用户名: 密码: 验证码:
过氧化氢异丙苯催化加氢制取二甲基苄醇新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化二异丙苯(DCP)是一种最常用的优良有机过氧化物,可作为单体聚合的引发剂、高分子材料的硫化剂、固化剂和阻燃添加剂。在DCP的生产过程中,通过过氧化氢异丙苯(CHP)制备二甲基苄醇(CA)是此生产工艺的关键步骤。目前工业上普遍采用硫化碱还原CHP来制备CA,但是此方法的原子利用率较低,而且会产生大量的含硫废水,造成环境的污染。随着国家环保政策的日益严格,其发展必将受到严格的制约。纵观所有可能的替代工艺,催化加氢技术以其原子经济性、绿色环保性及低运行成本而成为最有可能实现的替代工艺。
     本文采用常规浸渍法设计和制备了一系列负载型Pd催化剂并在滴流床反应器上进行了活性评价,同时借助N2低温吸附脱附(BET)、电感耦合等离子体发射光谱(ICP-AES)、X-射线衍射(XRD)、透射电镜(TEM)、热重分析(TGA)、紫外可见光谱(UV-vis)、红外光谱(IR)、CO化学吸附、程序升温还原(H2-TPR)等表征手段系统地考察了载体(Al2O3、活性炭、MgO)、Pd前驱体盐(K2PdCl4、Pd(NO3)2、(NH4)2PdCl4)、还原剂(甲醛溶液、氢气)、Pd负载量及制备条件等因素对负载型Pd催化剂物理化学性质及反应性能的影响,研究了催化剂的稳定性及失活原因。研究结果表明,以K2PdCl4水溶液浸渍AlOOH后在空气中600℃焙烧,氢气中300℃还原所得的0.5wt%Pd/Al2O3催化剂的活性及稳定性最好。另外还发现CHP液相加氢是一个结构敏感性反应,催化活性随Pd金属分散度的增大(Pd颗粒尺寸减小)而减小。
     在排除内扩散影响的前提下考察了滴流床反应器上Pd/Al2O3催化CHP液相加氢的反应动力学行为。研究结果表明,在高的液时体积空速下CHP液相加氢是关于CHP浓度的零级反应,反应活化能为12.4kJ/mol;在低的液时体积空速下CHP液相加氢则是关于CHP浓度的一级反应,反应活化能为10 kJ/mol。在此基础上,建立了不同液时体积空速时CHP液相加氢的Rideal-Eley机理模型并通过计算得到了各参数值。
     同时,本文借助ICP-AES、XRD、TEM和TGA等表征手段对Pd/Al2O3催化剂的失活原因进行了研究,结果表明活性金属Pd表面在反应中发生氧化是造成催化剂活性下降的主要原因。除此之外,本文还考察了原料气组成、反应温度及氢气压力对催化剂失活的影响并建立了催化剂的失活动力学方程。研究结果表明原料气中若含有CO则可使催化剂的活性快速下降,但通过高纯氢气吹扫可使催化剂活性完全恢复,是一种可逆中毒;反应温度越高,催化剂的剩余活性越小;氢气压力越高,催化剂的剩余活性越大。催化剂的再生研究表明,对失活的催化剂进行原位高温还原可恢复其活性。
     为了满足工业化生产的需求,本文对滴流床反应器上CHP液相加氢的工艺条件进行了优化。在氢油体积比240、液时体积空速5h-1、反应温度65℃、氢气压力1.5MPa的优化工艺条件下,其加氢产物分布与工业上由硫化碱还原CHP的产物分布基本一致,而且催化剂的寿命大于1000h。最后,本文还对滴流床单管反应器进行了设计及参数敏感性研究,为CHP液相加氢制备CA的工业化生产提供了依据。
Dicumyl peroxide (DCP) is widely applied as a cross-linking agent for polyethylene (PE), ethylene vinyl acetate (EVA) copolymer, ethylene propylene terpolymer (EPT), and as a curing agent for unsaturated polystyrene (PS). Preparation ofα-cumyl alcohol (CA) from cumene hydroperoxide (CHP) is the key reaction in producing DCP. As current technology, sufide sodium (Na2S) or sufite sodium (Na2SO3) was adopted to reduce CHP to CA. It is a simple process with high conversion for CHP and selectivity to CA. However, it is a stoichiometric reaction with low atom-efficiency and generates large amounts of sulfide-containing water. Increasingly stringent legislation on environmental protection has restricted the development of this process. More economical as regards costs and environmental protection is the reduction of CHP by means of hydrogen with the aid of a catalyst.
     A series of supported Pd catalysts for CHP liquid phase hydrogenation to CA have been designed and prepared by impregnation, using various supports (Al2O3, Activated Carbon, MgO), precursors (K2PdCl4, Pd(NO3)2, (NH4)2PdCl4), reducing agents (formaldehyde, hydrogen), Pd content, calcination and reduction temperatures. All the catalysts were characterized by BET, inductively coupled plasma atomic emission spectrometry (ICP-AES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), CO chemisorption, UV-visible spectroscopy, transmission electron microscory (TEM), temperature-programmed reduction (TPR) to correlate the physico-chemical properties with catalytic performance. The results showed that the 0.5wt%Pd/Al2O3 catalyst prepared by impregnation of AlOOH with K2PdCl4, calcinated at 600℃in air and reduced in hydrogen at 300℃exhibited the best catalytic activity and stability. Moreover, it was found that CHP hydrogenation was a structure-sensitive reaction, its activity can increase with Pd particle size.
     Kinetics of CHP hydrogenation to CA over Pd/Al2O3 catalyst in a trickle bed reactor was inverstigated. A mechanism was proposed for the hydrogenation of CHP. According to this mechanism, the step of hydrogen activated depends on the redox properties of the catalyst surface. High CHP concentration (LHSV) and low H2 pressure resulted in oxidized surface of Pd, leading to a zero-order with respect to CHP concentration in CHP hydrogenation. Low CHP concentration (LHSV) and high H2 pressure resulted in reduced surface of Pd, leading to a first-order with respect to CHP concentration in CHP hydrogenation. Based on the mechanism, the kinetics model has been established and the related parameters have been estimated. The activated energies were calculated to be 12.4 kJ/mol and 10.0 kJ/mol for zero-order and first-order reactions, respectively.
     Deactivation of Pd/Al2O3 catalyst in CHP hydrogenation in a trickle bed reactor was studied as well. It was found that the oxidation of Pd surface was the key factor for catalyst deactivation by means of ICP-AES, XRD, TEM and TGA. Moreover, the effect of composition of raw gas, reaction temperature, H2 pressure on the catalyst deactivation was also investigated. The results showed that CO in raw gas could result in catalyst deactication quickly. Luckily, the catalytic activity can be recovered by sweeping the catalyst with high pure hydrogen. Besides, a residual activity can be obtained in CHP hydrogenation, indicating deactivation of Pd/Al2O3 catalyst was reversible. Thus, the catalytic activity can be recovered by treating the spent catalyst in flowing pure hydrogen with relatively high temperature (300℃). Compared with temperature, H2 pressure has a more significant impact on the catalyst deactivation and residual activity. Higher residual activity can be obtained under higher H2 pressure. Kinetics of catalyst deactivation was established and the related parameters have also been evaluated.
     Based on the kinetics of CHP hydrogenation and catalyst deactivation, the optimized reaction conditions were obtained as follows:volume ratio of hydrogen to CHP solution=240, LHSV=5h-1, reaction temperature=65℃, H2 pressure=1.5MPa. Under the optimized reaction conditions, a similar product distribution was found when comparing hydrogenation and sufide reduction of CHP. Moreover, the catalyst showed a lifetime with 1000h and can be regenerated easily in flowing hydrogen gas. Finally, a one-pipe reactor suitable for industrial production was designed.
引文
[1]谭永生.以过氧化氢为原料的过氧化二异丙苯合成法[J].高桥石化.2005,38-41
    [2]谭永生,崔敏华,徐卫民.过氧化二异丙苯的常压缩合脱水合成法[J].高桥石化.2004,28-31
    [3]Quin Denis Cheselden. Manufacture of organic peroxides [P]. GB:792558, 1958-03-26
    [4]Bernardus Tijssen Stephanus. Process for the cross-Linking of polyolefins and for the vulcanization of rubber [P]. US:3267066,1966-08-16
    [5]AOSHIMA K, KATO M. Process for producing organic peroxides [P]. US: 3829503.1974-08-13
    [6]孙导林,陆万新,杜知伟.过氧化二异丙苯(DCP)的干燥特性与干燥工艺研究[J].干燥技术与设备.2009,7(4):185-189
    [7]Yih-Wen Wang and Chi-Min Shu. Thermal runaway hazards of cumene hydroperoxide with contaminants [J]. Ind. Eng. Chem. Res.2001,40:1125-1132
    [8]Kun-Yue Chen, Sheng-Hung Wu, Yih-Wen Wang, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC [J]. J. loss. Prevent. Proc.2008,21:101-109
    [9]A. Miyake and Y. O'hama. Thermal hazard analysis of cumene hydroperoxide using calorimetry and spectroscory [J]. J. Therm. Anal. Calorim.2008,93(1):53-57
    [10]H. Y. Hou, Y. S. Duh, W. H. Linand C. M. Shu Reactive incompatibility of cumene hydroperoxide mixed with alkaline solutions. J. Therm. Anal. Calorim.2006, 85(1):145-150
    [11]Hung-Yi Hou, Chi-Min Shu, Tung-Lin Tsai. Reactions of cumene hydroperoxide mixed with sodium hydroxide. J. Hazard. Mater.2008,152:1214-1219
    [12]M.E. Levin, N.O. Gonzales, L.W. Zimmermana, et al. Kinetics of acid-catalyzed cleavage of cumene hydroperoxide [J]. J. Hazard. Mater.2006,130:88-106
    [13]John F. Knifton, John R. Sanderson. Phenol/acetone cogeneration via solid acid catalysis [J]. Appl. Catal. A 1997,161:199-211
    [14]Dagang Huang, Minghan Han, Jinfu Wang, et al. Catalytic decomposition process of cumene hydroperoxide using sulfonic resins as catalyst [J]. Chem. Eng. J. 2002,88:215-223
    [15]G.R. Rosilda Selvin, L. Rajarajeswari, V. Selva Roselin, et al. Catalytic decomposition of cumene hydroperoxide into phenol and acetone [J]. Appl. Catal. A 2001,219:125-129
    [16]Robert J. Schmidt. Industrial catalytic processes—phenol production [J]. Appl. Catal. A 2005,280:89-103
    [17]韩广甸,赵树纬,李述文.有机制备化学手册(中卷)[M].北京:石油化学工业出版社,1977
    [18]Allied Chemical Corporation. Production of carbinols [P]. GB:980272, 1965-01-13
    [19]Bostian Logan C, Griffin William D. Oxidation of tertiary alkyl-substituted aryl compound tertiary alcohol [P]. US:3567786,1971-03-02
    [20]Eugene J. Lorand, John E. Reese. Method of preparation α,α-dialkyl-α-aryl carbinols [P]. US:2687438,1954-08-24
    [21]Edward Hawkins Edwin George, Edward Salt Francis. Tertiary alcohols [P]. US: 2590176,1952-03-25
    [22]Conner Jr Joshua C. Electrolytic reduction of hydroperoxides [P]. US:2543763, 1951-03-06
    [23]Eugene J. Lorand, John E. Reese. Catalytic hydrogenation of hydroperoxides [P]. US:2491926,1949-12-20
    [24]Denis Cheselden Quin. Process for the manufacture of carbinols [P]. US: 2854487,1958-09-30
    [25]Matsunaga Fujihisa, Ohno Norio. Process for production of aromatic alcohols [P]. US:4322567,1982-03-30
    [26]Inaba, Masashi, Hamana, Ryozo. Method for producing aromatic alcohol [P], EP0378165 A2,1990-07-18
    [27]艾抚宾,王海波,勾连科等.过氧化氢异丙苯加氢制苄醇的方法[P].CN:101348418A,2009-01-21
    [28]E.B.M. Doesburg, K.P. de Jong, J.H.C. van Hooff, et al. Stud. Surf. Sci. Catal. 1999,123:Chapter9and10
    [29]T. Lopez, M. Moran, J. Navarrete,et al. Synthesis and spectroscopic characterization of Pt and Pd silica supported catalysts [J]. J. Non-Cryst. Solids.1992, 147-148:753-757
    [30]T. Lopez, M. Asomoza, P. Bosch, et al. Spectroscopic characterization and catalytic properties of sol-gel Pd/SiO2 catalysts [J]. J. Catal.1992,138(2):463-473
    [31]D.H. Kim, S.I. Woo, O. Yang. Effect of pH in a sol-gel synthesis on the physicochemical properties of Pd-alumina three-way catalyst [J]. Appl. Catal. B Environ.2000,26 (4):285-289
    [32]R.L. Augustine and S.T. O'Leary. Heterogeneous catalysis in organic chemistry. Part 10. Effect of the catalyst support on the regiochemistry of the heck arylation reaction [J]. J.Mol. Catal. A 1995,95(3):277-285
    [33]W.-J. Shen and Y. Matsumura. Interaction between palladium and the support in Pd/CeO2 prepared by deposition-precipitation method and the catalytic activity for methanol decomposition [J]. J. Mol. Catal. A 2000,153:165-168
    [34]W.-J. Shen, Y. Ichihashi, M. Okumura, et al. Methanol synthesis from carbon monoxide and hydrogen catalyzed over Pd/CeO2 prepared by the deposition-precipitation method [J].Catal. Lett.2000,64 (1):23-25.
    [35]W.-J. Shen and Y. Matsumura. Low-temperature methanol decomposition to carbon monoxide and hydrogen catalysed over cationic palladium species in Pd/CeO2 [J]. Phys. Chem. Chem. Phys.2000,2 (7):1519-1522
    [36]H. Jin, S.-E. Park, J.M. Lee et al. The shape-selectivity of activated carbon fibers as a palladium catalyst support [J]. Carbon.1996,34:429-431
    [37]G. Farkas, L. Hegedus, A. Tungler,et al. Effect of carbon support properties on enantioselective hydrogenation of isophorone over palladium catalysts modified with (-)-dihydroapovincaminic acid ethyl ester J. Mol. Catal. A 2000,153:215-219
    [38]K.P. de Jong and J.W. Geus. Production of supported silver catalysts by liquid-phase reduction [J]. Appl. Catal.1982,4(1):41-51
    [39]K.P. de Jong. Synthesis of supported catalysts [J]. Curr. Opin. Solid State Mater. Sci..1999,4(1):55-62
    [40]G. Fogassy, L. Hegedus, A. Tungler, et al. Selective hydrogenation of exocyclic α,β-unsaturated ketones::Part I. Hydrogenations over palladium [J]. J. Mol. Catal. A Chem.2000,154(1-2):237-241
    [41]A. Beck, H. Horvath, A. Szucs, et al. Pd nanoparticles prepared by "controlled colloidal synthesis" in solid/liquid interfacial layer on silica. I. Particle size regulation by reduction time [J]. Catal. Lett.2000,65:33-42
    [42]M.S. Hoogenraad, R.A.G.M.M. van Leeuwarden, G.J.B. van Breda-Vriesman, et al. Metal catalysts supported on a novel carbon support [J]. Stud. Surf. Sci. Catal. 1995,91:263-271
    [43]D. Amalric-Popescu and F. Boszon-Venduraz. SnO2-supported palladium catalysts:activity in deNOx at low temperature [J].Catal. Lett.2000,64:125-128.
    [44]. R. P. Eischens, W. A. Pliskin, S. A. Francis. Infrared spectra of chemisorbed carbon monoxide [J]. J. Chem. Phys.1954,22:1786-1787
    [45]Masaaki Haneda, Yoshiaki Kintaichi, Isao Nakamura, et al. Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide [J]. J. Catal.2003,218:405-410
    [46]Tauster S J, Fung S C. Strong metal-support interaction:Occurrence among the binary oxides of groups IIA-VB. J. Catal.55(1):29-35
    [47]Adrian David, M. Albert Vannice. Control of catalytic debenzylation and dehalogenation reactions during liquid-phase reduction by H2 [J]. J.Catal.2006, 237:349-358
    [48]M. A. Aramendia, V. Borau, I. M. Garcia, C. Jimenez, F. Lafont, et al. Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium supported catalysts:activity and deactivation [J], J. Catal.1999,187:392-399
    [49]曹育才,李建龙,姜玄珍.负载型钯酞菁催化剂上CCl2F2的选择性加氢脱氯反应[J].化工学报.2004,55(3):373-378
    [50]F. Pinna, F. Menegazzo, M. Signoretto, et al. Consecutive hydrogenation of benzaldehyde over Pd catalysts:Influence of supports and sulfur poisoning [J]. Appl. Catal. A 2001,219:195-200
    [51]马志广,张爱平,王红蕾等.氧化铝-壳聚糖-钯催化苯乙酮加氢的反应动力学[J].河北大学学报(自然科学版).2008,28(2):165-168
    [52]Vale'rie Meille, Claude de Bellefon, and Daniel Schweich. Kinetics of α-methylstyrene hydrogenation on Pd/Al2O3 [J]. Ind. Eng. Chem. Res.2002, 41:1711-1715
    [53]Joongjai Panpranot, Orathai Tangjitwattakorn, Piyasan Praserthdam, et al. Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation [J]. Appl. Catal. A 2005,292:322-327
    [54]P. Sangeetha, K. Shanthi, K.S. Rama Rao, et al. Hydrogenation of nitrobenzene over palladium-supported catalysts—effect of support [J]. Appl. Catal. A 2009, 353:160-165
    [55]姜垣,徐筠,廖世健等.双重负载钯催化剂用于硝基化合物的催化加氢[J].催化学报.1997,18(1):33-37
    [56]张建远,康保安.Pd/C催化剂的表征及其制备条件对脂肪腈加氢催化的影响.皮革化工.2006,23(2):12-15
    [57]张建远,康保安.脂肪腈加氢胺化过程中Pd/C催化剂失活原因探讨[J].化学通报.2006,9:696-700
    [58]Salvatore Scire, Simona Minico, Carmelo Crisafulli. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors [J]. Appl. Catal. A 2002, 235:21-31
    [59]Gongshin Qi, Ralph T. Yang, Fabrizio C. Rinaldi. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts [J]. J. Catal.2006,237:381-392
    [60]Yusuke Yoshinaga, Tomonobu Akita, Ikko Mikami, et al. Hydrogenation of Nitrate in Water to Nitrogen over Pd-Cu Supported on Active Carbon [J]. J. Catal. 2002,207:37-45
    [61]Antal Tungler, Gabriella Fogassy. Catalysis with supported palladium metal, selectivity in the hydrogenation of C=C, C=O and C=N bonds, from chemo-to enantioselectivity [J]. J. Mol. Catal. A 2001,173:231-247
    [62]Hans-Ulrich Blaser, Adriano Indolese, Anita Schnyder, et al. Supported palladium catalysts for fine chemicals synthesis [J]. J. Mol. Catal. A 2001,173:3-18
    [63]Dong Jin Suh, Tae-Jin Park, Son-Ki Ihm. Characteristics of carbon-supported palladium catalysts for liquid-phase hydrogenation of nitroaromatics [J]. Ind. Eng. Chem. Res.1992,31:1849-1856
    [64]陈慕华,秦晓静,储伟等.载体对钯基选择加氢催化剂性能的影响[J].石油学报(石油加工).2006,22(2):20-26
    [65]Divakar, D, Manikandan, D, Sivakumar, T. Vapor-phase selective hydrogenation of citral over Pd/bentonite:effect of reduction method [J]. J. Chem. Technol. Biotechnol.2008,83:1472-1478
    [66]陈祥,周立进,顾沛国等.制备方法对钯碳催化剂表面性质及其加氢性能影响[J].南京工业大学学报(自然科学版)2005,27(5):93-96
    [67]M. Skotak, Z. Karpinski, W. Juszczyk, et al. Characterization and catalytic activity of differently pretreated Pd/Al2O3 catalysts:the role of acid sites and of palladium-alumina interactions [J]. J. Catal.2004,227:11-25
    [68]Wen-Jie Shen, Yuichi Ichihashi, Hisonori Ando, et al. Effect of reduction temperature on structural properties and CO/CO2 hydrogenation characteristics of a Pd-CeO2 catalyst [J]. Appl. Catal. A 2001,217:231-239
    [69]Santiago Gomez-Quero, Fernando Cardenas-Lizana, Mark A. Keane. Effect of Metal Dispersion on the Liquid-Phase Hydrodechlorination of 2,4-Dichlorophenol over Pd/Al2O3 [J]. Ind. Eng. Chem. Res.2008,47:6841-6853
    [70]Gigola EC, Sica MA. Interaction of CO, NO and NO/CO over Pd/γ-Al2O3 and Pd-WOx/γ-Al2O3 catalysts [J]. Appl. Catal. A 2003,239:121-139
    [71]Musolino MG, Apa G, Donato A, et al. Supported palladium catalysts for the selective conversion of cis-2-butene-1,4-diol to 2-hydroxytetrahydrofuran:effect of metal particle size and support [J]. Appl. Catal. A 2007,325:112-120
    [72]Nagendranath Mahata and Vishwanathan. Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts [J]. J. Catal.2000,196(2):262-270
    [73]S. H. Ali, J. G. Goodwin Jr. SSITKA Investigation of Palladium Precursor and Support Effects on CO Hydrogenation over Supported Pd Catalysts [J]. J. Catal.1998, 176:3-13
    [74]Giovanni Neri, Maria G. Musolino, C. Milone, et al. Particle size effect in the catalytic hydrogenation of 2,4-dinitrotoluene over Pd/C catalysts [J]. Appl. Catal. A 2001,208:307-316
    [75]Wen-Jie Shen, Mitsutaka Okumura, Yasuyuki Matsumura,et al. The influence of the support on the activity and selectivity of Pd in CO hydrogenation [J]. Appl. Catal. A 2001,213:225-232
    [76]Nuria Lopez and Francesc Illas. Ab Initio Modeling of the Metal-Support Interface:The Interaction of Ni, Pd, and Pt on MgO(100) [J]. J. Phys. Chem. B 1998, 102:1430-1436
    [77]Ferrari AM, Pacchioni G. Metal deposition on oxide surfaces:A quantum-chemical study of the interaction of Rb, Pd, and Ag atoms with the surface vacancies of MgO [J]. J. Phys. Chem. B 1996,100:9032-9037
    [78]P. Albers, J. Pietsch, S. F. Parker. Poisoning and deactivation of palladium catalysts [J]. J. Mol. Catal. A,2001,173(1-2):275-286
    [79]Larsen G., Haller G. L., Metal-support effects in Pt/L-zeolite catalysts [J]. Catal. Lett,1989,3(1):103-110
    [80]Karpinski Z, Gandhi S. N, Sachtler W.H.M, Neopentane Conversion Catalyzed by Pd in L-Zeolite:Effects of Protons, Ions, and Zeolite Structure [J]. J. Catal.1993, 141(2):337-346
    [81]B. L. Mojet, M J. Kappers, J. T. Miller, D. C. Koningsberger. Metal-support interactions in supported platinum catalysts:zeolites and amorphous supports [J]. Stud. Surf. Sci. Catal,1996,101:1165-1174
    [82]Stakheev AY, Kustov LM. Effects of the support on the morphology and electronic properties of supported metal clusters:modern concepts and progress in 1990s [J]. Appl. Catal. A 1999,188:3-35
    [83]Watanbe K, Oshio N, Kawakami T. Isomerization reactions with sulfur-containing pentane over Metal/SO42-/ZrO2 catalysts [J]. Appl. Catal. A 2004, 272(1-2):281-287
    [84]Nag, N. K. A Study on the Formation of Palladium Hydride in a Carbon Supported Palladium Catalyst [J]. J. Phys. Chem. B 2001,105:5945-5949
    [85]A. Benedetti, G. Fagherazzi, F. Pinna, et al. The influence of a second metal component (Cu, Sn, Fe) on Pd/SiO2 activity in the hydrogenation of 2,4-dinitrotoluene [J]. Catal. Lett.1991,10:215-223
    [86]Johannes K M, Swan T S. Process for the Preparation of Middle Distillates from Syngas [P]. US:4594468.1986-06-10
    [87]Bernhard H, Wang T. Catalyst based on palladium, gold, alkali metal and lanthanoid and process for preparing vinylacetate [P]. US:6649789.2002-12-26
    [88]Woodle G B, Zarchy A S. Lithium luminate layered catalyst and a selective oxidation process using the catalyst [P]. US:6858769.2004-04-22
    [89]过中儒,史鸿鑫.H2PdCl4和金属离子在Al2O3上吸附的研究[J].催化学报.1990,11(3):188-195
    [90]Elding, L.I., Olsson, I. F., Electronic absorption spectra of square-planar chloro-aqua and bromo-aqua complexes of palladium(II) and platinum(II), J. Phy. Chem.1978,82(1):69-74
    [91]Zhou, Y., Wood, M. C, Winograd N., A time-of-flight SIMS study of the chemical nature of highly dispersed Pt on alumina [J]. J. Catal.1994,146:82-86
    [92]Johnston, P., Joyner, R. W., Influence of chlorine on the lability of small rhodium particles in carbon monoxide [J]. J. Chem. Soc, Faraday Trans.1993, 89:863-864
    [93]李光明,叶岗,路春茂等.氧化铝的水热化学研究Ⅰ.拟薄水铝石脱水产物的再水合现象[J].石油学报(石油加工).1995,11(3):103-106
    [94]N.W. Cant, E.A. Dennys and M.J. Patterson. The effects of residual chlorine on the behaviour of platinum group metals for oxidation of different hydrocarbons [J]. Catal. Today.1998,44:93-99
    [95]F. Bozon-Verduraz, A. Omar, J. Escard et al. Chemical state and reactivity of supported palladium:I. Characterization by XPS and uv-visible spectroscopy [J]. J. Catal.1978,53:126-134
    [96]R. Bouwman and P. Biloen. Valence state and interaction of platinum and germanium on γ-Al2O3 investigated by X-ray photoelectron spectroscopy [J]. J. Catal. 1977,48:209-216
    [97]H.C. Yao, M. Sieg, H.K. Plummer Jr. Surface interactions in the Pt/γ-Al2O3 system [J]. J. Catal.1979,59:365-374
    [98]S.D. Jackson, J. Willis, G.D. McLellan, et al. Supported metal catalysts: Preparation, characterization, and function:I. Preparation and physical characterization of platinum catalysts [J]. J. Catal.1993,139:191-206
    [99]A.R. Sethuraman and H.D. Burtron. The state of platinum in Pt-Al2O3 catalysts containing high chloride loading [J]. Catal. Lett.1993,18:401-407
    [100]Z.C. Zhang and B.C. Beard. Agglomeration of Pt particles in the presence of chlorides [J]. Appl. Catal.1999,188:229-240
    [101]E. Marceau, H. Lauron-Pernot and M. Che. Influence of the metallic precursor and of the catalytic reaction on the activity and evolution of Pt(Cl)/δ-Al2O3 catalysts in the total oxidation of methane [J]. J. Catal.2001,197:394-405
    [102]H. Karhu, A. Kalantar, I. J. Vayrynen, et al. XPS analysis of chlorine residues in supported Pt and Pd catalysts with low metal loading [J]. Appl. Catal. A 2003, 247(2):283-294
    [103]Santiago Go'mez-Quero, Fernando Ca'rdenas-Lizana, Mark A. Keane. Effect of metal dispersion on the liquid-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3[J]. Ind. Eng. Chem. Res.2008,47:6841-6853
    [104]I. Il'ina, I.L. Simakova, V.A. Semikolenov. Kinetics of the hydrogenation of pinane hydroperoxide to pinanol on Pd/C [J]. Kinet. Catal.2002,43:652-656.
    [105]M. Hronec, Z. Cvengrosova, J. Tuleja, et al. Developments in Selective Oxidation [J]. Stud. Surf. Sci. Catal.1990,55:169
    [106]F.R. Venema, J.A. Peters, H. van Bekkum. Platinum-catalyzed oxidation of aldopentoses to aldaric acids [J].J. Mol. Catal.1992,77:75-85
    [107]李冬云,杨辉,谢田甜等.水合氧化铝的热处理及纳米氧化铝的颗粒特性[J].无机化学学报.2006,22(1):96-100
    [108]Takashi Nakamura, Masa-aki Ohshima, Hideki Kurokawa, et al. Effects of Removing Residual Chlorine on the Hydrogenation of Aromatic Hydrocarbons over Supported Ru Catalysts [J]. Chem. Lett.2010,39:62-63
    [109]S. Szepe, O. Levenspiel. Catalyst deactivation, in:Proceedings of the fourth European Symposium on Chemical Reactive Engeenering, Pergamon Press, Brussels, NY,1971, pp.265-276
    [110]J. Corella, J. Adanez, A. Monzon. Some intrinsic kinetic equations and deactivation mechanisms leading to deactivation curves with residual activity [J]. Ind. Eng. Chem. Res.1988,27:375-381
    [111]A. Borgna, T.F. Garetto, A. Monzon, et al. Deactivation model with residual activity to study thioresistance and thiotolerance of naphtha-reforming catalysts [J]. J. Catal.1994,146:69-81
    [112]A. Borgna, S. Magni, J. Sepulveda et al. Selective acid-base poisoning on bifunctional alkylation reaction [J]. Stud. Surf. Sci. Catal.2001,139:213-220
    [113]E.L. Agorreta, J.A. Pena, J. Santamaria, et al. A kinetic model for activation-deactivation processes in solid catalysts [J]. Ind. Eng. Chem. Res.1991, 30:111-122
    [114]G.A. Fuentes, E.D. Gamas. Towards a better understanding of sintering phenomena in catalysis [J]. Stud. Surf. Sci. Catal.1991,68:637-644
    [115]C.H. Bartholomew. Sintering kinetics of supported metals:new perspectives from a unifying GPLE treatment [J]. Appl. Catal.1993,107:1-57
    [116]Jinya Koshitani, Masao Inugai, Yoshio Ueno, et al. Mechanism of decomposition of α,α-dimethylbenzyl hydroperoxide producing acetophenone and a,a-dimethylbenzyl alcohol in a constant proportion of 2 to 1[J]. Monatshefte fur Chemie/Chemical Monthly.1983,114,1391-1397
    [117]朱炳辰主编.化学反应工程(第二版)[M].北京:化学工业出版社.1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700