Polymers-a Comparison with Amorphous Inorganic Materials,1990 Spring Meeting of the Solid State Physics Div of the German Physical Soc. [C]. Rossler U, Ed. Regensburg, Fed Rep Ger,1990; 157-182.
    [178]Cheng G, Zhang Y F, Zhao Y, Liu S Y. Tunable electro-luminescent color for 2, 5-diphenyl-1,4-distyrylbenzene with two trans-double bonds [J]. Appl. Phys. Lett,2005,87:013506-1-013506-3.
    [179]Cheng G, Xie Z Q, Zhao Y, Zhang Y F, Xia H, Ma Y G, Liu S.Y. Efficient white
    organic light-emitting devices using 2,5-diphenyl-1,4-distyrylbenzene with two trans-double bonds as blue emitter [J]. Thin Solid Films,2005,484:54-57.
    [180]Xie Z Q, Yang B, Li F, Cheng G, Liu L L,Yang G D, Xu H,Ye L, Hanif M, Liu S H, Ma D G, Ma Y G. Cross Dipole Stacking in the Crystal of Distyrylbenzene Derivative:The Approach toward High Solid-State Luminescence Efficiency [J]. J.Am. Chem. Soc,2005,127:14152-14153.
    [181]Xie Z Q, Yang B, Liu L L, Li M, Lin D. Ma Y G, Cheng G, Liu S Y. Experimental and theoretical studies of 2,5-diphenyl-1,4-distyrylbenzenes with all-cis-and all-trans double bonds:chemical structure determination and optical properties [J]. J. Phys. Org. Chem.,2005,18:962-973.
    [182]Xie Z Q, Liu L L, Yang B. Yang G D. Ye L, Li M, Ma Y G. Polymorphism of 2,5-Diphenyl-1,4-distyrylbenzene with Two cis Double Bonds:The Essential Role of Aromatic CH/π Hydrogen Bonds [J]. Crystal Growth and Design,2005, 5(5):1959-1964.
    [183]Li Y P, Li F, Zhang H Y, Xie Z Q, Xie W J. Xu H, Li B. Shen F Z. Ye L, Hanif M, Ma D G, Ma Y G. Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene):a key factor for aggregation-induced emission [J]. Chem. Commun.,2007:231-233.
    [184]Klare J E, Tulevski G S, Sugo K, de Picciotto A, White K A, Nuckolls C. Cruciform π-Systems for Molecular Electronics Applications [J]. J Am. Chem. Soc,2003,125:6030-6031.
    [185]Klare J E, Tulevski G S, Nuckolls C. Chemical Reactions with Upright Monolayers of Cruciform π-Systems [J]. Langmuir,2004,20:10068-10072.
    [186]Florio G M, Klare J E, Pasamba M O, Werblowsky T L, Hyers M, Berne B J, Hybertsen M S, Nuckolls C, Flynn G W. Frustrated Ostwald Ripening in Self-Assembled Monolayers of Cruciform π-Systems [J]. Langmuir,2006,22: 10003-10008.
    [187]Meng H, Sun F P, Goldfinger M B, Jaycox G D, Li Z G, Marshall W J, Blackman G S. High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5'-alkyl-thiophen-2'-yl-2,6-anthracene Semiconductors [J]. J. Am. Chem. Soc.,2005,127:2406-2407.
    [188]Meng H, Sun F P, Goldfinger M B, Gao F, Londono D J, Marshal W J, Blackman G S, Dobbs K D, Keys D E.2,6-Bis[2-(4-pentylphenyl)vinyl]anthracene:A Stable and High Charge Mobility Organic Semiconductor with Densely Packed Crystal Structure [J]. J. Am. Chem. Soc.,2006,128:9304-9305.
    [189]Takimiya K, Kunugi Y, Konda Y, Ebata H, Toyoshima Y, Otsubo T.2,7-Diphenyl[1]benzoselenopheno[3,2-b][1]benzo-selenophene [J]. J. Am. Chem. Soc.,2006,128:3044-3050.
    [190]Takimiya K, Ebata H, Sakamoto K, Izawa T, Otsubo T, Kunugi Y.2,7-Diphenyl[1]benzothieno[3,2-b] benzothiophene, A New Organic Semiconductor for Air-Stable Organic Field-Effect Transistors with Mobilities up to 2.0 cm2 V-1 s-1 [J]. J. Am. Chem. Soc.,2006,128:12604-12605.
    [191]Yamamoto T, Takimiya K. Facile Synthesis of Highly π-Extended Hetero-arenes, Dinaphtho[2,3-b:2',3'-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors [J]. J. Am. Chem. Soc.,2007,129: 2224-2225.
    [192]Takimiya K, Yamamoto T, Ebata H, Izawa T. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors [J]. Science and Technology of Advanced Materials,2007,8:273-276.
    [193]Um M-C, Kwak J, Hong J-P, Kang J,Yoon D Y, Lee S H, Lee C, Hong J-I. High-performance organic semiconductors for thin-film transistors based on 2,7-divinyl[1]benzothieno[3,2-b] benzothiophene [J]. J. Mater. Chem.,2008,18: 4698-4703.
    [194]Kawaguchi K, Nakano K, Nozaki K. Synthesis of Ladder-Type π-Conjugated Heteroacenes via Palladium-Catalyzed Double N-Arylation and Intramolecular O-Arylation [J]. J. Org. Chem.,2007,72:5119-5128.
    [195]Kawaguchi K, Nakano K, Nozaki K. Synthesis, Structures, and Properties of Unsymmetrical Heteroacenes Containing Both Pyrrole and Furan Rings [J]. Org. Lett.,2008,10:1199-1202.
    [1]Amanda R M, Jean M. J. F. Organic Semiconducting Oligomers for Use in Thin Film Transistors [J]. J. Chem. Rev.,2007,107:1066-1096.
    [2]Horowitz G Hajlaoui M E. Mobility in Polycrystalline Oligothiophene Field-Effect Transistors Dependent on Grain Size [J]. Adv. Mater.,2000,12:1046-1050.
    [3]Shih-C. L, Paul L. B. Development of Dendrimers:Macro-molecules for Use in Organic Light-Emitting Diodes and Solar Cells [J]. Chem. Rev.,2007,107: 1097-1116.
    [4]Zojer E. Alexander P, Hennebicq E, Beljonne D. Green emission from poly(fluorene)s:The role of oxidation [J]. J. Chem. Phys.,2002,117:6794-6802.
    [5]Giines S, Neugebauer H, Sariciftci N. S. Conjugated Polymer-Based Organic Solar Cells [J]. Chem. Rev.,2007,107:1324-1338.
    [6]Spanggaard H, Krebs F C. A brief history of the development of organic and polymeric photovoltaics [J]. Sol. Energy Mater. Sol. Cells,2004,83:125-146.
    [7]Pope K, Swenberg C. E. Electronic Processes in Organic Crystals and Polymers [M],2nd ed.; New York, Oxford University Press,1999.
    [8]Silinsh E A, Capek V. Organic Molecular Crystals:Interaction. Localtion. and Transport Phenomena [M]. New York, AIP:1994.
    [9]Gershenson M E, Podzorov V, Morpurgo A. F. Colloquium:Electronic transport in single-crystal organic transistors [J]. Rev. Mod. Phys.,2006,78:973-989.
    [10]Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R,Bredas J.-L. Charge Transport in Organic Semiconductors [J]. Chem. Rev.,2007,107: 926-952.
    [11]YANG Bing(杨兵), MA Yu-Guang(马於光),SHEN Jia-Cong(沈家骢).Stacking Mode, Optoelectronic Property and Supramolecular Control Method in π-Conjugated Organic Molecules,π-共轭分子堆积、光电性能与超分子调控[J].Chem. J. Chinese Universitiers(高等学校化学学报),2008,29(12):2643-2658.
    [12]Shirota Y, Kageyama H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices [J]. Chem. Rev.,2007,107:953-1010.
    [13]Newman C R, Daniel F C, da Silva Filho D A, Bredas J-L, Ewbank P C, Mann K R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors [J]. Chem. Mater.,2004,16:4436-4451.
    [14]Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson M E, Rogers J A. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals [J]. Science (Washington, DC, U.S.), 2004,303:1644-1646.
    [15]Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E. Intrinsic Charge Transport on the Surface of Organic Semiconductors [J]. Phys. Rev. Lett.,2004,93:86602-86605.
    [16]Deng W Q, Goddard Ⅲ W A. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations [J]. J. Phys. Chem. B.,2004,108:8614-8621.
    [17]Yang X D, Wang L J, Wang C L, Long W, Shuai Z G. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors:Oligothiophenes [J]. Chem. Mater.,2008,20:3205-3211.
    [18]Wang C L, Wang F H, Yang X D, Li Q K, Shuai Z G. Theoretical comparative studies of charge mobilities for molecular materials:Pet versus bnpery [J]. Organic Electrons,2008,9:635-640.
    [19]Gao H Z, Qin C S, Zhang H Y, Wu S X, Su Z M, Wang Y. Theoretical Characterization of a Typical Hole/Exciton-Blocking Material Bathocuproine and Its Analogues [J]. J. Phys. Chem. A.,2008,112:9097-9103.
    [20]Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers [J]. Nature(London),1990,347:539-541.
    [21]Mullen K,Wegner G. Electronic Materials:The Oligomer Approach [M]. Weinheim:Wiley-VCH,1998.
    [22]Liao L, Pang Y,Ding L M, Karasz F E. Blue-Emitting Soluble Poly(m-phenyl-enevinylene) Derivatives [J]. Macromolecules,2001,34:7300-7305.
    [23]Stalmach U, Schollmeyer D,Meier H. Single-Crystal Structures of Model Compounds for Poly(2,5-dialkoxy-1,4-phenylenevinylene) [J]. Chem. Mater., 1999,11:2103-2106.
    [24]Zojer E, Knupfer M, Shuai Z, Fink J, Bre'das J-L, Horhold H H, Grimme J, Scherf U, Benincori T, Leising G. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers [J]. Phys. Rev. B,2000, 61:16561-16569.
    [25]Meier H, Gerold J, Kolshom H, Muhling B. Extension of Conjugation Leading to Bathochromic or Hypsochromic Effects in OPV Series [J]. Chem. Eur. J.,2004, 10:360-370.
    [26]Syamakumari A, Schenning A P H J, Meijer E W. Synthesis, Optical Properties, and Aggregation Behavior of a Triad System Based on Perylene and Oligo(p-phenylenevinylene) Units [J]. Chem. Eur. J.,2002,8:3353-3361.
    [27]He F, Cheng G, Zhang H Q, Zheng Y, Xie Z Q, Yang B, Ma Y G, Liu S Y, Shen J. C. Synthesis, characteristics and luminescence properties of oligo(phenylene-vinylene) dimers with a biphenyl linkage center [J]. Chem. Commun.,2003, 2206-2207.
    [28]Shi Y, Liu J, Yang Y. Device performance and polymer morphgoloy in polymer light emitting diodes:The control of thin film morphology and device quantum efficiency [J]. J. Appl. Phys.,2000,87:4254-4263.
    [29]Wan W C, Antoniadis H, Choong V E, Razafitrimo H, Gao Y, Feld W A, Hsieh B R. Halogen Precursor Route to Poly[(2,3-diphenyl-p-phenylene) vinylene](DP-PPV):Synthesis, Photoluminescence, Electroluminescence, and Photo-conductivity [J]. Macromolecules,1997,30:6567-6574.
    [30]Greenham N C, Moratti S C, Bradley D D C, Friend R H, Holmes A B. Efficient light-emitting diodes based on polymers with high electronaffinities [J]. Nature, 1993,365:628-630.
    [31]Jenekhe S A, Osaheni J A. Excimers and Exciplexes of Conjugated Polymers [J]. Science,1994,265:765-768.
    [32]Jakubiak R, Collison C J, Wan W C, Rothberg J, Hsieh B R. Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers [J]. J. Phys. Chem. A,1999,103:2394-2398.
    [33]Chen S H, Su A C, Han S R, Chen S A, Lee Y Z. Molecular Aggregation and Luminescence Properties of Bulk Poly(2,5-di-n-octyloxy-1,4-phenylenevinylene) [J]. Macromolecules,2004,37:181-186.
    [34]Hsieh B R, Yu Y, Forsythe E W, Schaaf G M, Feld W A. A New Family of Highly Emissive Soluble Poly(p-phenylene vinylene) Derivatives. A Step toward Fully Con-jugated Blue-Emitting Poly (p-phenylene vinylenes) [J]. J. Am. Chem. Soc,1998,120:231-232.
    [35]Peng Z H, Zhang J H, Xu B B. New Poly(p-phenylene vinylene) derivatives exhibiting high photoluminescence quantum efficiencies[J]. Macromolecules, 1999,32:5162-5164.
    [36]Spreitzer H, Becker H, Kluge E, Kreuder W, Schenk H, Demandt R, Schoo H. Soluble Phenyl-substituted PPVs——New Materials for Highly Efficient Polymer LEDs [J]. Adv. Mater.,1998,10:1340-1343.
    [37]Cheng G, Zhang Y F, Zhao Y, Liu S Y, Xie Z Q, Xia H, Hanif M, Ma Y G Tunable electroluminescent color for 2,5-diphenyl-1,4-distyrylbenzene with two trans-double bonds [J]. Appl. Phys. Lett.,2005,87:013506-1-013506-3.
    [38]Cheng G, Xie Z Q,Zhao Y, Zhang Y F, Xia H, Ma Y G, Liu S. Y. Efficient white organic light-emitting devices using 2,5-diphenyl-1,4-distyrylbenzene with two trans-double bonds as blue emitter [J]. Thin Solid Films,2005,484:54-57.
    [39]Xie Z Q, Yang B, Li F, Cheng G, Liu L L, Yang G D, Xu H, Ye L, Hanif M, Liu S Y, Ma D G, Ma Y G. Cross Dipole Stacking in the Crystal of Distyrylbenzene Derivative:The Approach toward High Solid-State Luminescence Efficiency [J]. J. Am. Chem. Soc.,2005,127:14152-14153.
    [40]Xie Z Q, Yang B, Liu L L, Li M, Lin D, Ma Y G, Cheng G, Liu S Y. Experimental and theoretical studies of 2,5-diphenyl-1,4-distyrylbenzenes with all-cis-and all-trans double bonds:chemical structure determination and optical properties [J]. J. Phys. Org. Chem.,2005,18:962-973.
    [41]Xie Z Q, Liu L L, Yang B, Yang G D, Ye L, Li M, Ma Y. G. Polymorphism of 2,5-Diphenyl-1,4-distyrylbenzene with Two cis Double Bonds:The Essential Role of Aromatic CH/π Hydrogen Bonds [J]. Crystal Growth and Design,2005, 5(5):1959-1964.
    [42]Li Y P, Li F, Zhang H Y, Xie Z Q, Xie W J, Xu H, Li B, Shen F Z, Ye L, Hanif M, Ma D G, Ma Y. G. Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene):a key factor for aggregation-induced emission [J]. Chem. Commun.,2007, 231-233.
    [43]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision A 1[CP], Gaussian Inc., Pittsburgh,2003.
    [44]Becke A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [45]Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37: 785-789.
    [46]Hutchison G R. Ratner M A., Marks T J. Hopping Transport in Conductive Heterocyclic Oligomers:Reorganization Energies and Substituent Effects [J], J. Am. Chem. Soc.,2005,127(7):2339-2350.
    [47]Kuo M Y, Chen H Y, Chao I. Cyanation:Providing a Three-in-One Advantage for the Design of n-Type Organic Field-Effect Transistors [J]. Chem.-Eur. J.,2007,13: 4750-4758.
    [48]Wang L J, Nan G J. Yang X D, Peng Q, Li Q K, Shuai Z G, Computational methods for design of organic materials with highcharge mobility [J]. Chem. Soc. Rev.,2010.39:423-434.
    [1]Murphy A R, Frechet J M J. Organic Semiconducting Oligomers for Use in Thin Film Transistors [J]. J. Chem. Rev.,2007,107:1066-1096.
    [2]Horowitz G, Hajlaoui M E. Mobility in Polycrystalline Oligo-thiophene Field-Effect Transistors Dependent on Grain Size [J]. Adv. Mater.,2000,12:1046-1050.
    [3]Lo S-C, Burn P L. Development of Dendrimers:Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells [J]. Chem. Rev.,2007,107: 1097-1116.
    [4]Zojer E, Pogantsch A, Hennebicq E, Beljonne D, Bredas J-L, de Freitas Ullrich Scherf P S, List E J W. Green emission from poly(fluorene)s:The role of oxidation [J]. J. Chem. Phys.,2002,117:6794-6802.
    [5]Gunes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based Organic Solar Cells [J]. Chem. Rev.,2007,107:1324-1338.
    [6]Spanggaard H, Krebs F C. A brief history of the development of organic and polymeric photovoltaics [J]. Sol. Energy Mater. Sol. Cells,2004,83:125-146.
    [7]Pope K, Swenberg C E. Electronic Processes in Organic Crystals and Polymers [M].2nd ed.; NewYork:Oxford University Press,1999.
    [8]Silinsh E A, Capek V. Organic Molecular Crystals:Interaction, Localtion, and Transport Phenomena [M]. New York. AIP:1994.
    [9]Gershenson M E, Podzorov V, Morpurgo A F. Colloquium:Electronic transport in single-crystal organic transistors [J]. Rev. Mod. Phys.,2006,78:973-989.
    [10]Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Bredas J-L. Charge Transport in Organic Semiconductors [J]. Chem. Rev.,2007,107:926-952.
    [11]YANG Bingi(杨兵),MA Yu-Guang(马於光),SHEN Jia-Cong(沈家骢).Stacking Mode, Optoelectronic Property and Supramolecular Control Method in π-Conjugated Organic Molecules,π-共轭分子堆积、光电性能与超分子调控[J].Chem. J. Chinese Universitiers(高等学校化学学报),2008,29(12):2643-2658.
    [12]Shirota Y, Kageyama H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices [J]. Chem. Rev.,2007,107:953-1010.
    [13]Newman C R, Frisbie C D, da Silva Filho D A, Bredas J-L, Ewbank P C, Mann K R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors [J]. Chem. Mater.,2004,16:4436-4451.
    [14]Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson M E, Rogers J A. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals[J]. Science(Washington, DC, U.S.), 2004,303:1644-1646.
    [15]Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E.Intrinsic Charge Transport on the Surface of Organic Semiconductors [J]. Phys. Rev. Lett,2004,93:086602-086605.
    [16]Deng W-Q, Goddard Ⅲ W A. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations [J]. J. Phys. Chem. B,2004,108:8614-8621.
    [17]Yang X D, Wang L J, Wang C L, Long W, Shuai Z G. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors:Oligothiophenes [J]. Chem. Mater.,2008,20:3205-3211.
    [18]Wang C L, Wang F H, Yang X D, Li Q K, Shuai Z G. Theoretical comparative studies of charge mobilities for molecular materials:Pet versus bnpery [J]. Organic Electrons,2008,9:635-640.
    [19]Gao H Z, Qin C S, Zhang H Y, Wu S X, Su Z M, Wang Y. Theoretical Characterization of a Typical Hole/Exciton-Blocking Material Bathocuproine and Its Analogues [J]. J. Phys. Chem. A.,2008,112:9097-9103.
    [20]Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W. High-mobility polymer gate dielectric pentacene thin film transistors [J]. J. Appl. Phys.,2002,92:5259.
    [21]Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J, Smith T P. High-Performance OTFTs Using Surface-Modified Alumina Dielectrics [J]. J. Phys. Chem. B,2003,107:5877.
    [22]Pope M, Kallmann H P, Magnante P. Electroluminescence in Organic Crystals [J]. J. Chem. Phys.,1963,38:2042-2043.
    [23]Sano M, Pope M, Kallmann H. Electroluminescence and Band Gap in Anthracene [J]. J. Chem. Phys.,1965,43:2920-2921.
    [24]Danel K, Huang T-H, Lin J T, Tao Y-T, Chuen C-H. Blue-Emitting Anthracenes with End-Capping Diarylamines [J]. Chem. Mater.,2002,14:3860-3865.
    [25]Culligan S W, Chen A C-A, Wallace J U, Klubek K P, Tang C W, Chen S H. Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes [J]. Adv. Funct. Mater.,2006,16:1481-1487.
    [26]Zheng S Y, Shi J M. Novel Blue-Light-Emitting Polymers Containing Dinaphthylanthracene Moiety [J]. Chem. Mater.,2001,13:4405-4407.
    [27]Benmansour H, Shioya T, Sato Y, Bazan G C. Anthracene-Containing Binaphthol Chromophores for Light-Emitting Diode (LED) Fabrication [J]. Adv. Funct. Mater.,2003.13:883-886.
    [28]Kim Y H,Shin D C. Kim S-H, Ko C-H, Yu H-S, Chae Y-S, Kwon S K. Novel Blue Emitting Material with High Color Purity [J]. Adv. Mater.,2001,13,1690-1693.
    [29]Kim Y-H, Jeong H-C, Kim S-H, Yang K, Kwon S-K. High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene [J]. Adv. Funct. Mater.,2005,15:17991805.
    [30]Lee M-T, Liao C-H, Tsai C-H, Chen C H. Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices [J]. Adv. Mater.,2005,17:2493-2497.
    [31]Lee M-T, Chen H-H, Liao C-H, Tsai C-H, Chen C H. Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl) anthracene [J]. Appl. Phys. Lett.,2004,85:3301-3303.
    [32]Gao Z Q, Mi B X, Chen C H, Cheah K W, Cheng Y K. High-efficiency deep blue host for organic light-emitting devices [J]. Appl. Phys. Lett.,2007,90:123506.
    [33]Ho M-H, Wu Y-S, Wen S-W, Lee M-T, Chen T-M., Chen C H, Kwok K-C, So S-K, Yeung K-T, Cheng Y-K, GaoZ-Q. Highly efficient deep blue organic electro-luminescent device based on 1-methyl-9,10-di(1-naphthyl)anthracene [J]. Appl. Phys. Lett.,2006,89:252903.
    [34]Liu T-H, Wu Y-S, Lee M-T, Chen H-H, Liao C-H, Chin H C. Highly efficient yellow and white organic electroluminescent devices doped with 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenyl-naphthacene [J]. Appl. Phys. Lett.,2004,85:4304-4306.
    [35]Zhao L, Li C, Zhang Y, Zhu X-H, Peng J B, Cao Y. Anthracene-Cored Dendrimer for Solution-Processible Blue Emitter:Syntheses, Characterizations, Photoluminescence, and Electroluminescence [J]. Macromol. Rapid. Commun.,2006, 27:914-920.
    [36]Kan Y, Wang L D, Gao Y D, Duan L, Wu G S, Qiu Y. Highly efficient blue electroluminescence based on a new anthracene derivative [J]. Synth. Met.,2004, 141:245-249.
    [37]Shih P-I, Chuang C-Y, Chien C-H, Diau E W-G, Shu C-F. Highly Efficient Non-Doped Blue-Light-Emitting Diodes Based on an Anthrancene Derivative End-Capped with Tetraphenylethylene Groups [J]. Adv. Funct. Mater.,2007,17: 3141-3146.
    [38]Niu Y H, Chen B Q, Kim T D, Liu M S, Jen A K-Y. Efficient and stable blue light-emitting diodes based on an anthracene derivative doped poly(N-vinyl-carbazole) [J]. Appl. Phys. Lett.,2004,85:5433-5436.
    [39]Yu M X, Duan J P, Lin C H, Cheng C H, Tao Y T. Diaminoanthracene Derivatives as High-Performance Green Host Electroluminescent Materials [J]. Chem. Mater.,2002,14:3958-3963.
    [40]Danel K, Huang T H, Lin J T, Tao Y T, Chuen C H. Blue-Emitting Anthracenes with End-Capping Diarylamines [J]. Chem. Mater.,2002,14:3860-3865.
    [41]Kim S-K, Park Y-I, Kang I-N, Park J-W. New deep-blue emitting materials based on fully substituted ethylene derivatives [J]. J. Mater. Chem.,2007,17:4670-4678.
    [42]Kim S-K, Yang B, Ma Y G, Lee J-H, Park J-W. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design [J]. J. Mater. Chem.,2008,18:3376-3384.
    [43]Pannemann Ch, Diekmann T, Hilleringmann U. Degradation of organic field-effect transistors made of pentacene [J]. J. Mater. Res.,2004,19:1999.
    [44]Meng H, Sun F P, Goldfinger M B, Jaycox G D, Li Z G, Marshall W J, Blackman G S. High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5'-alkylthiophen-2'-yl-2,6-anthracene Semiconductors [J]. J. Am. Chem. Soc,2005,127:2406-2407.
    [45]Meng H, Sun F P, Goldfinger M B, Gao F, Londono D J, Marshal W J, Blackman G S, Dobbs K D, Keys D E.2,6-Bis[2-(4-pentylphenyl)vinyl]anthracene:A Stable and High Charge Mobility Organic Semiconductor with Densely Packed Crystal Structure [J]. J. Am. Chem. Soc,2006,128:9304-9305.
    [46]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision A1[CP], Gaussian Inc., Pittsburgh,2003.
    [47]Becke A. D. Density-functional thermochemistry.Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98,5648-5652.
    [48]Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988, 37,785-789.
    [49]Kukhta A V, Kukhta I N, Kukhta N A, Neyraand O L, Meza E. DFT study of the electronic structure of anthracene derivatives in their neutral, anion and cation forms [J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2008, 41:205701.
    [50]LIAO Yi(廖奕),SU Zhong-Min(苏忠民),CHEN Ya-Guang(陈亚光),KAN Yu-He(阚玉和),DUAN Hong-Xia(段红霞),QIU Yong-Qing(仇永清),WANG Rong-Shun(王荣顺).TD-DFT Study on Electronic Spectrum Property for Bis(8-hydroxyquinoline) Beryllium and Its Derivatives.8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J]. Chem. J. Chinese Universities(高等学校化学学报),2003,24(3):477-480.
    [51]Shuai Zhi-Gang(帅志刚),Shao Jiu-Shu(邵久书),et al. Theretical Chemistry:Principles and Applications(理论化学原理与应用)[M]. Beijing: Science Press,2008.
    [1]Naraso, Nishida J, Kumaki D, Tokito S, Yamashita Y. High Performance n-and p-Type Field-Effect Transistors Based on Tetrathiafulvalene Derivatives [J]. J. Am. Chem. Soc.,2006,128:9598-9599.
    [2]Takimiya K, Kunugi Y, Konda Y, Ebata H,Toyoshima Y,Otsubo T.2,7-Diphenyl [1]benzoselenopheno[3,2-6][1]benzoselenophene as a Stable Organic Semiconductor for a High-Performance Field-Effect Transistor [J]. J. Am. Chem. Soc.,2006,128:3044-3050.
    [3]Dimitrakopoulos C D, Malenfant P RL. Organic Thin Film Transistors for Large Area Electronics [J]. Adv. Mater.,2002,14:99-117.
    [4]Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Electroluminescence in conjugated polymers [J]. Nature,1999,397,121.
    [5]Brabec C J, Sariciftci N S, Hummelen J. C. Plastic Solar Cells [J]. Adv. Funct. Mater.,2001,11:15-26.
    [6]Coakley K M, McGehee M D. Conjugated Polymer Photovoltaic Cells [J]. Chem. Mater.,2004,16:4533-4542.
    [7]Crone B, Dodabalapur A, Lin Y-Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E, Li W. Large-scale complementary integrated circuits based on organic transistors [J]. Nature,2000,403:521-523.
    [8]Lin Y-Y, Dodabalapur A, Sarpeshkar R, Bao Z, Li W, Baldwin K, Raju V R, Katz H. E. Organic complementary ring oscillators [J]. Appl. Phys. Lett.,1999,74: 2714.
    [9]Brown A R, Pomp A, Hart C M, de Leeuw D M. Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators [J]. Science,1995,270: 972.
    [10]Drury C J, Mutsaers C M J, Hart C M, Matters M, de Leeuw D M. Low-cost all-polymer integrated circuits [J]. Appl. Phys. Lett.,1998,73:108.
    [11]Dimitrakopoulos C D, Malenfant P R L. Organic Thin Film Transistors for Large Area Electronics [J]. Adv. Mater.,2002,14:99-117.
    [12]Katz H E, Bao Z N, Gilat S L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors [J]. Acc. Chem. Res., 2001,34:359-369.
    [13]Katz H E. Organic molecular solids as thin film transistor semiconductors [J]. J. Mater. Chem.,1997,7:369-376.
    [14]Rogers J A, Bao Z, Katz H E, Dodabalapur A. In Thin-Film Transistors [M]. Kagan C R, Andry P. Eds, Marcel Dekker:New York,2003:377.
    [15]Newman C R, Frisbie C D, da Silva Filho D A, Bredas J-L, Ewbank P C, Mann K R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors [J]. Chem. Mater.,2004,16:4436-4451.
    [16]Lin Y-Y, Gundlach D J, Nelson S F, Jackson T N. Stacked pentacene layer organic thin-film transistors with improved characteristics [J]. IEEE Electron Device Lett,1997,18:606-608.
    [17]Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J, Smith T P. High-Performance OTFTs Using Surface-Modified Alumina Dielectrics [J]. J. Phys. Chem. B,2003,107:5877.
    [18]Payne M M, Parkin S R, Anthony J E, Kuo C-C, Jackson T N. Organic Field-Effect Transistors from Solution-Deposited Functionalized Acenes with Mobilities as High as 1 cm2/V·s [J]. J. Am. Chem. Soc,2005,127:4986-4987.
    [19]Ando S, Murakami R, Nishida J-I, Tada H, Inoue Y, Tokito S, Yamashita Y. n-Type Organic Field-Effect Transistors with Very High Electron Mobility Based on Thiazole Oligomers with Trifluoromethylphenyl Groups [J]. J. Am. Chem. Soc,2005,127:14996-14997.
    [20]Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W. Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors [J]. Adv. Mater.,2003,15: 917-922.
    [21]Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson M E, Rogers J A. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals [J]. Science,2004,303:1644-1646.
    [22]Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E. Intrinsic Charge Transport on the Surface of Organic Semiconductors [J]. Phys. Rev. Lett.,2004,93:086602.
    [23]Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W. High-mobility polymer gate dielectric pentacene thin film transistors [J]. J. Appl. Phys.,2002,92:5259.
    [24]Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J, Smith T P. High-Performance OTFTs Using Surface-Modified Alumina Dielectrics [J]. J. Phys. Chem. B,2003,107:5877-5881.
    [25]Meng H, Bao Z, Lovinger A J, Wang B-C, Mujsce A M. High Field-Effect Mobility Oligofluorene Derivatives with High Environmental Stability [J]. J. Am. Chem. Soc.2001,123:9214-9215.
    [26]Wu Y, Li Y, Gardner S, Ong B S. Indolo[3,2-b]carbazole-Based Thin-Film Transistors with High Mobility and Stability [J]. J. Am. Chem. Soc,2005,127: 614-618.
    [27]Li Y, Wu Y, Gardner S, Ong B S. Novel Peripherally Substituted Indolo [3,2-b] carbazoles for High-Mobility OrganicThin-Film Transistors [J]. Adv. Mater., 2005.17:849-853.
    [28]Merlo J A, Newman C R, Gerlach C P, Kelley T W, Muyres D V, Fritz S E, Toney M F, Frisbie C D. p-Channel Organic Semiconductors Based on Hybrid Acene-Thiophene Molecules for Thin-Film Transistor Applications [J]. J. Am. Chem. Soc,2005,127:3997-4009.
    [29]Meng H, Sun F P, Goldfinger M B, Jaycox G D, Li Z, Marshall W J, Blackman G S. High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5'-alkylthiophen-2'-yl-2,6-anthracene Semiconductors [J]. J. Am. Chem. Soc,2005,127:2406-2407.
    [30]Takimiya K, Ebata H, Sakamoto K, Izawa T, Otsubo T, Kunugi Y.2,7-Diphenyl [1]benzothieno[3.2-b]benzothiophene, A New Organic Semiconductor for Air-Stable Organic Field-Effect Transistors with Mobilities up to 2.0 cm2 V-1 s-1 [J]. J. Am. Chem. Soc.,2006,128:12604-12605.
    [31]Takimiya K, Kunugi Y, Konda Y, Ebata H, Toyoshima Y, Otsubo T.2.7-Diphenyl[1]benzoselenopheno [3,2-6][1] benzo-selenophene as a Stable Organic Semiconductor for a High-Performance Field-Effect Transistor [J]. J. Am. Chem. Soc.,2006,128:3044-3050.
    [32]Ebata H, Miyazaki E, Yamamoto T, Takimiya D. Synthesis, Properties, and Structures of Benzo[1,2-b:4,5-b']bis[b]benzothiophene and Benzo[1,2-b:4,5-b'] bis[b]benzoselenophene [J]. Org. Lett.,2007,9:4499-4502.
    [33]Ebata H, Izawa T, Miyazaki E, Takimiya D, Ikeda M, Kuwabara H, Yui T. Highly Soluble [1]Benzothieno[3,2-b] benzothiophene (BTBT) Derivatives for High-Performance, Solution-Processed Organic Field-Effect Transistors [J]. J. Am. Chem. Soc.,2007,129:15732-15733.
    [34]Cornil J, Beljonne D, Calbert J-P, Bre'das J-L. Interchain Interactions in Organic π-Conjugated Materials:Impact on Electronic Structure, Optical Response, and Charge Transport [J]. Adv. Mater.,2001,13:1053-1066.
    [35]Bredas J-L, Calbert J P, da Silva Filho D A, Cornil J. Organic semiconductors:A theoretical characterization of the basic parameters governing charge transport [J]. J. Proc. Natl. Acad. Sci. U.S.A.,2002,99:5804-5809.
    [36]Bre'das J-L, Beljonne D, Coropceanu V, Jerome C. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:A Molecular Picture [J]. Chem. Rev.,2004,104:4971-5003.
    [37]Newman C R, Frisbie C D, da Silva Filho D A, Bre'das J-L, Ewbank P C, Mann K R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors [J]. Chem. Mater.,2004,16:4436-4451.
    [38]Kunugi Y, Takimiya K,Yamane K, Yamashita K, Aso Y, Otsubo T. Organic Field-Effect Transistor Using Oligoselenophene as an Active Layer [J]. Chem. Mater.,2003,15:6-7.
    [39]Yamamoto T, Takimiya K. Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2',3'-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors [J]. J. Am. Chem. Soc.,2007,129:2224- 2225.
    [40]Takimiya K, Yamamoto T, Ebataand H, Izawa T. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors [J]. Science and Technology of Advanced Materials,2007,8:273-276.
    [41]Um M-C, Kwak J, Hong J-P, Kang J, Yoon D Y, Lee S H. High-performance organic semiconductors for thin-film transistors based on 2,7-divinyl[1] benzothieno [3,2-b]benzothiophene [J]. J. Mater. Chem.,2008,18:4698-4703.
    [42]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 [CP]. Revision A 1, Gaussian Inc., Pittsburgh,2003.
    [43]Becke A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [44]Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37: 785-789.
    [45]Yang X D, Wang L J. Wang C L, Long W, Shuai Z G. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors:Oligothiophenes [J]. Chem. Mater.,2008,20:3205-3211.
    [46]Wang C L, Wang F H, Yang X D, Li Q K, Shuai Z G. Theoretical comparative studies of charge mobilities for molecular materials:Pet versus bnpery [J]. Organic Electrons,2008,9:635-640.
    [47]Gao H Z, Qin C S, Zhang H Y, Wu S X, Su Z M, Wang Y. Theoretical Characterization of a Typical Hole/Exciton-Blocking Material Bathocuproine and Its Analogues [J]. J. Phys. Chem. A.2008,112:9097-9103.
    [48]LIAOYi(廖奕),SU Zhong-Min(苏忠民),CHEN Ya-Guang(陈亚光),KAN Yu-He(阚玉和),DUAN Hong-Xia(段红霞),QIU Yong-Qing(仇永清),WANG Rong-Shun(王荣顺).TD-DFT Study on Electronic Spectrum Property for Bis(8-hydroxyquinoline) Beryllium and Its Derivatives,8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J]. Chem. J. Chinese Universities(高等学校化学学报),2003,24(3):477-480.
    [1]Katz H E, Bao Z, Gilat S L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors [J]. Acc. Chem. Res.,2001, 34:359-369.
    [2]Dimitrakopoulos C D, Malenfant P R L. Organic Thin Film Transistors for Large Area Electronics [J]. Adv. Mater.,2002,14:99-117.
    [3]Sun Y M, Liu Y Q, Zhu D B. Advances in organic field-effect transistors [J]. J. Mater. Chem.,2005,15:53-65.
    [4]Organic Electronics, Materials, Manufacturing and Applications [M]. Klauk H., Ed., Wiley-VCH Verlag GmbH and Co., Weinheim:KGaA,2006.
    [5]Anthony J E. Functionalized Acenes and Heteroacenes for Organic Electronics [J]. Chem. Rev.,2006,106:5028-5048.
    [6]Takimiya K, Kumugi Y, Otsubo T. Development of New Semiconducting Materials for Durable High-performance Air-stable Organic Field-effect Transistors [J]. Chem. Lett.,2007,36:578-583.
    [7]Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W. High-mobility polymer gate dielectric pentacene thin film transistors [J]. J. Appl. Phys.,2002,92:5259-5263.
    [8]Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J,Smith T P. High-Performance OTFTs Using Surface-Modified Alumina Dielectrics [J]. J. Phys. Chem. B,2003,107:5877.
    [9]Sundar V C, Zaumseil J, Podzorov V, Vitaly M, Etienne W, Willett R L, Someya T, Gershenson M E, Rogers J A. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals [J]. Science,2004,303:1644-1646.
    [10]Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E. Intrinsic Charge Transport on the Surface of Organic Semiconductors [J]. Phys. Rev. Lett.,2004,93:086602.
    [11]Yamada K, Okamoto T, Kudoh K, Wakamiya A, Yamaguchi S, Takeya J. Single-rystal field-effect transistors of benzoannulated fused oligothiophenes and oligoselenophenes [J]. J. Appl. Phys. Lett.,2007,90:072102.
    [12]Takimiya K, Kunugi Y, Konda Y, Niihara N, Otsubo T.2,6-Diphenyl benzo [1,2-b:4,5-b']dichalcogenophenes:A New Class of High-Performance Semi-conductors for Organic Field-Effect Transistors [J]. J. Am. Chem. Soc,2004, 126:5084-5085.
    [13]Takimiya K, Kunugi Y, Konda Y, Ebata H, Toyoshima Y, Otsubo T.2,7-Diphenyl[1]benzoselenopheno[3,2-b][1] benzoseleno phene as a Stable Organic Semiconductor for a High-Performance Field-Effect Transistor [J]. J. Am. Chem. Soc.2006,128:3044-3050.
    [14]Takimiya K, Ebata H, Sakamoto K, Izawa T, Otsubo T, Kunugi Y.2,7-Diphenyl [1]benzothieno[3,2-b]benzothiophene, A New Organic Semiconductor for Air-Stable Organic Field-Effect Transistors with Mobilities up to 2.0 cm2 V-1 s-1 [J]. J. Am. Chem. Soc,2006,128:12604-12605.
    [15]Yamamoto T, Takimiya K. Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2',3'-f]chalcogenopheno [3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors [J]. J. Am. Chem. Soc.,2007,129:2224-2225.
    [16]Wu Y, Li Y, Gardner S, Ong B. S. Indolo[3,2-b] carbazole-Based Thin-Film Transistors with High Mobility and Stability [J]. J. Am. Chem. Soc.,2005,127: 614-618.
    [17]Boudreault P L T, Wakim S, Blouin N, Simard M, Tessier C, Tao Y, Leclerc M. Synthesis, Characterization, and Application of Indolo[3,2-b]carbazole Semiconductors [J]. J. Am. Chem. Soc.,2007,129:9125-9136.
    [18]Sheraw C D, Jackson T N, Eaton D L, Anthony J E. Functionalized Pentacene Active Layer Organic Thin-Film Transistors [J]. Adv. Mater.,2003,15:2009-2011.
    [19]Payne M M, Parkin S R, Anthony J E, Kuo C C, Jackson T N. Organic Field-Effect Transistors from Solution-Deposited Functionalized Acenes with Mobilities as High as 1 cm2/V·s [J]. J. Am. Chem. Soc.,2005,127:4986-4987.
    [20]Li Y N, Wu Y L, Liu P, Prostran Z, Gardner S, Ong B S. Stable Solution-Processed High-Mobility Substituted Pentacene Semiconductors [J]. Chem. Mater.,2007,19:418-423.
    [21]van Breemen A J J M, Herwig P T, Chlon C H T, Sweelssen J, Schoo H F M, Setayesh S, Hardeman W M, Martin C A, de Leeuw D M, Valeton J J P, Bastiaansen C W M, Broer D J, Popa-Merticaru A R, Meskers S C J. Large Area Liquid Crystal Monodomain Field-Effect Transistors [J]. J. Am. Chem. Soc, 2006,128:2336-2345.
    [22]Meng H, Sun F, Goldfinger M B, Jaycox G D, Li A, Marshall W J, Blackman G. S. High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5'-alkylthiophen-2'-yl-2,6-anthracene Semiconductors [J]. J. Am. Chem. Soc,2005,127:2406-2407.
    [23]Drolet N, Morin J F, Leclerc N, Wakim S, Tao Y, Leclerc M.2,7-Carbazol enevinylene-Based Oligomer Thin-Film Transistors:High Mobility Through Structural Ordering [J]. Adv. Funct. Mater.,2005,15:1671-1682.
    [24]Yoon M H, DiBenedetto S A, Facchetti A, Marks T J. Organic Thin-Film Transistors Based on Carbonyl-Functionalized Quaterthiophenes:High Mobility N-Channel Semiconductors and Ambipolar Transport [J]. J. Am. Chem. Soc, 2005,127:1348-1349.
    [25]Ando S, Nishida J, Tada H, Inoue Y, Tokito S, Yamashita Y. High Performance n-Type Organic Field-Effect Transistors Based on π-Electronic Systems with Trifluoromethylphenyl Groups [J]. J. Am. Chem. Soc,2005,127:5336-5337.
    [26]Ando S, Murakami R, Nishida J, Tada H, Inoue Y, Tokito S, Yamashita Y Y. "n-Type Organic Field-Effect Transistors with Very High Electron Mobility Based on Thiazole Oligomers with Trifluoromethylphenyl Groups [J]. J. Am. Chem. Soc.,2005,127:14996-14997.
    [27]Bredas J L, Beljonne D, Coropceanu V, Cornil J. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:A Molecular Picture [J]. Chem. Rev.,2004,104:4971-5004.
    [28]Moon H, Zeis R, Borkent E, Besnard C, Lovinger A. J, Siegrist T, Kloc C, Bao Z. N. Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives [J]. J. Am. Chem. Soc.,2004,126:15322-15323.
    [29]Miao Q, Chi X L, Xiao S, Zeis R, Lefenfeld M, Siegrist T, Steigerwald M L, Nuckolls C. Organization of Acenes with a Cruciform Assembly Motif [J]. J. Am. Chem. Soc.,2006,128:1340-1345.
    [30]Jenekhe S A, Osaheni J A. Excimers and Exciplexes of Conjugated Polymers [J]. Science,1994,265:765-768.
    [31]Jakubiak R, Collison C J, Wan W C. Rothberg L J, Hsieh B. R. Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers [J]. J. Phys. Chem. A,1999,103:2394-2398.
    [32]Chen S H, Su A C, Han S R, Chen S A, Lee Y Z. Molecular Aggregation and Luminescence Properties of Bulk Poly(2,5-di-n-octyloxy-1,4-phenylene-vinylene) [J]. Macromolecules,2004,37:181-186.
    [33]Kawaguchi K, Nakano K, Nozaki K. Synthesis, Structures, and Properties of Unsymmetrical Heteroacenes Containing Both Pyrrole and Furan Rings [J]. Org. Lett.,2008,10:1199-1202.
    [34]Frisch M J, Trucks G W, Schlegel H B. et al. Gaussian 03[CP], Revision A 1. Gaussian Inc., Pittsburgh,2003.
    [35]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [36]Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37:785-789.
    [37]Yang X D, Wang L J, Wang C L, Long W, Shuai Z G. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors:Oligothiophenes [J]. Chem. Mater.,2008,20:3205-3211.
    [38]Wang C L, Wang F H, Yang X D, Li Q K, Shuai Z G. Theoretical comparative studies of charge mobilities for molecular materials:Pet versus bnpery [J]. Organic Electrons,2008,9:635-640.
    [39]Gao H Z, Qin C S, Zhang H Y, Wu S X, Su Z M, Wang Y. Theoretical Characterization of a Typical Hole/Exciton-Blocking Material Bathocuproine and Its Analogues [J]. J. Phys. Chem. A,2008,112:9097-9103.
    [40]LIAO Yi(廖奕),SU Zhong-Min(苏忠民),CHEN Ya-Guang(陈亚光),KAN Yu-He(阚玉和),DUAN Hong-Xia(段红霞),QIU Yong-Qing(仇永清),WANG Rong-Shun(王荣顺).TD-DFT Study on Electronic Spectrum Property for Bis(8-hydroxyquinoline) Beryllium and Its Derivatives,8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J]. Chem. J. Chinese Universities(高等学校化学学报),2003,24(3):477-480.
    [41]Kawaguchi K, Nakano K, Nozaki K. Synthesis of Ladder-Type π-Conjugated Heteroacenes via Palladium-Catalyzed Double N-Arylation and Intramolecular O-Arylation [J]. J. Org. Chem.2007,72:5119.
    [42]Miao Q, Lefenfeld M, Nguyen T Q, Siegrist T, Kloc C, NuckollsC. Adv. Mater. 2005,17:407.
    [43]Jenekhe S A, Osaheni J A. Excimers and Exciplexes of Conjugated Polymers [J]. Science,1994,265:765-768.
    [44]Jakubiak R, Collison C J, Wan W C, Rothberg L J, Hsieh B R. Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers [J]. J. Phys. Chem. A,1999,103:2394-2398.
    [45]Chen S H, Su A C, Han S R, Chen S A, Lee Y Z. Molecular Aggregation and Luminescence Properties of Bulk Poly(2,5-di-n-octyloxy-1,4-phenylene-vinylene) [J]. Macromolecules,2004,37:181-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700