用户名: 密码: 验证码:
鼓泡塔反应器气液两相流数值模拟模型及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼓泡塔反应器因结构简单、传质传热效率高等优点而大量应用于石油化工、能源、环境、生物工程等领域。深入研究该类反应器的流体力学行为,可以为优化反应器操作、设计高效的反应器结构以及拓展鼓泡塔的应用范围提供依据。鼓泡塔液相流动由气相驱动,两相之间作用强烈,因而流体力学行为非常复杂;又因大量气泡的存在使得实验研究非常困难。近年来,随着计算流体力学的发展和相关的物理模型不断完善,数值模拟已逐渐成为鼓泡塔研究的重要手段。本文以鼓泡塔PX氧化反应器放大设计为背景,开展鼓泡塔反应器的数值模拟研究,以指导反应器设计。
     双流体模型因假定离散气泡相为拟流体,气相与液相互相渗透,因此计算量较小,工业应用潜力大。针对当前鼓泡塔模拟中模型问题以及存在的不足,本文采用双流体模型开展了以下的工作。
     对气液两流模拟中的各物理模型进行了详细的数值模拟实验,定量考察了它们的作用。结果发现,湍流模型和升力是模拟鼓泡流摆动周期的关键,而虚拟质量力的作用不大。对于单孔局部通气鼓泡塔,只有考虑升力或湍流扩散力才能合理模拟气相分散;而对于底部均匀进气鼓泡塔,不考虑升力或湍流扩散力也能获得与实验比较接近的模拟结果。
     为预测气泡直径,对考虑气泡聚并与破碎的单方程气泡界面浓度模型进行了研究,并编写了该模型的相关计算程序,最后耦合该模型与CFD双流体模型对鼓泡塔进行模拟。计算结果表明:整体气含率、局部气含率、局部气/液相速度和液相湍流动能的模拟结果与实验数据吻合较好,但气/液相雷诺应力模拟结果与实验值相差较大。
     为模拟气泡尺寸分布,对气泡群平衡模型(BPBM模型)进行了系统研究。建立了完整的SBPBM模型数值实现算法,编写相关计算程序。并通过综合考虑气泡自由运动空间以及气泡的有效湍动运动距离对气泡碰撞效率的影响,对Prince聚并模型进行修正。在SBPBM-CFD耦合模型框架上,采用标准Luo&Svendsen与标准Prince模型组合以及标准Luo&Svendsen与修正Prince模型组合分别对同一鼓泡塔进行了数值模拟。结果表明,标准模型预测的气泡直径随表观气速先增大后减少;而修正模型预测的气泡直径基本上随表观气速增大而增大。
     在SBPBM模型的基础上,本文首次提出并建立了双气泡相-群平衡模型(TBPBM),编制了该模型的数值算法和计算程序。并耦合TBPBM模型与CFD双流体模型对鼓泡塔进行了数值模拟。发现TBPBM模型明显改善了平均气泡尺寸模型和SBPBM模型的模拟结果,且TBPBM模型模拟的气泡尺寸大于SBPBM模型。文中还详细考察了边界条件、网格、数值格式对BPBM模型模拟结果的影响,结果表明它们对模拟结果的影响非常严重,特别是体积分数方程的离散格式和网格的影响更是显著,并由此提出了一种较优的网格划分方案。
     应用CFD模拟较系统的研究了带短导流筒内构件的鼓泡塔和多种气体分布器。结果发现,在鼓泡塔底部安装短导流筒,能在不降低气含率情况下,显著提高液相循环速度以及瞬时液相速度,将改善普通鼓泡塔的固相悬浮性能。气体分布器的模拟结果表明分布器形式和管式分布器的通气管位置严重影响了鼓泡塔的流体力学、混合以及气泡尺寸分布;文中通过CFD数值模拟,对四管分布器通气管安装位置提出了优化,并且CFD优化结果与实验结论吻合较好,说明可以通过CFD模拟对鼓泡塔反应器进行优化设计。
     基于气泡破碎时湍流涡最小能量密度约束条件对Luo&Svendsen破碎模型了进行修正。然后,采用SBPBM-CFD双流体耦合模型以及修正的Luo&Svendsen模型和Prince聚并模型对鼓泡塔的放大效应进行了三维数值模拟研究。模拟结果表明:塔径对整体气含率的影响可以忽略,但气含率径向分布随塔径的增大逐渐均匀;鼓泡塔中心液速是塔径的1/3次方的函数;塔径对平均气泡尺寸及其分布有一定的影响,但不显著。塔径对流型有显著影响,小直径鼓泡塔内(D=440mm)液相沿鼓泡塔中心扭曲上升;而在大塔内,液相贴壁面垂直上升,形成大尺度的整体循环。
Bubble column reactors are widely employed in petrochemical, energy, environmental and bio-engineering processes because of their features of being geometrically simple and superior gas-liquid interfacial mass and heat transfer. A fundamental investigation and understanding of fluid dynamics in bubble column reactors would be very beneficial to the optimization of operation, design of high efficiency reactor structure and extension of their applications. As the main flow inside bubble column is driven by rising bubbles, hydrodynamics involved exhibits complicated status due to the interaction and strong coupling between liquid and gas phases. In addition, the presence of a large amount of bubbles or bubble clusters causes bubble reactors to be opaque. These factors make it extremely difficult to experimentally study the details of flow patterns in bubble columns. Recent progress on CFD modeling and the knowledge of bubble dynamics has made this possible, i.e. the use of numerical simulation as an important tool to investigate multiphase flow behavior in bubble column reactors. This dissertation attempts to use numerical modeling approach to study the fluid dynamics in bubble columns, in particular seeking for scale-up modelling of PX oxidation reactors.
     This project has employed two-fluid model in all of the simulations due to its lower requirement for computational resource and potential for industrial applications. The model regards the dispersed bubble phase as a pseudo-fluid and postulates the gas and liquid phases to be permeable.
     In view of the existing difficulties and problems encountered in CFD modelling of flows in bubble columns, this dissertation has firstly conducted detailed numerical modelling experiments to quantitatively study the effects of different physical models currently employed in CFD modelling, in particular the interfacial force models and turbulence models in the simulations of gas-liquid flows. The examples to refelect these effects have been demonstrated in Chapter 3. The modelling results have clearly indicated that the turbulence model and lift force are the key factors influencing predictions of dynamic fluctuation behavior of bubble plume in bubble columns. The influence of added-mass force can be negligible. For a bubble column equiped with a single-pipe sparging gas distributor at the centre of the bottom of the bubble column, the simulation shows that it is necessary to include both the lift force and turbulent dispersion force in the modeling in order to obtain the reasonable gas phase distributions. While for a bubble column with an uniform gas sparger, reasonable simulation results can be still obtained when excluding the lift force and turbulent dispersion force in the two-fluid model.
     A single scalar transport equation which describes bubble size changes characterised by bubble interfacial areas was incorporated into the simulations through UDF subroutines. The effect of bubble coalescence and break-up was taken into consideration in the adopted models. The predicted time-averaged axial liquid velocities, gas hold-up and gas phase interfacial areas were compared with the available experimental results. It was revealed from the simulation that the predicted overall gas holdup, local gas holdup, local phase velocities and liquid phase turbulence kinetic energy are in good agreement with the experimental data while the Reynolds stresses for both gas and phases are poorly estimated, very likely due to the lost of the details of instantaneous flow in time-averaging process for deriving the k~εturbulent model.
     The bubble population balance model (BPBM or referred to as SBPBM in Chapter 6 of the dissertation) was systemically studied in Chapter 5 in order to properly predict the bubble size distribution in bubble columns. A numerical method to realise single-bubble-phase population balance model (SBPBM) was proposed and a corresponding code for execution of such method was programmed. Modification to "Prince bubble coalescence model" was introduced to account for the effect of the free-moving space among bubbles and effective bubble migration due to turbulence on the efficiency of bubble collision. In simulations, cases of both the use of Luo & Svendsen's model together with Prince's model and adoption of the modified Prince model were tested for prediction of hydrodynamics in a bubble column. The simulations show that the use of the original "Prince model" predicts that the mean bubble size increases initially but decreases with the increase of superficial velocity. However, adoption of the modified Prince's model forecasts that the mean bubble size increases with the increase of superficial velocity, consistent with the experimental observations reported in the literature.
     Based on the applications of the SBPBM model and perception of its limitations, an improved model to describe bubble size distribution-two-bubble-phase population balance model (TBPBM) was proposed in Chapter 6. The corresponding numerical method for exectution of such model was also developed and incorporated into the self-coding of UDF subroutines in a similar way to the work done based on the SBPBM model. The TBPBM model coupled with two-fluid model was used to simulate the flow inside a bubble column. The simulation has clearly demonstrated that the adoption of the TBPBM model significantly improves the predictions in comparison to the use of the mean bubble size model and SBPBM model. The mean bubble size predicted by using the TBPBM model is apparently larger than that by using the SBPBM model, consistent with the practical observations. Detailed examinations have been also performed in Chapter 6 to look into the influence of the boundary conditions, mesh size and numerical schemes adopted in the modelling on the simulations using the BPBM model. The obtained results indicate that the mesh size and numerical schemes employed in the simulations have a significant impact on gas holdup prediction since the volume fraction transport equation is susceptible to mesh size and the numerical schemes. As a result, a better meshing method was proposed.
     Based on the investigations in the preceding chapters, CFD modelling approach was employed to systemically assess the influence of adoption of a short size draft tube and configurations of gas distributors on fluid dynamic in bubble columns. Simulation results demonstrate that allocation of a short draft tube which is fixed in the lower part of the bubble column can remarkably increase the liquid circulation velocity and instantaneous velocity without reduction of the overall gas holdup, clearly being beneficial to suspension of solid particles in the bubble column. CFD simulation also shows that the configurations of gas distributor and the allocation of gas sparging pipes have a vital impact on flow patterns, mixing time and bubble sizes in the bubble column. An optimal allocation for four sparging pipe gas distributor in the bubble column is obtained by CFD modelling, which agrees well with the experimental observation.
     Finally, a modification to "Luo & Svendsen's bubble breakup model" was proposed to account for the constraint of eddy energy density limiting the the minmum fragmentation fration of a bubble, i.e. the energy density of an eddy (ρ1uγ2/2) should be larger than the capalliary force (σ/dmin) of the smaller fragmental daughter bubble. On this basis, three-dimensional numerical simulations of four different diameters of bubble columns were conducted to investigate the scale-up effect using the SBPBM model and the modified "Luo & Svendsen's bubble breakup model" together with "Prince coalescence model". The simulations show that the effect of the bubble column diameter on the overall gas holdup may be negligible, but the radial profiles of time-averaged local gas holdup become flatter when bubble column diameter increases. Furthermore, the predicted time-averaged axial liquid velocity in bubble column center was found to be proportional to the cubic root of the bubble column diameter. The simulations reveal that the diameter of a bubble column also affects the bubble size and bubble distributions but the effect is not notale as expected. However, significant differences of flow patterns in different bubble columns are predicted, indicating that the induced liquid flows up in the bubble column center with a meandering way for small diameter bubble column reactors, and a large circulation loop with induced liquid flowing up along the bubble column wall for larger bubble columns.
引文
[1]Deckwer W D. Bubble Column Reactors. New York:John Wiley & Sons Inc.,1992.
    [2]Luo H. Coalescence, breakup and liquid circulation in bubble column reactors. Norges Tekniske Hogskole:Universitetet I Trondheim,1993.
    [3]Mudde R F. Gravity-Driven bubbly flows. Annu. Rev. Fluid Mech.2005,37:393-423
    [4]Jakobsen H A, Sannaes B H, Grevskott S, Svendsen H. Modeling of vertical bubble-driven flows. Ind.Eng.Chem.Res.1997,36:4052-4074
    [5]Jakobsen H A, Lindborg H, Dorao C A. Modeling of bubble column Reactors:Progress and limitations. Ind.Eng.Chem.Res.2005,44:5107-5151
    [6]Delnoij E, Westerweel J, Deen N G, Kuipers J A M, van Swaaij W P M. Ensemble correlation PIV applied to bubble plumes rising in a bubble column. Chemical Engineering Science.1999,54(21):5159-5171
    [7]Lee D J, McLain B K, Cui Z, Fan L S. Pressure Effect on the Flow Fields and the Reynolds Stresses in a Bubble Column. Ind. Eng. Chem. Res.2001,40(5):1442-1447
    [8]Vijayan M, Schlaberg H I, Wang M. Effects of sparger geometry on the mechanism of flow pattern transition in a bubble column.2007,130:171-178
    [9]Warsito W, Fan L S. Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography (ECT) Chem.Eng.Sci. 2001,56(21-22):6455-6462
    [10]Shollenberger K A, Torczynski J R, Adkins D R, O'Hern T J, Jackson N B. Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns. Chemical Engineering Science.1997,52(13):2037-2048
    [11]Shaikh A,Al-Dahhan M H. Characterization of the hydrodynamic flow regime in bubble columns via computed tomography. Flow Measurement and Instrumentation.2005,16:91-98
    [12]Hubersa J L, Striegelb A C, Heindela T J, Grayb J N, Jensen T C. X-ray computed tomography in large bubble columns. Chemical Engineering Science.2005,60:6124-6133
    [13]Devanathan N, Moslemian D, Dudukovic M P. Flow mapping in bubble columns using CARPT. Chemical Engineering Science.1990,45(8):2285-2291
    [14]Vandu C O, Krishna R. Gas holdup and Volumetric mass transfer coefficient in slurry bubble column. Chemical Engineering and Techonology.2003:779-782
    [15]Vandu C O, Krishna R. Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime. Chemical Engineering and Processing.2004, 43(8):987-995
    [16]Vandu C O, Koop K, Krishna R. Volumetric mass transfer coefficient in a slurry bubble column operating in the heterogeneous flow regime. Chemical Engineering Science.2004, 59(22-23):5417-5423
    [17]Han L, Al-Dahhan M H. Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs, chemical Engineering and science.2007,62:131-139
    [18]Kumar S B, Moslemian D, Dudukovic M P. Gas-Holdup Measurements in Bubble Columns Using Computed Tomography. AIchE J.1997,43(6):1414-1425
    [19]Luo X, Lee D J, Lau R, Yang G, Fan L S. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE J.1999,45:665-680
    [20]Daly J G, Patel J G, Bukur D B. Measurement of gas holdups and sauter mean bubble diameters in bubble column reactors by dynamic gas disengagement method. Chem. Eng. Sci. 1992,47:3647-3654
    [21]Forret A, Schweitzer J M, Gauthier T, Krishna R, Schweich D. Influence of scale on the hydrodynamics of bubble column reactors:an experimental study in columns of 0.1,0.4 and 1 m diameters. Chemical Engineering Science.2003,58(3-6):719-724
    [22]Vandu C O, Krishna R. Influence of scale on the volumetric mass transfer coefficients in bubble columns. Chemical Engineering and Processing.2004,43(4):575-579
    [23]Thorat B N, Shevade A V, Bhilegaonkar K N, Aglawe R H, Veera U P, Thakre S S, Pandit A B, Sawant S B, Joshi J B. Effect of Sparger Design and Height to Diameter Ratio on Fractional Gas Hold-up in Bubble Columns. Chemical Engineering Research and Design. 1998,76(7):823-834
    [24]Patel A K, Thorat B N. Gamma ray tomography-An experimental analysis of fractional gas hold-up in bubble columns. Chemical Engineering Journal.2008,137:376-385
    [25]Raymond L, Mo R J, Beverly S W S. Bubble characteristics in shallow bubble column reactors. Chemical Engineering Research and Design.2010,88:197-203
    [26]Haque M W, Nigam K D P, Joshi J B. Optimum gas sparger design for bubble columns with a low height to diameter ratio. The chemical engineering journal.1986,33:63-69
    [27]Abraham M, Sawant S B. Effect of sparger design on the hydrodynamics and mass transfer characteristics of a bubble column. Indian. Chem. Eng.1989,31(4):31-38
    [28]Ravinath M, Gopal R K, Pandit A B. Mixing Time in a Short Bubble Column. The Canadian Journal of Chemical Engineering.2003,81:185-195
    [29]Letzel H M, Schouten J C, Krishna R, Van den Bleek C M. Gas holdup and mass transfer in bubble column reactors operated at elevated pressure. Chemical Engineering Science.1999,54(13-14):2237-2246
    [30]Veera U P, Joshi J B. Measurement of Gas Hold-up Profiles in Bubble Column by Gamma Ray Tomography:Effect of Liquid Phase Properties. Chemical Engineering Research and Design.2000,78(3):425-434
    [31]Vandu C O, Berg B V D, Krishna R. Gas-liquid mass transfer in a slurry bubble column with high slurry concentrations and high gas velocities. Chemical Engineering and Techonology.2005,28(9):998-1002
    [32]Lorenz O, Schumpe A, Ekambara K, Joshi J B. Liquid phase axial mixing in bubble columns operated at high pressures. Chemical Engineering Science.2005,60(13):3573-3586
    [33]Hills J H. Radial non-uniformity of velocity and voidage in a bubble column. TransIChemE.1974,52:1-9
    [34]Chen W, Hasegawaa T, Tsutsumia A, Otawara K. Scale-up effects on the time-averaged and dynamic behavior in bubble column reactors, chemical Engineering and science.2001,56: 6149-6155
    [35]Veera U P, Joshi J B. Measurement of Gas Hold-Up Profiles by Gamma Ray Tomography:Effect of Sparger Design and Height of Dispersion in Bubble Columns. Chemical Engineering Research and Design.1999,77(4):303-317
    [36]Chen J W, Gupta P, Degaleesan S, Al-Dahhan M H, Dudukovic M P,Toseland B A. Gas holdup distributions in large-diameter bubble columns measured by computed tomography. Flow Measurement and Instrumentation.1998,9(2):91-101
    [37]Kemoun A, Ong B C, Gupta P, Al-Dahhan M H, Dudukovic M P. Gas holdup in bubble columns at elevated pressure via computed tomography. International Journal of Multiphase Flow.2001,27(5):929-946
    [38]Miyauchi T, Shyu C N. Flow of fluid in gas bubble columns. Kagaku Kogaku.1970,34: 958-964
    [39]Nottenkamper R. Zur hydrodynamik in blasensRaulenreaktoren. Universitat Dortmund, 1983.
    [40]Zehner P. Momentum, mass and heat transfer in bubble columns, Part 1:Flow model of the bubble column and liquid velocities. International Chemical Engineering. 1986,41:1969-1977
    [41]Riquarts H P. A physical model for axial mixing of the liquid phase for heterogeneous flow regime in bubble column. German chemical engineering.1981,4:18-23
    [42]Krishna R, Urseanu M I, van Baten J M, Ellenberger J. Liquid phase dispersion in bubble columns operating in the churn-turbulent flow regime. Chemical Engineering Journal. 2000,78(1):43-51
    [43]Vial C H, Laine R, Poncin S, Midoux N, Wild G. Influence of gas distribution and regime transitions on liquid velocity and turbulence in a 3-D bubble column. Chemical Engineering Science.2001,56:1085-1093
    [44]Akita K, Yoshida F. Bubble size, interfacial area and liquid-phase mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Dev.1974,12:76-80
    [45]Fukuma M, Muroyama K, Morooka S. Properties of bubble swarm in a slurry bubble column. J.Chem.Eng.Jpn.1987,20:28-33
    [46]Saxena S C, Rao N S, Saxena A C. Heat-transfer and gas-holdup studies in a bubble column:air-water-glass bead system. Chem. Eng. Commun.1990,96:31-55
    [47]Li H, Prakash A I. Influence of slurry concentrations on bubble population and their rise velocities in three-phase slurry bubble column. Powder Technology.2000,113:158-167
    [48]Koide K, Morooka S, Ueyama K, Matsuura A. Behavior of bubbles in large scale bubble column. J. Chem. Eng. Japan.1979,12:98-104
    [49]Schafer R, Merten C, Eigenberger G. Bubble size distributions in a bubble column reactor under industrial conditions. Experimental Thermal and Fluid Science.2002,26: 595-604
    [50]Vandu C O, Koop K, Krishna R. Large bubble sizes and rise velocities in a bubble column slurry reactor. Chemical Engineering and Techonology.2004,27(11):1195-1199
    [51]Krishna R, Urseanu M I, van Baten J M, Ellenberger J. Rise velocity of a swarm of large gas bubbles in liquids. Chemical Engineering Science.1999,54(2):171-183
    [52]Ruzicka M C, Drahos J, Fialova M, Thomas N H. Effect of bubble column dimensions on flow regime transition. Chemical Engineering Science.2001,56(21-22):6117-6124
    [53]Thorat B N, Joshi J B. Regime transition in bubble columns:experimental and predictions. Experimental Thermal and Fluid Science.2004,28(5):423-430
    [54]Yano T, Kuramoto K, Tsutsumi A, Otawara K, Shigaki Y. Scale-up effects in nonlinear dynamics of three-phase reactors. Chemical Engineering Science.1999,54:5259-5263
    [55]Harlow F H. PIC and Its Progeny. Computer physics communications.1987,48:1-10
    [56]Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The physics of fluids,1965,8:2182-2189
    [57]Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid calculation. J computational physics,1970,6:322-325
    [58]Hirt C W, Nichols B D. A computational method for free surface hydrodynamics. Trans ASME. Journal of Pressure Vessel Technology,1981,103(2):136-141
    [59]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J of computational Physics.1981,39:201-225
    [60]Sethian J A. Level set methods. Cambridge:Cambridge university press,1996.
    [61]Deen N G, van Sint Annaland M, Kuipers J A M. Multi-scale modeling of dispersed gas-liquid two-phase flow. Chemical Engineering Science.2004,59(8-9):1853-1861
    [62]Delnoij E, Lammers F A, Kuipers J A M, van Swaaij W P M. A Three-dimensional CFD model for gas-liquid bubble column. Chem. Eng. Sci.1999,54:2217-2226
    [63]Sommerfeld M, Lain S. Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective.International Journal of Heat and Fluid Flow.2003,24: 616-625
    [64]Sokolichin A, Lapin A, Lubbert A, Eigenberger G. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange. Chemical Engineering Science.1997,52(4):611-626
    [65]Buwa V V, Dhanannjay S D, Ranade V V. Eulerian-Lagrangian simulations of unsteady gas-liquid flows in bubble columns. International Journal of Multiphase Flow.2006,32: 864-885
    [66]Hu G S, Celik I. Eulerian Lagrangian based large eddy simulation of a partially aerated flat bubble column, chemical Engineering and science.2008,63:253-271
    [67]李静海,欧阳洁,高士秋.颗粒流体复杂系统的多尺度模拟.北京:科学出版社,2005.
    [68]Drew D A, Passman S L. Theory of multi-component fluids. Applied Mathematical Sciences.1999
    [69]Al-Dahhan M H, Mills P L, Gupta P, Han L, Dudukovic M P, Leib T M, Lerou J J. Liquid-phase tracer responses in a cold-flow counter-current trayed bubble column from conductivity probe measurements. Chemical Engineering and Processing.2006,45(11): 945-953
    [70]Joshi J B. Computational flow modelling and design of bubble column reactors. Chemical Engineering Science.2001,56(21-22):5893-5933
    [71]Zhou L X. Dynamics of Multiphase Turbulent Reacting Fluid Flows. BeiJing:National Defence Industry Press,2002.
    [72]Ilshi M, Zuber N. Drag coefficient and relative velocity in bubbly, Droplet or Particulate flows. AIchE J.1979,25:842-855
    [73]Rafique M,Chen P, Dudukovic M P. Computational modeling of gas-liquid flow in bubble columns. Reviews in Chemical engineering.2004,20:225-375
    [74]Thomas N H, Auton T R, Sene K, Hunt J C R. Entrapment and transport of bubbles by transient large eddies in multiphase turbulent shear flows. Phys. Model. Multiphase flow. 1983:169-184
    [75]Sanyal J, Vasquez S, Roy S, Dudukovic M P. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chemical Engineering Science.1999,54(21): 5071-5083
    [76]Chen P, Sanyal J, Dudukovic M P. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chemical Engineering Science.2005, 60(4):1085-1101
    [77]Chen P, Dudukovic M P, Sanyal J. Three-Dimensional Simulation of Bubble Column Flows with Bubble Coalescence and Breakup. AIchE.J.2005,51(3):696-712
    [78]Krishna R, van Baten J M, Urseanu M I. Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime:a scale up strategy. Chemical Engineering Science.2000,55(16):3275-3286
    [79]Van Baten J M, Krishna R. Comparison of hydrodynamics and mass transfer in airlift and bubble column reactors using CFD. Chem. Eng. Tech.2003,26(10):1074-1079
    [80]Krishna R, van Baten J M, Urseanu M I, Ellenberger J. A scale up strategy for bubble column slurry reactors. Catalysis Today.2001,66(2-4):199-207
    [81]Zhang D, Deen N G, Kuipers J A M. Numerical simulation of the dynamic flow behavior in a bubble column:A study of closures for turbulence and interface forces. Chemical Engineering Science.2006,61(23):7593-7608
    [82]Lahey R T J. The analysis of phase separation and phase distribution phenomena using two-fluid model. Adv. Nucl. Eng. Design.1990,122:17-40
    [83]Ervin E A, Tryggvason G. The rise of bubbles in a vertical shear flow. Journal of Fluids Engineering.1997,119:443-449
    [84]Tomiyama A, Sou A, Zun I, Kanami N, Sakaguchi T. Effect of Eotvos number and dimensionless liquid volumetric flux on lateral motion of a bubble in a laminar duct flow. In Proceedings of the Second International Conference on Multiphase Flow, Kyoto, Japan,1995.
    [85]Tomiyama A, Tamaia H, Zunb I, Hosokawaa S. Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci.2002,57:1849-1858
    [86]Auton T R, Hunt J C R, Prudhomme, M. The force exerted on a body in inviscid unsteady non-uniform rotational flow. Journal of Fluid Mechanics.1988:197-241
    [87]Cook T L, Harlow F H. Vortices in bubbly two phase flow. International Journal of Multiphase Flow.1986,12:35-61
    [88]Homsy G M, El-Kaissy M M, Didwania A K. Instability waves and the origin of bubbles in fluidized beds II. Comparison of theory with experiment. International Journal of Multiphase flow.1980,6:305-318
    [89]Tabib M V, Roy S A, Joshi J B. CFD simulation of bubble column-An analysis of interphase forces and turbulence models. Chemical Engineering Journal.2008,139(3): 589-614
    [90]Mudde R F, Simonin O. Two and three dimensional simulation of a bubble plume using a two fluid model. Chemical Engineering Science.1999,54:5061
    [91]Oey R S, Mudde R F, van den Akker H E A. Sensitivity study on interficial closure laws in two fluid bubbly flow simulations. AIchE.J.2003,49(7):1621-1636
    [92]Yang X, Thomas N H, Guo L J, Hou Y. Two-way coupled bubble laden mixing layer. Chem. Eng. Sci.2002,57:555-564
    [93]Lopez de Bertodano M A. Turbulent Bubbly Flow in a Triangular Duct. Troy New York: Rensselaer Polytechnic Institute,1991.
    [94]Frank Th Burns A D B, Hamill I, Shi J-M, Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows. In 5th International Conference on Multiphase Flow, Yokohama, Japan,2004.
    [95]Antal S P, Lahey R T, Flaherty J E. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow.1991,7:635-652
    [96]Krepper E, Vanga B N R, Zaruba A, Prasser H M, Lopez de Bertodano M A. Experimental and numerical studies of void fraction distribution in rectangular bubble columns. Nuclear Engineering and Design.2007,237(4):399-408
    [97]Kolmogorov A N. Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl.Akad.Nauk.SSSR.1941,30:9-13
    [98]Deen N G, Solberg T, Hjertager B H. Large eddy simulation of the Gas-Liquid flow in a square cross-sectioned bubble column. Chemical Engineering Science.2001,56(21-22): 6341-6349
    [99]Dhotre M T, Niceno B, Smith B L. Large eddy simulation of a bubble column using dynamic sub-grid scale model, chemical Engineering Journal.2008,136:337-348
    [100]Niceno B, Dhotre M T, Deen N G. One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow. Chemical Engineering Science.2008,63(15):3923-3931
    [101]Senoner J M, Sanjosea M, Lederlin T, Jaeglea F, Garcia M, Riber E, Gicquel L, Cuenot B, Pitsch H, Poinsot T. Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow. Combustion for aerospace propulsion.2009,337:458-468
    [102]Lopez de Bertodano M A, Saif A A. Modified k-e model for two phase turbulent jets. Nuclear Engineering and Design.1997,172:187-196
    [103]Simonin O, Eulerian formulation for particle dispersion in turbulent two-phase flows. In Fifth workshop on two-phase flow predictions., Wennerberg, S., Ed. Erlangen, Germany., 1990.
    [104]Simonin O, Viollet P, Modelling of turbulent two-phase jets loaded with discrete particles. In Phenomena in multiphase flow, Hemisphere Publishing Corporation:Washington, DC,1990
    [105]Troshko A A, Hassan Y A. A two-equation turbulence model in turbulent bubbly flows. International journal of multiphase flow.2001,27:1965-2000
    [106]Alexander P, Krause M. Simulations of multiphase turbulence in jet cocoons. Mon. Not. R. Astron. Soc.2006,376:465-476
    [107]Bolotnov I A, Lahey Jr. R T, Drew D A, Jansen K E. Turbulent cascade modeling of single and bubbly two-phase turbulent flows. International Journal of Multiphase Flow.2008, 34:1142-1151
    [108]Zeng Z X. A new turbulence modulation in second order moment two phase model and its application to horizontal channel, Journal of hydrodynamics.2008,20(3):331-338
    [109]Zhou L X. Advances in studies on two-phase turbulence in dispersed multiphase flows. International Journal of Multiphase Flow.2009:
    [110]Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow.1975,2:79-95
    [111]Pfleger D, Becker S. Modelling and simulation of the dynamic flow behaviour in a bubble column, chemical Engineering and science.2001, (56):1737-1747
    [112]Pan Y, Dudukovic M P, Chang M. Dynamic simulation of bubbly flow in bubble columns. Chemical Engineering Science.1999,54(13-14):2481-2489
    [113]Pan Y, Dudukovic M P, CFD simulation of a bubble column--2D versus 3D. In 6th World Congress of Chemical Engineering, Melbourne, Australia,2001.
    [114]Bech K. Dynamic simulation of a 2D bubble column. Chem. Eng. Sci.2005,60: 5294-5304
    [115]Tchen C M. Mean value and correlation problems connected with the motion of small particles suspended in a turbulent yuid. Netherlands:TU Delft,1947.
    [116]Jakobsen H. On the modeling and simulation of bubble column reactors using a two-fluid model. Norway,:Norwegian Institute of Technology,1993.
    [117]Thakre S S, Joshi J B. CFD simulation of bubble column reactors:importance of drag force formulation. Chemical Engineering Science.1999,54(21):5055-5060
    [118]Vitankar V S, Dhotre M T, Joshi J B. A low Reynolds number k-e model for the prediction of flow pattern and pressure drop in bubble column reactors. Chemical Engineering Science.2002,57(16):3235-3250
    [119]Dhotre M T, Ekambara K, Joshi J B. CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors. Experimental Thermal and Fluid Science.2004,28(5):407-421
    [120]Dhotr M T, Vitankar V S, Joshi J B. CFD simulation of steady state heat transfer in bubble columns. Chemical Engineering Journal.2005,108(1-2):117-125
    [121]Ekambara K, Dhotre M T, Joshi J B. CFD simulations of bubble column reactors:1D, 2D and 3D approach. Chemical Engineering Science.2005,60(23):6733-6746
    [122]Dhotre M T, Joshi J B. Design of a gas distributor:Three-dimensional CFD simulation of a coupled system consisting of a gas chamber and a bubble column. Chemical Engineering Journal.2007,125(3):149-163
    [123]Kulkarni A A, Ekambara K, Joshi J B. On the development of flow pattern in a bubble column reactor:Experiments and CFD. Chemical Engineering Science.2007,62(4): 1049-1072
    [124]Krishna R, Ellenberger J. Gas holdup in bubble column reactors operating in the churn-turbulent flow regime. AIchE J.1996,42:2627-2634
    [125]Krishna R, Urseanu M I, van Baten J M, Ellenberger J. Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime:experiments vs. Eulerian simulations. Chemical Engineering Science.1999,54(21):4903-4911
    [126]van Baten J M, Krishna R. Scale Effects on the Hydrodynamics of Bubble Columns Operating in the Heterogeneous Flow Regime. Chemical Engineering Research and Design. 2004,82(8):1043-1053
    [127]van Baten J M, Krishna R. Eulerian simulations for determination of the axial dispersion of liquid and gas phases in bubble columns operating in the churn-turbulent regime. Chemical Engineering Science.2001,56(2):503-512
    [128]van Baten J M, Krishna R. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime. Chemical Engineering Science.2001, 56(21-22):6249-6258
    [129]van Baten J M, Krishna R. CFD modeling of a bubble column reactor carrying out a consecutive A-B-C reaction. Chem.Eng.Tech.2004,27(4):398-406
    [130]van Baten J M, Krishna R. CFD modeling of bubble column reactor including the influence of gas contraction. Chem. Eng. Tech.2004,27(12):1302-1308
    [131]Larachi F, Desvigne D, Donnat L, Schweich D. Simulating the effects of liquid circulation in bubble columns with internals, chemical Engineering and science.2006,61: 4195-4206
    [132]Wongsuchoto P, Charinpanitkul,T, Pavasant P. Bubble size distribution and gas-liquid mass transfer in airlift contactors. Chemical Engineering Journal.2003,92:81-90
    [133]Wu Q, Kim S, Ishii M, Beus S G. One-group interfacial area transport in vertical bubbly flow. J. Heat Mass Transfer.1997,41(8-9):1103-1112
    [134]Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow I. Mechanistic model. Nuclear Engineering and Design.2002,219:143-168
    [135]Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow II. Model evaluation. Nuclear Engineering and Design.2002,219:169-190
    [136]Sun X D, Kim S, Ishii M, Beus S G. Modeling of bubble coalescence and disintegration in confined upward two-phase flow. Nuclear Engineering and Design.2004,230:3-26
    [137]Ishii M, Paranjape S S, Kim S, Sum X. Interfacial structures and interfacial area transport in downward two-phase bubbly flow. International Journal of Multiphase Flow. 2004,30:779-801
    [138]Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns. Chem Eng.Sci.,2001,56:1159-1166
    [139]Lehr F, Millies M, Mewes D. Bubble-Size Distributions and Flow Fields in Bubble Columns. AIChE J.,2002,48(11):2426-2443
    [140]Olmos E, Gentric C, Vial Ch, Wild G, Midoux N. Numerical simulation of multiphase flow in bubble column reactors:Influence of bubble coalescence and breakup. Chem.Eng.Sci. 2001,56:6359-6365
    [141]Olmos E, Gentric C, Midoux N. Numerical description of flow regime transitions in bubble column reactors by multiple gas phase model. Chem.Eng.Sci.2003,58:2113-2121
    [142]Buwa V V, Ranade V V. Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations, Chem. Eng. Sci.,2002,57:4715-4736
    [143]Wang T F, Wang J F, Jin Y. A CFD-PBM Coupled Model for Gas-Liquid Flows. AIChE,2006,52:125-140
    [144]van den Hegel E I V, Deen N G, Kuipers J A M. Applicaition of coalescence and breakup models in a discrete bubble model for bubble columns. Ind.Eng.Chem.Res.2005, 44:5233-5245
    [145]Bhusarapu S, Fongarland P, Al-Dahhan M H, Dudukovic M P. Measurement of overall solids mass flux in a gas-solid Circulating Fluidized Bed. Powder Technology.2004,148(2-3): 158-171
    [146]Sanyal J, Marchisio D L, Fox R O, Dhanasekharan K. On the comparison between Population Balance models for CFD simulation of bubble columns. Ind. Eng. Chem. Res. 2005,55:5063-5072
    [147]Bhole M R, Joshi J B, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling. Chemical Engineering Science.2008,63(8):2267-2282
    [148]Hebrard G, Bastoul D, Roustan M. Influence of the gas sparger on the hydrodynamic behavior of bubble columns. Trans. Inst. Chem.Eng.1996,74:406-414
    [149]Chesters A K. Modeling of coalescence process in fluid-liquid dispersions. A review of current understanding. Trans. IChemE.1991,69:259-270
    [150]Prince M J, Blanch H W. Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns. AIchE J.1990,36:1485-1499
    [151]Joshi J B, Vitankar V S, Kulkarni A A, Dhotre M T, Ekambara K. Coherent flow structures in bubble column reactors. Chemical Engineering Science.2002,57(16):3157-3183
    [152]Krishna R, Van Baten J M. Scaling up Bubble Column Reactors with the Aid of CFD. Chemical Engineering Research and Design.2001,79(3):283-309
    [153]Sanchez Miron A, Ceron Garica M A, Garcia Camacho F, Molina Grima E, Chisti Y. Mixing in bubble column and airlift reactors. Chemical Engineering Research and Design, 2004,82(10):1367-1374
    [154]Akhtar M A, Tade M O, Pareek V K. Effect of gas sparger type on operational characteristics of a bubble column under mechanical foam control. J. Chem. Eng. Japan.2006, 39(8):831-841
    [155]Buwa V V, Ranade V V.. Mixing in Bubble Column Reactors:Role of Unsteady Flow Structures. The Canadian Journal of Chemical Engineering.2003,81:402-411
    [156]Becker S, Sokolichin A, Eigenberger G. Gas-liquid flow in bubble columns and loop reactors:Part Ⅱ. Comparison of detailed experiments and flow simulations. Chemical Engineering Science.1994,49:5747-5762
    [157]Sokolichin A, Eigenberger G. Gas-liquid flow in bubble columns and loop reactors: Part-Ⅰ. Detailed modelling and numerical simulation. Chemical Engineering Science.1994,49: 5735-5746
    [158]Sokolichin A, Eigenberger G. Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns:Part Ⅰ. Detailed numerical simulations. Chem, Eng. Sci.,1999,54:2273-2284
    [159]Delnoij E, Kuipers J A M, van Swaaij W P M. Computational fluid dynamics applied to gas-liquid contactors. Chemical Engineering Science.1997,52:3623-3638
    [160]Delnoij E, Lammers F A, Kuipers J A M, van Swaaij W P M. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chemical Engineering Science.1997,52:1429-1458
    [161]Delnoij E, Lammers F A, Kuipers J A M, van Swaaij W P M, Bauer M, Eigenberger G. Dynamic simulation of gas-liquid two-phase flow:Effect of column aspect ratio on the flow structure. Chemical Engineering Science.1997,52:3759-3722
    [162]Pfleger D, Gomes S, Gilbert N, Wagner H G. Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modelling approach chemical Engineering and science.1999,54:5091-5099
    [163]Borchers O, Busch C, Sokolichin A, Eigenberger G. Applicability of the standard k-e turbulence model to the dynamic simulation of bubble columns. Part Ⅱ:Comparison of detailed experiments and flow simulation Chemical Engineering Science.1999,54:5927-5935
    [164]Becker S, De Bie H, Sweeney J. Dynamic flow behavior in bubble columns. Chemical Engineering Science.1999,54:4929-4935
    [165]Dhotre M T, Niceno B, Smith B L, Simiano M. Large-eddy simulation(LES) o f the large scale bubble plume, chemical Engineering and science.2009,64:2692-2704
    [166]Bauer M, Eigenberger G. Multiscale modeling of hydrodynamics, mass transfer and reaction in bubble column reactors. Chemical Engineering and science.2001,56:1067-1074
    [167]Dhanasekharan K M, Sanyal J, Jain A, Haidari A. Ageneralized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics. Chemical Engineering Science.2005,60:213-218
    [168]Darmana D, Deen N G, Kuipers J A M. Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model. Chemical Engineering Science.2005,60(12):3383-3404
    [169]Darmana D, Henket R L B, Deen N G, Kuipers J A M. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model:Chemisorption of CO2 into NaOH solution, numerical and experimental study. Chemical Engineering Science.2007,62(9):2556-2575
    [170]Wang T F, Wang J F.. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science.2007,62(24): 7107-7118
    [171]Samuel Talvy, Arnaud Cockx, Alain Line.Modeling of oxygen mass transfer in a gas-liquid airlift reactor. AIChE.J.2007,53(2):316-326
    [172]Troshkoa A A, Zdravistchb F. CFD modeling of slurry bubble column reactors for Fisher-Tropsh synthesis, chemical Engineering and science.2009,64:892-903
    [173]Kawase Y, Halard B, Moo-Young M. Liquid-phase mass transfer coefficients in bioreactors. Biotechnology and Bioengineering.1992,39:1133-1140
    [174]Lamont J C, Scott D S. An eddy cell model of mass transfer into surface of a turbulent liquid. AIchE J.1970,16:513-519
    [175]Linek V, Korda M, Fujasova M, Moucha T. Gas-liquid mass transfer coefficient in stirred tanks interpreted through models of idealized eddy structure of turbulence in the bubble vicinity, chemical Engineering and Processing.2004,43:1511-1517
    [176]Kawase Y, Halard B, Moo-Young M. Theoretical prediction of volumetric mass transfer coefficients in bubble columns for Newtonian and non-Newtonian fluids. Chemical Engineering Science.1987,42:1609-1617
    [177]Sheng J, Meng H, Fox R O. A large eddy PIV method for turbulence dissipation rate estimation. Chemical Engineering Science.2000,55:4423-4434
    [178]Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena. New York:Wiley,2002. seconded.
    [179]Ranade V V, Tayalia Y. Modelling of fluid dynamics and mixing in shallow bubble column reactors:influence of sparger design. Chemical Engineering Science.2001,56: 1667-1675
    [180]Michelea V, Hempela D C. Liquid flow and phase holdup-measurement and CFD modeling for two-and three-phase bubble columns. Chemical Engineering Science.2002,57: 1899-1908
    [181]Bahadori F, Rahimi R. Simulations of Gas Distributors in the Design of Shallow Bubble Column Reactors. Chem. Eng. Tech.2007,30(4):443-447
    [182]Buwa V V, Ranade V V. Characterization of Dynamics of Gas-Liquid Flows in Rectangular Bubble Columns. AIChE J.2004,50:2394-2407
    [183]Oey R S, Mudde R F, Van den Akker H E A. Sensitivity study on interfacial closure laws in two-fluid bubbly flow simulations. AIChE J.2003,49:1621-1636
    [184]Tabib M V, Joshi J B. Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decomposition technique. Chemical Engineering Science.2008,63(14):3695-3715
    [185]Kerdouss F, Bannari A, Proulx P. CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chem.Eng.Sci.2006,61:3313-3322
    [186]Kocamustafaogullari G, Ishii M. Foundation of the interfacial area transport equation and its closure relation International Journal of Heat and Mass Transfer.1995,38:481
    [187]Otake T, Tone S, Nakao K, Mitsuhashi Y. Coalescence and breakup of bubbles in liquids. Chem.Eng.Sci.1977,32:377-383
    [188]Bilicki Z, Kestin J. Transition criteria for two-phase flow patterns in vertical upward flow. International Journal of Multiphase Flow.1987,13(3):283-294
    [189]Stewart C W. Bubble interaction in low-viscosity liquid. International Journal of Multiphase Flow.1995,21:1037-1046
    [190]Tsuchiya K, Miyahara T, Fan L S. Visualization of bubble-wake interactions for a stream of bubble in a two-dimensional liquid solid fluidized bed. International Journal of Multiphase Flow.1989,15:35-49
    [191]Fluent Inc. Fluent 6.3,User Manuals.2007.
    [192]Degaleesan S. Fluid Dynamic measurements and modeling of liquid mixing in bubble column. St.Louis:Wash.Uni.,1997.
    [193]Degaleesan S, Dudukovic M P, Pan Y. Experimental Study of Gas-Induced Liquid-Flow Structures in Bubble Columns. AIchE J.2001,47(9):1913-1931
    [194]Zhou L X, Yang M, Lian C Y, Fan L S, Lee D J. On the second-order moment turbulence model for simulating a bubble column. Chem.Eng.Sci.2002,57:3269-3281
    [195]Grund G.Hydrodynamische Parameter und Stoffaustauscheigenschaften in Blasensaulen mit organischen Medien. Germany:Universitat Oldenburg,1988.
    [196]Ramkrishna D. The status of population balance. Rev.Chem.Eng.1985,3:49-95
    [197]Ramkrishna D. Population balances:Theory and Applications to particulate systems in engineering. San Diego,CA,2000.
    [198]CFX International AEA Technology, CFX 11.0. User Guide. In 2007.
    [199]Hulburt H M, Katz S. Some problems in particle technology:a statistical mechanical formulation. Chem.Eng.Sci.1964,19:555-574
    [200]Levich V G. Physicochemical hydrodynamics. Englewood Cliffs N J:Prentice-Hall Inc., 1962.
    [201]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟.清华大学,2004.
    [202]Coulaloglou C A, Tavlarides L L. Description of Interaction Processes in Agitated Liquid-Liquid Dispersions. Chem. Eng. Sci.1977,32:1289-1297
    [203]Luo H, Svendsen H F. Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions. AIChE J.1996,42:1225-1233
    [204]Drazin P G, Reid W H. Hydrodynamic Stability. Cambridge:Cambridge Univerity Press,U.K.,1981.
    [205]Kolmogorov A N. On the Breakage of Drops in a Turbulent Flow. Dokl. Akad. Navk. SSSR.1949,66:825
    [206]Hinze J O. Fundamentals of the Hydrodynamic Mechanismof Splitting in Dispersion Processes. AIChE J.1955,1:289-295
    [207]Lee C K, Erickson L E, Glasgow L A. Bubble breakup and coalescence in turbulent gas-liquid dispersions. Chem. Eng. Commun.1987,59:65-84
    [208]Azbel D. Two-Phase Flows in Chemical Engineering. Cambridge:Cambridge University Press,U.K.,1981.
    [209]Martinez-Bazan C, Montanes J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow, Part 1. Breakup frequency. J. Fluid. Mech.1999, 401:157-182
    [210]Angelidou C, Psimopoulos M, Jameson G J. Size Distribution Functions of Dispersions. Chem.Eng.Sci.1979,34:671-680
    [211]Kumar S, Ramkrishna D. On the solution of population balance equations by discretization I. A fixed pivot technique. Chem. Eng. Sci.1996,51:1311-1332
    [212]Chen J, Li F, Degaleesan S, Gupta P, Al-Dahhan M H, Dudukovic M P, Toseland B A. Fluid Dynamic Parameters in Bubble Columns with Internals.Chem.Eng.Sci.1999, 54:2187-2197
    [213]Aubin J, Fletcher D F, Xuereb C. Modeling turbulent flow in stirred tank with CFD:the influence of modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science.2004,28:431-445
    [214]Chen P, Sanyal J, Dudukovic M P. CFD modeling of bubble columns flows: implementation of population balance. Chemical Engineering Science.2004,59(22-23): 5201-5207
    [215]Kataoka I, Besnard D C, Serizawa A. Basic Equation of Turbulence and Modeling of Interfacial Transfer Terms in Gas-Liquid Two Phase Flows. Chem. Eng. Commun.1992,118: 221-236
    [216]Miron A S, Camacho F G, Gomez A C, Grima E M, Chisti Y. Bubble-column and airlift photo-bioreactors for algal culture. AIChE J.2000,46(9):1872-1887
    [217]Kojima H, Sawai J, Uchino H, Ichige T. Liquid circulation and critical gas velocity in slurry bubble column with short size draft tube. Chem. Eng. Sci.1999,54:5181-5185
    [218]Choi K H, Chisti Y, Moo-Young M. Comparative evaluation of hydrodynamics and gas liquid mass transfer characteristics in bubble column and airlift slurry reactors. Bio.Eng.J. 1996,62:223-229
    [219]Sene K, Hunt J C R, Thomas N H. The role of coherent structures in bubble transport by turbulent shear flows. J. Fluid Mechanics.1994,259:219-240
    [220]Viollet P L, Simonin O. Modelling dispersed two-phase flows:closure, validation and software development. Applied Mechanics Review.1994,47(6):80-84
    [221]蔡清白,沈春银,戴干策.大直径浅层鼓泡塔的混合时间.化学反应工程与工艺.2009,25(1):23-28
    [222]Li G, Yang X G, Dai G C. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column. Chem. Eng. Sci.2009,64(24): 5104-5116
    [223]van Baten J M, Krishna R. Scale up studies on partitioned bubble column reactors with the aid of CFD simulations. Catalysis Today.2003,79-80:219-227
    [224]Chen R C, Fan L S. Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chem. Eng. Sci.1992,47(13-14):3615-3622

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700