用户名: 密码: 验证码:
鄂尔多斯盆地延长探区山西组沉积相研究与地震储层识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延长探区位于鄂尔多斯盆地的中东部,在上古生界山西组的天然气勘探中屡获高产气井,显示了该区良好的勘探前景。与此同时,储层砂岩的展布和油气富集规律不明确制约着下一步勘探。
     针对目前勘探中的难点问题,本文在前人研究的基础上,根据现有的勘探资料,以寻找有利勘探目标为最终目的,综合运用层序地层学、储层沉积学、地震沉积学、石油地质学等原理和方法,对延长探区山西组进行了系统的层序划分、沉积相分析、地震储层识别及有利勘探目标分析等研究,为后期勘探布井提供科学依据。
     本次研究的创新点主要体现在:①在沉积相分析的基础上,以各种地震正演模拟技术为手段,分析和解释地震属性。②在沉积相分析与地震储层识别过程中地质与地球物理方法相互反馈,沉积模式指导地震储层识别,地震储层识别结果又进一步完善沉积相认识。
     研究过程中取得的主要成果和认识有:
     (1)以Cross的基准面旋回法为主要指导思想,同时利用地层厚度法、井震循环标定法加以辅助,将研究区山西组划分为2个长期旋回和6个中期旋回。2个长期旋回分别对应于山一段和山二段。6个中期旋回与山西组内部的山23~山11的6个砂层组对应较好。
     (2)山西组沉积为典型的缓坡型浅水三角洲,主要发育三角洲前缘。
     山西组沉积期水体浅,地形平坦,湖泊波浪改造作用较弱,三角洲前缘以水下分流河道和水下分流间湾微相为主,三角洲的典型沉积微相类型河口坝发育较差。水下分流河道能量较强,底冲刷构造非常发育,且河道砂岩中通常夹泥砾。砂岩以中-细粒石英砂岩为主,分选、磨圆较好,单层厚度一般小于6m,大套厚层砂岩为多期河道相互切割叠置而成。剖面中砂岩横向连续性差,呈透镜状分布;平面上砂体呈朵叶状展布,同时受河控影响,展布具有一定的方向性。
     山西组沉积过程中,水体整体逐渐加深,滨浅湖体系北迁,沉降中心也向北移,研究区北部三角洲体系后缩,南部三角洲体系北进。
     (3)正演模型研究表明地震振幅、相位及多道统计相干、波形分类等属性均不能表征砂岩,主要是由于含气砂岩具有AVO效应、煤层和灰岩的屏蔽及泥质粉砂岩(粉砂质泥岩)与砂岩速度相近等因素综合影响而致。
     实际井含气层段孔隙中不同性质流体(原始状态、含气饱和及含水饱和状态)的AVO正演模拟表明:含水饱和、含气饱和模型及原始模型的AVO截距P均为正值,AVO斜率G都为负值。含气饱和度越大,AVO斜率的绝对值|G|越大。
     一维正演模型研究表明,煤层厚度变化能引起振幅的明显变化;而砂岩厚度增大或减小时,振幅变化不明显。低速煤层对地震振幅的贡献几乎完全淹没了砂岩对振幅的贡献。
     (4)根据地震、测井资料的分析,结合各种地震反演方法的原理和适用性,三维区选择以测井为主体的地震特征参数反演方法来反演自然伽玛、波阻抗、速度、孔隙度等参数体,用自然伽玛和波阻抗参数相结合来识别砂岩;二维区选择约束稀疏脉冲反演波阻抗体,用波阻抗来表征砂岩。
     三维区内基于反演结果所计算出的砂岩厚度横向变化明显,与井点统计砂厚吻合较好,同时其自北向南的朵叶状展布特征反映了三角洲前缘水下分流河道的沉积特征及三维区的物源方向。
     二维区的波阻抗反演结果未能准确的揭示储层砂岩的横向变化,但能粗略的区分砂泥岩,砂岩厚度大的井均位于高阻抗异常带内。
     (5)地震含气性检测尝试表明,含气砂岩对高频的吸收效应显著,高级频F3的平面分布较好的指示了地层含气性。
     (6)基准面旋回对储集体发育特征控制明显,连通性好、厚度大的砂层均发育于基准面旋回早期。同时,砂体厚度越大,沉积期水动力条件越强,颗粒越粗,成岩作用后期抗压实能力越强,有利于形成相对高孔高渗储层。
     (7)区域盖层和局部盖层与山西组烃源岩夹持的河道砂岩构成自生自储的成藏组合。延长探区构造平缓,断层不发育,烃源岩以上下相邻和侧向连接的方式为储层提供了气源,属于典型的岩性气藏。在“广覆式”生烃模式下,储层条件为成藏的主控因素,勘探布井应首选多期河道叠置的富砂区。
The yanchang exploration area locates in the mid-eastern of Ordos Basin, which is found high gas rate wells at the Shanxi formation of the upper paleozoic, showing a good exploration prospect in this area. Meanwhile, the indefinite distribution of reservoir sandstones and oil-gas abundance law restrict the following exploration.
     Aiming at the recent problems in the exploration, on the basis of previous studies and according to the available exploration data to find favorable exploration targets for the ultimate goal, this paper comprehensively used the principle and method of sequence stratigraphy, reservoir sedimentary, seismic sedimentology and petroleum geology etc. to do research in the stratigraphic classification, sedimentary facies analysis, seismic reservoir recognition and analysis of favorable exploration target, which provided scientific basis for later exploration and well spacing.
     The innovative points mainly embodies in:firstly, taking various seismic forward modeling techniques for means to analyze and explain seismic attributes; secondly, using geological and geophysical methods mutual feedback in sedimentary facies analysis and seismic reservoir identification, sedimentary model can guides seismic reservoir identification, the results of seismic reservoir identification can perfect sedimentary face understanding furtherly.
     The main results and understandings from the research are as follows:
     (1) In the base-level cyclic sequences method of Cross for major guiding ideology, using the method of stratum thickness, well-seismic cycling calibration method to assist, this paper divided shanxi formation of study area into two long-term, six middle-term datum plane cycles. The two long-term cycles correspond to the first and the second member of Shanxi Formation respectively; the six middle-term cycles grossly correspond to six sand sets of Shan23~Shan11.
     (2) Shanxi formation is a typical shallow slope delta depositional model, which mainly develop delta front.
     The features during Shanxi formation depositional period were shallow water, flat terrain, relatively weak reformation of lake waves. Underwater distributary channel and bay are the main sedimentary microfacies types of the delta front in which the typical mouth bar developed poorly. The energy of underwater distributary channel was strong, the bottom washout structures are very developed, and the river sandstone usually clip mud bricks. Sandstone sorts are mid-fine grained sandstone of quartz sandstone with good sorting and grinding which is less than 6m in thickness, big thick layer of sandstone is overlaied by multi-stages channels cutting. Sandstone had a poor horizontal continuity and lens shaped distribution in the section, and shaped distribution in lobes in the plane, which exhibited in certain direction effected by the river.
     The water gradually deepened during Shanxi formation depositional process, the shore-lacuatrine system and subsidence center both moved toward north, the northern delta system moved backward and southern delta system northward.
     (3) The forward modeling study shows that seismic amplitude, phase, multi-traces statistical coherent and waveform classification attributes cannot reflect the sandstone, which mainly due to the comprehensive effect of gas sandstone with AVO effect, coal and limestone shielding and shale silty sandstone (silty mudstones) have the similar speed with sandstone.
     The AVO forward modeling of actual containing gas wells with different pore fluid (original state, gas and water saturated state) illustrated:water saturation, gas saturation model and the original model AVO intercept are positive, the AVO gradient are negative. The higher the gas saturation was, the bigger the absolute value |G| of AVO was with offset increases.
     1D forward modeling study shows that, thickness variation of the coal can cause to significantly change of amplitude, but the sand can not. The thin-low velocity coal seam was the mainly contribution to seismic amplitude, almost completely submerged sandstone contribution.
     (4) According to the analysis of the seismic data, with all kinds of seismic inversion method, the principle and the applicability, in the 3D area author selected seismic character parameters inversion method subject with log data to invert GR, IMP, VEL and POR parameters etc., use the combination of GR and IMP to identify sandstone; sandstone reflection using IMP which were inverted by constrained sparse spike inversion were selected in the 2D area.
     The sandstone thickness calculated by the inversion results in 3D area changed significantly horizontally, which had a fine match with well statistical sand thickness. Meanwhile, north to south exhibition features reflect the delta front distributary channel of sedimentary characteristics and the source direction in 3D area.
     The impedance inversion in 2D area can not accurately reveal horizontal changes of sandstone reservoir, but can distinguish mudstone from sandstone roughly, wells had thick sandstone are located within the high impedance anomalous zone.
     (5) Seismic gas-bearing properties detection shows that gas bearing sandstone can effect the absorption of high frequency, the distribution of high frequency F3 can indicate strata gas bearing properties well.
     (6) Base-level cycle obviously controlled reservoir development characteristics, good connectivity, thick sandstone developed in early base-level cycle. At the same time, the thicker the sandstone were, the stronger the hydrodynamic conditions in depositional period were; the coarser the grain were, the stronger the anti-compaction in late diagenesis period were, which were better for forming the relatively high porosity and permeability reservoirs.
     (7) Local and regional seal bed and the channel sandstone clamped by source rock in Shanxi formation formed a reservoir combination of self generation and self preservation. Yanchang exploration area had a gentle structure and undeveloped fault, source rock provided gas source to reservoir neighboring, which belongs to typical lithologic reservoir. Reservoirs conditions were the main controlling factors of reservoir forming in the "wide covered type" hydrocarbon generation model, exploration well spacing should be preferred to the thick sandstone overlaied by multi-stages channels.
引文
[1]Vail P R.等.地震地层学和海平面的全球性变化[C]. C. E. Payton主编:地震地层学,牛毓荃等译,石油工业出版社,1980,153-188
    [2]Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1:seismic stratigraphy interpretation procedure [A]. In:Bally A W, ed. Atlas of seismic stratigraphy [C]. AAPG, Studies in Geology,1987, 27:1-10
    [3]威尔格斯C K,等.层序地层学原理(海平面变化综合分析)[C].徐怀大,等译,北京:石油工业出版社,1992
    [4]Cross T A, Baker R G, Chapin M A, et al. Application of high resolution sequence stratigraphy to reservoir analysis[A]. In:Eschard R and Doligez B(eds), Subsurface reservoir characterization from outcrop observation [C], Edition Technip, Paris,1994,11-33
    [5]Cross T A. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western Interior, U.S.A. [A]. In:Wilgaus C K, et al. Sea-level changes:An intergrated approach [C].SEPM Special Publication, 42,1988:371-380
    [6]徐怀大.如何推动我国层序地层学迅速发展[J].地学前缘,1995,2(3-4):103-113
    [7]魏魁生,徐怀大,雷怀玉,等.非海相层序地层学——以松辽盆地为例[M].北京:地质出版社,1996.
    [8]魏魁生,徐怀大.华北地区典型箕状断陷盆地层序地层学模式及其与油气赋存关系[J].地球科学,1993,18(2)
    [9]李思田,林畅松,解习农,等.大型陆相盆地层序地层学研究——鄂尔多斯中生代盆地为例[J].地学前缘,1995,2(4):133-136
    [10]纪友亮,张世奇,等.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996
    [11]邓宏文,王红亮,’等.高分辨率层序地层在河流相储层分析中的应用[J].石油与天然气地质,1997,18(2):90-95
    [12]邓宏文,王红亮,等.河流相层序地层构成模式探讨[J].沉积学报,2004,22(3):373-379
    [13]邓宏文,吴海波,等.河流相层序地层划分方法[J].石油与天然气地质,2007,28(5):621-627
    [14]邓宏文,郭建宇,等.陆相断陷盆地的构造层序地层分析[J].地学前缘,2008,28(3): 1-7
    [15]Lin Changsong, Li Sitian, Li Zhen. Facies architecture, stratigraphic sequences and coal occurrence in the Late Carboniferous and Early Permian Delta Complexes of the North Huabei Basin, China [A]. Oti N, Postma G. Geology of Deltas[C]. Rotterdam, Netherland:A Balkema Publishers,1995,97-125
    [16]林畅松,张燕梅,刘景彦,等.高精度层序地层学与储层预测[J].地学前缘,2000,7(3):111-117
    [17]林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281
    [18]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97
    [19]邓宏文,王红亮,等.层序地层基准面的识别、对比技术及应用石油与天然气[J].石油与天然气地质,1996,17(3):17-84
    [20]邓宏文,王红亮,等.等沉积物体积分配原理——高分辨率层序地层学的基础[J].地学前缘,2000,7(4):305-311
    [21]邓宏文,王红亮,祝永军,等.高分辨率层序地层学——原理及应用[M].北京:地质出版社,2002
    [22]郑荣才,吴朝容,叶茂才.浅淡陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报,2000,27(3):241-244
    [23]郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249-254
    [24]郑荣才.四川盆地下侏罗统大安寨段高分辨率层序地层学特征[J].沉积学报,1998,16(2): 42-49
    [25]蔡希源,李思田,宋国奇,等.陆相盆地高精度层序地层——隐蔽油气藏勘探基础、方法与实践[M].北京:地质出版社,2003
    [26]樊太亮,郭齐军.鄂尔多斯盆地北部上古生界层序地层特征与储层发育规律[J].现代地质,1999,13(1):32-36
    [27]樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例[J].石油学报,1999,20(2): 12-17
    [28]樊太亮,吕延仓,等.层序地层体制中的陆相储层发育规律[J].地学前缘,2007,12(4):315-321
    [29]樊太亮,于炳松,高志前.塔里木盆地碳酸盐岩层序地层特征及其控油作用[J].现代地质,2007,21(1):57-65
    [30]陈开远,何胡军,柳保军,等.潜江凹陷潜江组古盐湖沉积层序的地球化学特征[J].盐湖研究,2002,10(4):19-23
    [31]Zeng H L, Henry S C, Riola J P. Stratal slicing(Partll):Real 3D seismic data[J].Geophysics,1998,63 (2):514-522
    [32]Zeng H L, Ambrose W A. Seismic sedimentology and region depositional systems in Mioceno Norte, Lake Maracaibo, Venezuela[J]. The Leading Edge,2001, 11:1260-1269
    [33]Eberli G P, Masaferro J L, Rick Sarg J F. Seismic imaging of carbonate reservoirs and system[A]. AAPG Memoir8l[C], Tulsa:AAPG,2004,1-9
    [34]Eberli G P,等.碳酸盐岩储层和沉积体系的地震成像[A].蔡希源,李思田,郑和荣,马永生等译.北京:地质出版社,2007
    [35]Grammer G,M等.储层模拟中露头和现代沉积类比的综合研究[A].蔡希源,李思田,郑和荣,马永生等译.北京:地质出版社,2007
    [36]Brown A R, Dahm C G, Graebner R J. A stratigraphic case history using three-dimensional seismic data in the Gulf of Thailand [J]. Geophysical Prospecting,1981,29 (3):327-349
    [37]凌云研究组.基本地震属性在沉积环境解释中的应用研究[J].石油地球物理勘探,2003,38(6):642-653
    [38]凌云研究组.储层演化地震分析[J].石油地球物理勘探,2004,39(6):672-678
    [39]张延章.地震微相分析技术在大港滩海探区的应用[J].石油勘探与开发,2003,30(4): 58-60
    [40]Pu Renhai, Zhu Li, Zhong Hongli.3-D Seismic Identification and Characterizatio Ancient Channel Morphology[J]. Journal of Earth Science, 2009,20 (5):858-867
    [41]韩喜,高兴友,车廷信,等.利用地震属性沿层分析方法研究河流相沉积环境[J].石油地球物理勘探,2007,42(1):120-124
    [42]陆永潮,杜学斌,陈平,等.精细油气勘探的主要方法体系——地震沉积学研究[J].石油实验地质,2008,30(1):1-5
    [43]张义娜,朱筱敏,刘长利.地震沉积学及其在中亚南部地区的应用[J].石油勘探与开发,2009,36(1):71-79
    [44]吴川,朱青奇,常炳章,等.利用地展模型正演技术进行井间储层横向预测[J].石油地球物理勘探,1998,33(增刊2):82-85
    [45]谢用良.模型正演技术在川西地区砂体预测中的应用研究[J].天然气工业,2004,24(10): 35-37
    [46]周义军,熊玉萍.模型正演技术在鄂托克前旗地区的应用[J].石油物探,2008,47(2): 161-166
    [47]潘仁芳.苏里格庙气田盒8段砂岩AVO正演模型研究[J].天然气工业,2002,22(5) :7-10
    [48]刘企英.利用地震信息进行油气预测[M].北京:石油工业出版社,1994
    [49]朱广生,地震资料储层预测方法[M].北京:石油工业出版社,1995
    [50]BROWN A R. Seismic attributes and their classification[J]. The Leading Edge, 1996,327-333
    [51]Chen Quincy, Steve Sidney. Seismic attribute technology for reservoir forecasting and monitoring[J]. The Leading Edge,1997,16 (5):445-456
    [52]倪逸.储层抽气预测中地震属性优选问题探讨[J].石油地球物理勘探,1999,34(6):614-625
    [53]陈军,陈岩.地震属性分析在储层预测中的应用[J].石油物探,2001,40(3):94-99
    [54]牛彦良.地震特征参数的统计分析方法及应用[J].大庆石油地质与开发,1993,12(3): 1-4
    [55]刘文岭.多信息储层预测地震属性提取与有效性分析方法[J].石油物探,2002,41(1):100-106
    [56]Sailendra N M, Matthias G I. Seismic attribute analysis and geobody visualization changes our perception about a century old highly heterogeneous field[J].The Leading Edge,2008,3:368-374
    [57]石万忠,陈开远,陈新军,等.地震属性参数在胜坨油田气藏预测中的应用[J].石油与天然气地质,2003,24(2):196-198
    [58]郭淑军,陈开远,唐小梅.波形分析在番禺4洼陷古近系储层研究中的应用[J].石油与天然气学报,2008,30(2):81-86
    [59]Lin Changrong, Wang Shangxu, Zhang Yong. Predicting the distribution of reservoirs by applying the method of seismic data structure characteristics: Example from the eighth zone in Tahe Oilfield[J]. Applied Geophysics,2006, 3 (4):234-424
    [60]林昌荣,王尚旭,马在田,等.地震数据体结构特征时空关系与油气预测[J].石油勘探与开发,2008,(4)
    [61]林昌荣,王尚旭.应用地震数据体结构特征法预测孔缝洞型油气储层[J].石油地球物理勘探,2008,43(4):415-421
    [62]Suat Aktepe, Kurt J M, Roderick Perez. Attribute expression of basement faulting Time versus depth migration [J]. The Leading Edge,2008,2:360-376
    [63]贺振华.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探,2005,40(2):190-195
    [64]苟量,彭真明.小波多尺度边缘检测及其在裂缝预测中的应用[J].石油地球物理勘探,2005,40(3):309-313
    [65]边树涛,董艳蕾,郑浚茂.地震波频谱衰减检测天然气技术应用研究[J].石油地球物理勘探,2007,42(3):296-300
    [66]杨顶辉,陈小宏,牟永光.含流体多孔介质的BISQ模型[J].石油地球物理勘探,2001,36(2): 146-159
    [67]撒利明,梁秀文,刘全新.一种基于多相介质理论的油气检测方法[J].勘探地球理进展,2002,25(6):32-35
    [68]Mattew Hall. Predicting bed thickness with cepstral decomposition[J]. The Leading Edge,2006,2:199-204
    [69]杨晓兰,林畅松.运用频谱分解技术预测东印尼Seram岛Oseil油田碳盐岩储层的裂缝展布[J].石油地球物理勘探,2008,43(2):184-189
    [70]潘仁芳.AVO的内涵与外延[J].石油天然气学报(江汉石油学院学报),2006,28(2): 50-55
    [71]潘仁芳.碳酸盐岩储层主要勘探难点的叠前地震技术对策[A]:中国油气勘探领域新展望[C].中国石油学会石油地质专业委员会编,北京:中国石油大学出版社,2006
    [72]Pan R F. Fracture Detection Using Multi-Azimuthal AVO At Y107, Jizhong Depression:AAPG annual meeting, Long Beach, CA, USA,2007, April 1-4.
    [73]刘朋波,蒲仁海,潘仁芳,等.多方位AVO技术在裂缝检测中的应用[J].石油地球物理勘探,2008,43(4):437-42
    [74]刘亚明.高效气藏与低效气藏的AVO异常响应特征研究[D].湖北荆州:江汉石油学院硕士学位论文,2005
    [75]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1994
    [76]Cooke D A, Schneider W A. Generalized linear inversion of reflection seismic data[J]. Geophysics.1983,48 (6):665-676
    [77]钱荣钧,王尚旭,詹世凡,等.石油地球物理勘探技术进展[M],北京:石油工业出版社,2006
    [78]张静,王彦春,陈启林,等.储层特征曲线重构技术在储层预测中的应用研究[J].2008,19(3):396-401
    [79]姚逢昌,甘利灯.地震反演的应用与限制[J].石油勘探与开发,2000,27(2):53-56
    [80]李庆忠.论地震约束反演的策略石油地球物理勘探[J].1998,33(4):423-438
    [81]沈才余,崔汝国.影响测井约束地震反演地质效果因素的分析[J].物探与化探,2003,27(2):123-128
    [82]Connolly. Elastic impedance [J].The Leading Edge,1999,18 (4):438-452
    [83]郑荣才, 文华国,梁西文.鄂尔多斯盆地上古生界高分辨率层序地层分析[J].矿物岩石,2002,22(4):66-74
    [84]李文厚,屈红军,魏红红,等.内蒙古苏里格庙地区晚古生代层序地层学研究[J].地层学杂志,2003,27(1):41-46
    [85]朱洪涛.鄂尔多斯盆地东北部山西组高分辨层序地层与沉积模式研究[D].武汉:中
    国地学大学博士论文,2005
    [86]梁积伟,李文厚.鄂尔多斯盆地东北部山西组高分辨层序地层学研究[J].沉积学报,2006,24(2):251-258
    [87]李增学,王明镇,余继峰,等.鄂尔多斯盆地晚古生代含煤地层层序地层与海侵成煤特点[J].沉积学报,2006,24(6):834-841
    [88]李增学,韩美莲,魏久传,等.鄂尔多斯盆地上古生界高分辨率层序划分与煤聚积规律分析[J].中国石油大学学报(自然科学版),2008,32(1):5-13
    [89]沈玉林,郭英海,李壮福,等.鄂尔多斯盆地北部苏里格庙含油气区上古生界层序地层研究[J].地球学报,2007,28(1):72-78
    [90]彭海艳,刘家铎,陈洪德,等.鄂尔多斯盆地东部山西组高分辨率层序地层与天然气聚集研究[J].石油物探,2008,47(5):519-525
    [91]郑荣才,周祺,王华,等.鄂尔多斯盆地长北气田山西组2段高分辨率层序构型与砂体预测[J].高校地质学报,2009,15(1):69-79
    [92]张满郎,李熙喆,谷江锐,等.鄂尔多斯盆地上古生界层序地层划分及演化[J].沉积学报,2009,27(2):289-298
    [93]郭英海,刘焕杰,权彪,等.鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报,1998,16(3):44-52
    [94]郭英海,刘焕杰.陕甘宁地区晚古生代沉积体系[J].古地理学报,2000,2(1):19-31
    [95]何自新等著.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003
    [96]付锁堂,田景春,陈洪德,等.鄂尔多斯盆地晚古生代三角洲沉积体系平面展布特征[J].成都理工大学学报(自然科学版),2003,30(3):236-241
    [97]肖建新,孙粉锦,何乃祥,等.鄂尔多斯盆地二叠系山西组及下石盒子组盒8段南北物源沉积汇水区与古地理[J].古地理学报,2008,10(4):341-354
    [98]马强.延长油区上古生界物源及沉积相分析[D].西安:西北大学硕士学位论文,2009
    [99]陈全红,李文厚,刘昊伟,等.鄂尔多斯盆地上石炭统—中二叠统砂岩物源分析[J].古地理学报,2009,11(6):629-641
    [100]赵虹,李文厚,等.鄂尔多斯盆地中东部上古生界三角洲沉积特征[J].天然气工业,2006,26(1):26-31
    [101]朱红涛.鄂尔多斯盆地东北部高分辨层序地层与沉积模式研究[D].武汉:中国地质大学博士学位论文,2005
    [102]朱红涛,陈开远,Liu Keyu,等.鄂尔多斯盆地东北部山西组河流相沉积证据[J].天然气工业,2007,27(12):68-73
    [103]Hongtao Zhu, Kaiyuan Chen, Keyu Liu. A sequence stratigraphic model for reservoir sand-body distribution in the Lower Permian Shanxi Formation in the Ordos Basin, northern China[J]. Marine and Petroleum Geology,2008,2 (5):731-743
    [104]庞军刚,李文厚,杨友运,等.鄂尔多斯盆地子洲地区上古生界沉积体系特征[J].天然气工业,2007,27(12):58-61
    [105]王超勇,陈孟晋,汪泽成,等.鄂尔多斯盆地南部二叠系山西组及下石盒子组盒8段沉积相[J].古地理学报,2007,9(4):370-377
    [106]王华,郑荣才,周祺,等.鄂尔多斯盆地长北气田山二段三角洲沉积体系和砂体展布特征[J].岩性油气藏,2008,20(2):22-29
    [107]周祺.鄂尔多斯盆地长北气田山西组二段高分辨率层序地层和储集砂体综合研究[D].成都:成都理工大学博士论文,2009
    [108]赵重远,等.华北克拉通沉积盆地形成与演化及其油气赋存[M].西安:西北大学出版社,1990
    [109]张吉森,张军,徐黎明,等.陕甘宁盆地气区地质构造及勘探目标选择国家“八五”项目专题(85-102-04-03)成果报告.长庆油田(内部资料),1995
    [110]赵重远.论含油气盆地的整体动态综合分析[A].见:赵重远等主编.含油气盆地地质学研究进展[C],西安:西北大学出版社,1993
    [111]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版,2002
    [112]周鼎武,赵重远,等.鄂尔多斯盆地西南缘地质特征及其与秦岭造山带的关系[M].北京:地质出版社,1994
    [113]杨俊杰.鄂尔多斯盆地构造与演化[M].北京:石油工业出版,2000
    [114]赵重远.鄂尔多斯西缘构造演化及板块应力机制初探[A].见:鄂尔多斯盆地西缘地区石油地质论文集[C].呼和浩特:内蒙古人民出版社,1983
    [115]汤锡元,郭忠铭,等.陕甘宁盆地西缘逆冲推覆构造及油气勘探[M].西安:西北大学出版,1992
    [116]孙国凡,刘景平,柳克琪,等.华北中生代大型沉积盆地的发育及其地球动力学背景[J].石油与天然气地质,1985,6(3):278-287
    [117]孙国凡,刘景平.贺兰坳拉槽与前渊盆地及其演化[J].石油与天然气地质,1983,4(3):236-245
    [118]孙国凡,谢秋元,刘景平,等.鄂尔多斯盆地的演化叠加与含油气性[J].石油与天然气地质,1986,7(4):356-366
    [119]孙肇才,谢秋元,杨俊杰.鄂尔多斯盆地——一个稳定克拉通内叠合盆地的典型[A].朱夏,徐旺主编.中国中新生代沉积盆地[M].北京:石油工业出版社,1990
    [120]张恺,罗志立.中国含油气盆地的划分和远景[J].石油学报,1980,1(4):159-174
    [121]张福礼,等,鄂尔多斯盆地天然气地质[M].北京:地质出版社,1994
    [122]杨俊杰.鄂尔多斯盆地西缘掩冲带构造与油气[M].兰州:甘肃科学出版社,1996
    [123]周鼎武,李文厚,张云翔,等.区域地质综合研究的方法与实践[M].北京:科学出版社,2002
    [124]党犇.鄂尔多斯盆地构造沉积演化与下古生界天然气聚集关系研究[D].西安:西北大学博士学位论文,2003
    [125]周立发,赵重远,郭忠铭.阿拉善及邻区沉积盆地的形成与演化[M].西安:西北大学出版社,1995.
    [126]叶连俊,等.华北地台沉积建造[M].北京:科学出版社,1983
    [127]王鸿祯主编.中国及邻区构造古地理和生物古地理[M].武汉:武汉地质学院出版社,1990
    [128]杨华,傅锁堂,魏新善,等.鄂尔多斯盆地上古生界层序地层学研究进展[J].低渗透油气田,2006,11(1):5-12
    [129]任纪舜.印支运动及其在中国大地构造演化中的意义[A].中国地质科学院院报,1984,第9号:31-44
    [130]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造—中国及邻区大地构造图简要说明[M].北京:地质出版社,2000
    [131]赵重远,张军,刘运睦,等.陕甘宁盆地中央古隆起及其形成和演化.长庆石油勘探局西北大学(内部资料),1993
    [132]郭令智,等.印藏碰撞的两种远距离效应现代地质学研究文集[C],南京:南京大学出版社,1992
    [133]林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281
    [134]张占松,甘利灯,徐怀大.循环井震结合法划分地层层序[J].石油地球物理勘探,2000,35(3):372-376
    [135]蒲仁海.论地震地层的等时特征[J].地层学杂志,1996,20(1):40-44
    [136]陆基梦.地震勘探原理[M].北京:石油大学出版社,1993
    [137]罗东明,谭学群,游瑜春,等.沉积环境复杂地区地层划分对比方法——以鄂尔多斯盆地大牛地气田为例[J].石油与天然气地质,2008,29(1):38-44
    [138]赵翰卿.高分辨率层序地层对比与我国的小层对比[J].大庆石油地质与开发,2005,24(1):5-9,12
    [139]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001
    [140]董桂玉.苏里格气田上古生界气藏主力含气层段有效储集砂体展布规律研究[D].成都:成都理工大学博士学位论文,2009
    [141]梁积伟.鄂尔多斯盆地东北部山西组高分辨层序地层与沉积微相特征研究[D].西安:西北大学硕士学位论文,2004
    [142]蒲仁海.前积反射的地质解释[J].石油地球物理勘探,1994,29(4):490-497
    [143]陆邦干.中国典型地震剖面图册[M].北京:石油工业出版社,1989,78-114
    [144]陈红全.鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D].西安:西北大学博士学位论文,2007
    [145]冯增昭,王英华,等.中国沉积学[M].北京:石油工业出版社,1994
    [146]Shuey R T, Simplification of the Zoepprritz's equations [J]. Geophysics, 1985,50 (4):609-614
    [147]Castagna J P.Applied AVO analysis:Use and abuse of amplitude variation with offset. The 1995 distinguished lecture of the SEG
    [148]Castagna J P. Framework for AVO gradient and intercept interpretation [J]. Geophysics,1998,63 (3):948-956
    [149]STEPHEN J. HILL, Golden. Inversion-based thickness determination, The Leading Edge,2005,. May,477-479
    [150]唐湘蓉.地震测井联合反演方法研究及应用——以塔河4号油区带为例[D].成都:成都理工大学硕士学位论文,2005
    [151]廖曦,马波,沈浩.应用Jason软件进行砂体及含气性预测[J].天然气勘探与开发,2002,5(3):34—42
    [152]Hampson, D. P., Schuelke, J. S., Quirein, J. A. Use of multiattribute transforms to predict log properties from seismic data [J]. Geophysics, Soc. of Expl. Geophys.,2001,66,220-236
    [153]傅锁堂,王大兴,于波.长庆气田榆林区山2段砂岩气藏的AVO分析[J].天然气工业,2000,20(6):24—28
    [154]王兴建,曹俊兴.纵横波联合反演在苏里格含气性检测中的应用[J].天然气工业,2008,28(10):44-47
    [155]付金华,段晓文,席胜利.鄂尔多斯盆地上古生界气藏特征[J].天然气工业2000,20(6): 16-21
    [156]李明瑞,窦伟坦,蔺宏斌.鄂尔多斯盆地东部上古生界致密岩性气藏成藏模式[J].石油勘探与开发,2009,36(1):56-62
    [156]刘新社.鄂尔多斯盆地东部岩性油气藏形成机理[D].西安:西北大学博士学位论文,2008
    [157]杨华,张军,王飞雁,等.鄂尔多斯盆地古生界含气系统特征[J].天然气工业,2000,20(6):7-14
    [158]李熙喆,张满郎,谢武仁.鄂尔多斯盆地上古生界岩性气藏形成的主控因素与分布规律[J].石油学报,2009,30(2):168-176
    [159]张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出版社,1999
    [160]Cross T A. Application of High-Resolution Sequence Stratigraphy to Reservoir Analysis. In:Proceedings of the 7th Exploration and Production Research Conference, Paris, Technip,1993,11-33.
    [161]杨晓萍,顾家裕.煤系地层中储层基本特征与优质储层的形成与分布[J].沉积学报,2007,25(6):891-895
    [162]Schmoker J W. U. S. geological survey assessment concepts and model for continuous (unconventional) petroleum accumulations—The "FORSPAN" Model [J] 1999,2168
    [163]邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征[J].石油学报,2009,30(3):324-334
    [164]邹才能,陶士振,袁选俊,等.“连续型”油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发,2009,36(6):669-687
    [165]邹才能,陶士振,朱如凯,等.“连续型”油气藏及其大气区形成机制与分布[J].石油勘探与开发,2009,36(3):307-324
    [166]何自新,付金华,席胜利,等.苏里格大气田成藏地质特征[J].沉积学报,2007,25(6):891-895

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700