用户名: 密码: 验证码:
氧化物半导体纳米线肖特基势垒的调控及在气敏检测方面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于肖特基势垒的器件在近年来展现出优异的性能,对势垒的调控和发展肖特基势垒器件在新领域中的应用是当今研究的热点。在本论文中,我们分别探索了几种有效调控势垒和光响应的方法,对p型氧化物半导体CuO纳米线的光电流产生机制进行探讨,并发展了一种基于光照的肖特基势垒器件在气敏检测方面的应用方法。
     在第一章中,我们对一维纳米光电子器件研究的现状,及基于肖特基势垒构筑的光电功能器件的现状、性能的调控等进行了介绍。并以此为基础,明确提出了本论文的选题、意义和主要研究内容。
     在第二章工作中,我们主要用电场组装的方法结合电沉积技术,在CuO纳米线背靠背肖特基势垒结构上沉积金属Cu,并通过烧结处理,使Cu氧化成CuO,处理后,电流增大约两个数量级,我们发现处理前后样品的电流传输特性都被镜像力模型下的势垒反向电流控制。处理后样品电流的增大主要是由于新的电流传输通道的形成,并且势垒比处理前降低了105meV,势垒降低的主要原因是由于在电沉积和高温退火的过程中CuO纳米颗粒的表面悬空Cu键被有效的钝化,从而部分消除了表面态。基于此方法我们对组装后的纳米线器件一端进行电沉积并高温退火,成功构筑较高开关比的二极管,电场组装和电化学沉积相结合为调控表面态和势垒高度提供了一个简单而有效的方法。另外,我们发现两端直径不对称的一维纳米结构构筑的器件有较高的整流比,为简易构筑肖特基二极管的提供一个新的方法。基于CuO表面氧吸附不显著的推测,我们在空气和高纯氮气环境中对纳米线器件的电输运性质和光电流随时间变化性能分别进行了测试,并且对其光电流的产生机制进行了分析,发现在空气中光电流的产生有两个阶段,对应于本征光电流和光致氧的吸附过程,发现器件的响应和回复时间都比较短。
     第三章工作中,基于羧基类化合物可以调控ZnO纳米器件的输运性质的报道,我们先用交流电场组装的方法构筑了单根CuO纳米线器件,然后用带有苯环的巯基类化合物对纳米线表面修饰敏化,结果表明敏化后暗态电流变小,势垒增大,但是光响应却显著增强。分析势垒变化的原因是由于敏化后在纳米线和电极界面处引入一个分子偶极层。相当于在原来纳米线的内建场的基础上叠加一个同向的电场,使势垒增高,同时也提高了内建场分离光生激子的效率;另外,敏化处理后SAMs在纳米线的表面形成有序排列苯环膜,这种有序排列的苯环分子由于π-π堆积能使电子在膜中以跃迁的形式运动。因此光生的电子能通过纳米线表面的SAMs层有效传输,同时光生的空穴能在体内通过未耗尽的核传输,然后在和电极接触处以隧穿方式转移到金属电极,使光响应增大。
     在第四章工作中,我们基于对肖特基势垒在气敏方面的优异性能的报道,结合我们前期在肖特基势垒器件方面的研究及光照可以提高纳米线表面催化活性考虑,我们计算了CuO纳米线器件的有效接触势垒高度,发现随着偏压的增大,有效势垒值减小。初步搭建了气敏检测的试验平台,研究了一维CuO和SnO2肖特基纳米线器件在室温和高温情况下、暗态和UV光照时对低浓度H2S气体的检测,结果发现对于CuO纳米器件,不加光时在室温和200℃时对低浓度的H2S气体均无响应,在光照时,室温下仍无响应,高温200℃时可以检测到电流的变化,而且随着H2S浓度的增大,电流的变化逐渐达到饱和。我们初步提出一个模型来解释响应的机理。而对于SnO2纳米线器件,室温暗态时对H2S气体没有响应,而250℃响应最大,可达到107.4%;对样品进行UV光照时,室温和高温时都大大提高了样品对气体的响应,其中在250℃响应可达797.1%,提高了七倍多,但是关于光照导致检测灵敏度的增强具体原因还在进一步探讨中。基于此研究希望发展一种在有氧和室温条件下工作的高性能气敏传感器。
     在第五章中,我们对本论文的工作进行了总结,并对纳米线肖特基势垒器件在气敏方面的进一步研究进行了展望。
The devices based on Schottky barriers contact exhibit the excellent performance in recent years. The modulating and developing applications in the new fields to Schottky barriers are main research interests. In this paper, we developed several methods to modulate the barrier and the photoresponse, and we discussed the reason for the photocurrent of p-type oxide semiconductor of CuO nanowires. Meanwhile, a method combining the Schottky barriers with lighting was developed for the gas detecting.
     In the chapter 1, we introduced the background of one dimension optoelectronic nanodevices and the devices based on Schottky barriers. Therefore, we deduce the research objectives and the main research contents in our future works.
     In the chapter 2, the AC assembly and electrodepositon method were used to deposite Cu on the CuO nanowire of back to back Schottky barrier, the Cu particles deposited changed into CuO through annealing, which made the current increase about two orders. The current transport properties before and after treatment are both dominated by the reverse current of Schottky barriers under image force model. The current increase after treatment results from the formation of another current pathway, which can decrease the barrier height in the CuO nanowire Schottky barriers about 105 meV. The reason for barrier height decreases is the surface states in metal-semiconductor interface are largely reduced by passivating dangling bonds in the annealing process. Then the Cu was deposited on one side of CuO nanowire device assembled, and the device was annealed after that. We obtained a diode with high on-off value. The AC assembly combined with electrodepositon provided a simple and effective method for modulating the surface states and barrier height. On the other hand, we found the nanowires with different diameter on two sides could be made a device with high rectifying value, which provided a new method for building the Schottky diode. Considering the less oxygen absorption on the CuO nanowire, we measured the current transport properties and the curves of photocurrent versus time of CuO nanowire device in air and high pure N2. The mechanism of the photocurrent was discussed; we found that there were two processes for the produce of photocurrent. The photocurrent was intrinsic semiconductor combined with the current produced in the process of photo- absorbed oxygen, respectively. The response and back for CuO nanodevices are really fast.
     In the chapter 3, considering the current transport properties of ZnO nanowire device could be modulated by surface functionalized with carboxylic compound, we built the single CuO nanowire device first, and then the fluorinated benzenethiol were used to functionalize the surface of CuO nanodevice. After treatment, the current decreased and the contact barrier increased. But it was worth mentioned that the photoresponse increased remarkably. The increase of barrier results from the molecular dipole between the interface of nanowire and electrode after functionalizing, which added a same directional electric field on the built-in field of CuO nanowire, and made the barrier increase finally. At the same time, the added electric field made the separate efficiency of photo-generated electron-hole pairs under lighting. In addition, the ordinal phenol ring aligned on the surface of nanowire was made after functionalizing, which improved the electron transport through hopping among rings through effectiveπ-πstacking of phenol rings. Therefore, the photo-generated electrons could transport the self-assembly molecular layer. At the same time, the photo-generated holes transport in the undepleted core of nanowire, which arrived at the electrode by tunneling, and then the photoresponse increased finally.
     In the chapter 4, based on the report of the excellent performance of Schottky barriers device on the gas detecting, considering our studies on the Schottky barriers device and the increasing of surface catalyzed activity by lighting, we calculated the effective barrier height of CuO NW device, which decreased with the bias increased. We built the primary experiment equipments of gas sensor, and observed the response of CuO and SnO2 nanodevices to low concentration H2S in dark and lighting under room and high temperature, respectively. We found that the CuO nanodevices had poor response to H2S under room and 200℃without lighting. However, we could detect the change of current at 200℃with lighting. The change of current became saturated with the increase of H2S. A primary model was built to explain the mechanism of response. For the SnO2 Schottky barriers device, the sample had no response to H2S under room temperature, and had the biggest response signal under 250℃, which arrived at 107.4 percent. The response could be increased largely in room and high temperature under UV lighting, which arrived at 797.1 percent in 250℃, especially. Seven times increase was investigated. The main reason for it is still in research. Hopefully, a gas sensor with excellent performance which can work under room temperature and air will be developed.
     In the chapter 5, we made a conclusion of the researches of this paper, and expected the future investigations on the farther application of Schottky barriers on gas detecting.
引文
[1] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Kirl, R.E. Smalley, Nature, 1985, 318, 162.
    [2]张立德,牟季美,纳米材料和纳米结构;北京:科学出版社,2001。
    [3] R.S. Wagner, W.C. Ellis, K.A. Jackson, S.M. Arnold, J. Appl. Phys., 1964, 35, 2993.
    [4] S. Iijima, Nature, 1991, 354, 56.
    [5] N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, B, Science, 1995, 269, 966.
    [6] E.W. Wong, P.E. Sheehan, and C.M. Lieber, Science, 1997, 277, 1971.
    [7] Y.Y. Wu, and P.D. Yang, Appl. Phys. Lett., 2000, 77, 43.
    [8] Y.Y. Wu, and P.D. Yang, Adv. Mater., 2001, 13, 520.
    [9] P.D. Yang, Y.Y. Wu, and R. Fan, Internation. J. Nanoscien., 2002, 1, 1.
    [10] Y. Cui, X.F. Duan, J.T. Hu, C.M. Lieber, J. Phys. Chem. B, 2000, 104, 5213.
    [11] Y. Cui, and C.M. Lieber, Science, 2001, 291, 851.
    [12] Y. Huang, X.F. Duan, Y. Cui, L.J. Laubon, K.H. Kim, C.M. Lieber, Science, 2001, 294, 1313.
    [13] J.R. Kim, H.M. So, J.W. Park, and J.J. Kim, J.H. Kim, C.J. Lee, and S.C. Lyu, Appl. Phys. Lett., 2002, 80, 3548.
    [14] E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, and Z.L. Wang, Appl. Phys. Lett., 2002, 81, 1869.
    [15] Z.W. Pan, H. Lai, F.C.K. Au, X.F. Duan, W.Y. Zhou, W.S. Shi, N. Wang, C.S. Lee, N.B. Wong, S.T. Lee, and S.S. Xie, Adv. Mater, 2000, 12, 1186.
    [16] E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 2000, 12, 13.
    [17] C.L. Feng, M. Steinhart, A.M. Caminade, J.P. Marjoral and W.Knoll, Adv. Mater, 2007, 19, 1933.
    [18] P. Deb, H. Kim, Y.X. Qin, R. Lahiji, M. Oliver, R. Reifenberger, and T. Sands, Nano Lett. 2006, 6, 2893.
    [19] X. Jiang, T. Hetticks, Y. Xia, Nano. Lett. 2001, 2, 1333.
    [20] T.W. Ebbesen, P. M. Ajayan, Nature,1992, 358, 220
    [21] Y.J. Chen, Appl. Phys. Lett, 2004, 85, 5682
    [22] S. Park, T. A. Taton, and C.A. Mirkin, Science, 2002, 295, 1503.
    [23] H.J. Qi, L.X. Wang, K.W. Wong, and Z.L. Du, 2009, 94, 143902
    [24] DNA Arrays: Technologies and Experimental Strategies, edited by E. V. Grigorenko (CRC, Boca Raton, 2002), pp. 1–10.
    [25] T.G. Drummond, M.G. Hill, and J.K. Barton, Nat. Biotechnol. 2003, 21, 1192.
    [26] J. Homola, S.S. Yee, and G. Gauglits, Sens. Actuators B 1999, 54, 3.
    [27] M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Science 1998, 281, 2013.
    [28] R. Gill, I. Willner, I. Shweky, and U. Banin, J. Phys. Chem. B. 2005, 109, 23715.
    [29] F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, U. Banin, and I. Willner, J. Am. Chem. Soc. 2003, 125, 13918.
    [30] A.R. Clapp, I.L. Medintz, J.M. Mauro, B.R. Fisher, M.G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc. 2004, 126, 301.
    [31] I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, and J.M. Mauro, Nature Mater. 2003, 2, 630.
    [32] F. Kukolka, O. Schoeps, U. Woggon, and C.M. Niemeyer, Bioconjugate Chem. 2007, 18, 621.
    [33] S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature, 1998, 393, 49.
    [34] S. Ju, K. Lee, D.B. Janes, Nano Lett, 2005, 5, 2281.
    [35] Z. Chen, J. Appenzeller, J. Knoch, et al. Nano Lett, 2005, 5, 1497
    [36] S. Wind, J. Appenzeller, Ph. Avouris, Phys. ReV. Lett. 2003, 91, 58301.
    [37] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 1998, 73, 2447.
    [38] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 2001, 87, 256805.
    [39] A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. ReV. Lett. 2004, 92, 106804.
    [40] T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Nano Lett. 2004, 4, 35.
    [41] H.Windischmann, P. Mark, J. Electrochem. Soc. 1979, 126, 627.
    [42] M. Schulz, E. Bohn, G. Heiland, Tech. Mess. 1979, 46, 405.
    [43] D.E. Williams in Solid State Gas Sensors (Eds. P.T. Moseley, B.C. Totfield), Adam Hilger, Philadelphia, 1987, p. 71.
    [44] M. J. Madou, S. R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, San Diego, 1989
    [45] M. Batzill, U. Diebold, J. Phys. Condens. Matter 2006, 18, 129.
    [46] N.A. Bell, J.S. Brooks, S.D. Forder, J.K. Robinson, S.C. Thorpe, Polyhedron 2002, 21, 115
    [47] M. Hunger, J.Weitkamp, Angew. Chem. 2001, 113, Angew. Chem. Int. Ed. 2001, 40, 2954.
    [48] C. Malagu, M.C. Carotta, S. Morandi, S. Gherardi, G. Ghiotti, A. Giberti, G. Martinelli, Sens. Actuators B. 2006, 118, 94.
    [49] X. F. Duan, Y. Huang, J. F. Wang, et al. Nature, 2001, 409, 66.
    [50] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, and Z. F. Ren, Nano Lett. 2006, 6, 1719.
    [51] H.M. Manohara, E.W. Wong, E. Schlecht, B.D. Hunt, and P.H. Siegel, Nano Lett. 2005, 5, 1469.
    [52] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater. (Weinheim, Ger) 2002, 14, 160.
    [53] H. Kind, H. Yan, B. Messer, et al. Adv. Mater., 2002, 14, 158.
    [54] Z. Fan, P. C. Chang, J.G. Lu, et al. Appl. Phys. Lett, 2004, 85, 6128.
    [55] J. Kong, H. Dai, J. Phys. Chem. B 2001, 105, 2890
    [56] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris, Appl. Phys. Lett. 1998, 73, 2447
    [57] S. J. Tans, R. M. Verschueren, C. Dekker, Nature 1998, 393, 49
    [58] A. Rose, Concepts in Photoconductivity and Allied Problems, Krieger Publishing Company, New York 1978.
    [59] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, Y. Ohya, Jpn. J. Appl. Phys. 1994, 33, 6611.
    [60] L. Liu, C. R. Goria, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, J. Electron. Mater. 2000, 29, 69.
    [61] S.E. Ahn, H.J. Ji, K. Kim, G.T. Kim, C.H. Bae, S.M. Park, Y.K. Kim, and J.S. Ha, Appl. Phys. Lett. 2007, 90, 153106.
    [62] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nat. Mater. 2005, 4, 459.
    [63] R. Martel, V. Derycke, C. Lavoie, et al. Phys. Rev. Lett., 2001, 87, 256805.
    [64] H. Ibach, D. Kohl, H. Luth, W. Sander, Phys. J. 2005, 4, 65.
    [65] G. Heiland, Sens. Actuators 1982, 2, 343.
    [66] L.Y. Kupriyanov, Sensors and Actuators, 1996, 4.
    [67] A. Gurlo, Chem. Phys. Chem. 2006, 7, 2041.
    [68] D. Kohl, Sens. Actuators 1989, 18, 71.
    [69] N.L. Wu, S.Y. Wang, I.A. Rusakova, Science. 1999, 285, 1375.
    [70] M. Law, H. Kind, B. Messer, F. Kim, and P.D. Yang, Angew. Chem. Int. Ed. 2002, 41, 2405.
    [71] B. Kamp, R. Merkle, J. Maier, Sens. Actuators B. 2001, 77, 534
    [72] J.J. Chen, K. Wang, L. Hartman, W.L. Zhou, J. Phys. Chem. C. 2008, 112, 16017.
    [73] J.Y. Son, S.J. Lim, J.H. Cho, W.K. Seong, H.Kim, Appl. Phys. Lett. 2008, 93, 053109.
    [74] V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Nano Lett. 2006, 6, 1584.
    [75] J.H. Liu, X.J. Huang, Y. Gang, J. Zheng, et al. Sensors. 2003, 3, 110.
    [76] V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, A. Kolmakov, Nano Lett. 2007,7, 3182.
    [77] F. Hernandez-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J.R. Morante, M.A. Juli, S. Mathur, and A. Romano-Rodriguez,Adv. Funct. Mater. 2008, 18, 2990.
    [78] F. Patolsky, G.F. Zheng, O. Hayden, M. Lakadamyali, X.W. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. (U.S.A.) 2004, 101, 14017.
    [79] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 2005, 5, 667.
    [80] M. Sébastien, M.T. Stefan, and P. Luc, Appl. Phys.Lett, 2003, 82, 4119.
    [81] C.R. Martin, Science, 1994, 266,, 1961.
    [82] M. Delvaux, J. Duchet, P.Y. Stavaux et al, Synth. Met. 2000, 113, 275.
    [83] J.M. Mativetsky and W.R. Datars, Physica B, 2002, 324, 191.
    [84] J.G. Park, S.H. Lee, B. Kim, et al, Appl. Phys. Lett. 2002, 81, 4625.
    [85] S.K. Saha, Y.K. Su, C.L. Lin, and D.W. Jaw, Nanotechnology 2004, 15, 66.
    [86] S.Frank, P. Poncharal, Z.L. Wang, W.A. Heer, Science, 1998, 280, 1744.
    [87] J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, et al, Phys. Rev. Lett. 1999 82, 944.
    [88] J. Joo, K.T. Park, B.H. Kim, et al, Synth. Met. 2003, 7, 135.
    [89] A.G. MacDiarmid, W.E. Jones, I.D. Norris, et al, Synth. Met. 2001, 119, 27.
    [90] G.T. Kim, M. Burghard, D.S. Suh, et al. Synth. Met. 1999, 105, 207;J.G. Park, G.T. Kim, V. Krstic, et al, Synth. Met. 2001, 119, 53.
    [91] S.W. Chung, J.Y. Yu and R. James, Appl. Phys. Lett. 2000, 76, 2068.
    [92] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio,Nature. 1996, 382, 54.
    [93] B. Wei, R. Spolenak, P. Kohler-Redlich, M. Ruhle, E. Arzt, Appl. Phys. Lett. 1999 74, 3149.
    [94] Y.Z. Long, Z.J. Chen, N.L. Wang, et al. Appl. Phys. Lett. 2003, 83, 1863.
    [95] Y.Z. Long, L.J. Zhang, Y.J. Ma, et al. 2003, 24, 938.
    [96] Y.Z. Long, and Z.J. Chen, Appl. Phys. Lett. 2005, 86, 153102.
    [97] Y.J. Ma, F. Zhou, L. L, and Z. Zhang, Soli. Stat. Comm. 2004, 130, 313.
    [98] X.F. Duan, Y. Huang, Y. Cui, et al, Nature. 2001, 409, 66.
    [99] X.F. Duan, C.M. Liber, J. Am. Chen. Soc. 2000, 122, 188.
    [100] X.F. Duan, J.F. Wang and C.M. Liber, Appl. Phys. Lell. 2000, 76, 1116.
    [101] Y. Cui, C.M. Liber, Science, 2001, 219, 851.
    [102] P.A. Smith, C.D. Norduist and T.N. Jackson, et al, Appl. Phys. Lett. 2000, 77, 1399.
    [103] L.F. Dong, J. Bush, V. Chirayos, et al, Nano Lett., 2005, 5, 2112.
    [104] Y.L. Liu, J.H. Chung, W. K. Liu, and R.S. Ruoff, J. Phys. Chem. B 2006, 110, 14098.
    [105] A. Vijayaraghavan, S. Blatt, D.Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, Nano Lett. 2007, 7, 1556.
    [106] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contact; Clarendon Press: Oxford, U.K., 1988.
    [107] C.S. Lao, J. Liu, P.X. Gao, L.Y Zhang, D. Davidovic, R. Tummala, and Z.L. Wang, Nano Lett. 2006, 6, 263.
    [108] C.S. Lao, Y. Li, C.P. Wong, and Z.L. Wang, Nano. Lett. 2007, 7, 1323.
    [109] G. Cheng, S. J. Wang, K. Cheng, X. H. Jiang, L. X. Wang, L. S. Li, Z.L. Du, and G. T. Zou, Appl. Phys. Lett. 2008, 92, 223116.
    [110] Sze S. Physics of semiconductor devices. Wiley, New York, 1981.
    [111] J. Li, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett. 2003, 82, 2491.
    [112] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett, 2001, 87, 256805.
    [113] S. Heinze, J. Tersoff, R. Martel, et al. Phys. Rev. Lett, 2002, 89, 106801.
    [114] J.A. Misewich, R. Martel, P. Avouris, et al. Science, 2003, 300, 783.
    [115] Y.B. Li, D.V. Florent, S. Mathieu, Y. Lchiro, D. Jean-Jacques, Appl. Phys. Lett. 2009, 94, 023110.
    [116] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P. R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett. 2007, 7, 1003.
    [117] Q.H. Li, Q. Wan, Y.X. Liang, and T.H. Wang, Appl. Phys. Lett. 2004, 84, 4556.
    [118] Z.Y. Fan, P.C. Chang, J.G. Lu, E.C. Walter, R.M. Penner, C.H. Lin and H.P.Lee, Appl. Phys. Lett. 2004, 85, 6128.
    [119] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, J. Am. Chem. Soc. 2009, 131, 17690.
    [120] S.J. Wang, W.J. Lu, G. Cheng, K. Cheng, X.H. Jiang, Z.L. Du, Appl. Phys. Lett. 2009, 94, 106263.
    [121] C. Y. Nam, D. Tham, and J. E. Fischer, Nano Lett. 2005, 5, 2029
    [122] G. Cheng, Z.H. Li, S.J. Wang, H.C. Gong, K. Cheng, X.H. Jiang, S.M. Zhou, Z.L. Du, T. Cui, and G.T. Zou, Appl. Phys. Lett. 2008, 93, 123103
    [1] S. SZE, Physics of semiconductor devices. Wiley, New York, 1981.
    [2] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, J. Am. Chem. Soc. 2009, 131, 17690.
    [3] C.S. Lao, Y. Li, C.P. Wong, and Z.L. Wang, Nano. Lett. 2007, 7, 1323.
    [4] H. M. Manohara, E. W. Wong, E. Schlecht, B. D. Hunt, and P. H. Siegel,Nano Lett. 2005, 5, 1469.
    [5] J.R. Kim, H. Oh, H.M. So, et al. Phys. E. 2003, 18, 225.
    [6] R.M. Ma, L. Dai, G.G. Qin, Nano Lett. 2007, 7, 868.
    [7] Y.W. Heo, L.C. Tien, D.P. Norton, et al. Appl. Phys. Lett. 2004, 85, 3107.
    [8] G. Cheng, S. J. Wang, K. Cheng, X. H. Jiang, L. X. Wang, L. S. Li, Z.L. Du, and G. T. Zou, Appl. Phys. Lett. 2008, 92, 223116.
    [9] K. Cheng, G. Cheng, S. J. Wang, L. S. Li, S. X. Dai, X. T. Zhang, B. S. Zou, and Z. L. Du, New J. Phys. 2007, 9, 214
    [10] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P. R. Aplin, J. Park, X.Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 2007, 7, 1003.
    [11] J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, and Z.L. Wang, Appl. Phys. Lett. 2009, 94, 119103.
    [12] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature. 2004, 430, 61.
    [13] X.Y. Zhu, G. Cheng, S.J. Wang, S.X. Dai, S.M. Wan, X.T. Zhang, and Z.L. Du, Sci. China, Ser. G. 2008, 51, 1448.
    [14] X.F. Duan, Y. Huang, Y. Cui, et al. Nature. 2001, 409, 66.
    [15] X.F. Duan, C.M. Liber, J. Am. Chen. Soc. 2000, 122, 188.
    [16] X.F. Duan, J.F. Wang and C.M. Liber, Appl. Phys. Lell. 2000, 76, 1116.
    [17] Y. Cui, C.M. Liber, Science, 2001, 219, 851.
    [18] G. Cheng, Z.H. Li, S.J. Wang, H.C. Gong, K. Cheng, X.H. Jiang, S.M. Zhou, Z.L. Du, T. Cui, and G.T. Zou, Appl. Phys. Lett. 2008, 93, 123103
    [19] D.W. Austin, A.A. Puretzk, et al. Chem. Phys. Lett., 2002, 36, 525.
    [20] C.L.Huang, R.E. Partch, E.J. Matijevic, Colloid Interface. 1995, 170, 275.
    [21] J. F.Xu, W. Ji, Z.X. Shen, S.H.Tang, X.R.Ye, D.Z. Jia, X.Q.J. Xin, Solid State Chem. 1999, 147, 516
    [22] R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 2000, 12, 2301
    [23] C.T. Hsieh, J.M. Chen, H.H. Lin, H.C. Shih, Appl. Phys. Lett. 2003, 82, 3316.
    [24] J.J. Chen, K. Wang, L. Hartman, and W.L. Zhou, J. Phys. Chem. C 2008, 112, 16017
    [25] S.R. Morrison, The Chemical Physics of Surfaces (Plenum, New York, 1977)
    [26] M.P. McDaniel and R.L. Burwell, J. Catal. 1975, 36, 394.
    [27] Y.G. Shen, D.J. O’Connor, K. Wandelt, and R.J. MacDonald, Surf. Sci. 1996, 357, 921.
    [28] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, J.C. Li, and T. Yu, Nanotechnology. 2009 20, 085203.
    [29] C. Raffaella, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, et al. Nano Lett. 2005, 5, 981.
    [30] Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, Appl. Phys. Lett. 2004, 84, 4556.
    [31] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 2005, 86,123117.
    [32] J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, Zhong Lin Wang et al. Appl. Phys. Lett. 2009, 94,191103.
    [33] L.X. Wang, G. Cheng, X.H. Jiang, S.J. Wang, X.T. Zhang, and Z.L. Du, Appl. Phys. Lett. 2009, 95, 083107.
    [34] J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, and J.R. Morante, Appl. Phys. Lett. 2008, 93, 123110.
    [1] M.S.Arnold, P. Avouris, Z.W. Pan, Z.L.Wang, J. Phys. Chem. B. 2003, 107, 659
    [2] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 2004, 84, 3654.
    [3] C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D.Davidovic, R. Tummala, Z.L. Wang, Nano Lett. 2006, 6, 263.
    [4] F.Qian, S. Gradecak, Y. Li, C.Y. Wen, C.M. Lieber, Nano Lett. 2005, 5, 2287.
    [5] Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Science. 2001, 293, 1289
    [6] H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, J. Am. Chem. Soc. 2005,127, 16376.
    [7] Y. Huang, X.F. Duan, Q.Q. Wei, C.M. Lieber, Science. 2001, 291, 630.
    [8] Z.H. Zhong, F. Qian, D.L. Wang, C.M. Lieber, Nano Lett. 2003, 3, 343.
    [9] A.Ulman, An Introduction to Ultrathin Organic Films; Academic Press: Boston, MA, 1991.
    [10] C.S. Lao, Y. Li, C.P. Wong, and Z.L. Wang. Nano Lett. 2007, 7, 1323.
    [11] J.Zhang, J. Liu, Q. Peng, X. Wang, Y.D. Li, Chem. Mater. 2006, 18, 867.
    [12] L. Rout, T.K. Sen, T. Punniyamurthy, Angew. Chem., Int. Ed. 2007, 46, 5583.
    [13] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 2000, 407, 496.
    [14] M.M. Sung, K. Sung, C.G. Kim, S.S. Lee, Y. Kim, J. Phys. Chem. B 2000, 104, 2273
    [15] G. Cheng, Z.H. Li, S.J. Wang, H.C. Gong, K. Cheng, X.H. Jiang, S.M. Zhou, Z.L. Du, T. Cui, and G.T. Zou, Appl. Phys. Lett. 2008, 93, 123103
    [16] Z.Y. Zhang, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Appl. Phys. Lett. 2006, 88, 073102.
    [17] C.Y. Nam, D. Tham, J.E. Fischer, Nano Lett. 2005, 5, 2029.
    [18] L.X. Wang, G. Cheng, X.H. Jiang, S.J.Wang, X.T. Zhang, Z.L. Du, Appl. Phys. Lett. 2009, 95, 083107
    [19] G. Cheng, S. J. Wang, K. Cheng, X. H. Jiang, L. X. Wang, L. S. Li, Z. L. Du, and G. T. Zou, Appl. Phys. Lett. 2008, 92, 223116.
    [20] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contact; Clarendon Press: Oxford, U.K., 1988.
    [21] S.J. Wang, W.J. Lu, G. Cheng, K. Cheng, X.H. Jiang, Z.L. Du, Appl. Phys. Lett. 2009, 94, 263106
    [1] G. Heiland, E. Mollwo, F. Stockmann, Solid State Phys. 1959, 8, 191.
    [2] H. Ibach, D. Kohl, H. Luth, W. Sander, Phys. J. 2005, 4, 65.
    [3] G. Heiland, Sens. Actuators 1982, 2, 343.
    [4] G. Heiland, Z. Phys. 1957, 148, 15.
    [5] I. A. Myasnikov, Zh. Fiz. Khim. 1957, 31, 1721.
    [6] L. Y. Kupriyanov, Sensors and Actuators, 1996, 4.
    [7] A. Gurlo, Chem. Phys. Chem. 2006, 7, 2041.
    [8] D. Kohl, Sens. Actuators 1989, 18, 71.
    [9] B. Kamp, R. Merkle, J. Maier, Sens. Actuators B. 2001, 77, 534
    [10] A. Chowdhuri, P. Sharma, V. Gupta, and K. Sreenivas, J. Appl. Phys, 2002, 92, 2172.
    [11] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 2005, 5, 667.
    [12] N.L. Wu, S.Y. Wang, I.A. Rusakova, Science. 1999, 285, 1375.
    [13] M. Law, H. Kind, B. Messer, F. Kim, and P.D. Yang, Angew. Chem. Int. Ed. 2002, 41, 2405.
    [14] J.D. Prades, R.J. Diaz, F.H. Ramirez, S. Barth, A. Cirera, A.R. Rodriguez, S. Mathur, J.R. Morante, Appl. Phys. Lett. 2009, 93, 123110.
    [15] J.Y. Son, S.J. Lim, J.H. Cho, W.K. Seong, H.Kim, Appl. Phys. Lett. 2008, 93,053109.
    [16] V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Nano Lett. 2006, 6, 1584.
    [17] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, J. Am. Chem. Soc. 2009, 131, 17690.
    [18] J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sens. Actuators B, 1998, 49, 121.
    [19] F. Hernandez-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J.R. Morante, M.A. Juli, S. Mathur, and A. Romano-Rodriguez,Adv. Funct. Mater. 2008, 18, 2990.
    [20] K. Cheng, G. Cheng, S.J. Wang, L.S. Li, S.X. Dai, X.T. Zhang, B.S. Zou, Z.L. Du, New J. Phys.2007, 9, 214.
    [21] G. Cheng, S.J. Wang, K. Cheng, X.H. Jiang, L.X. Wang, L.S. Li, Z.L. Du, G.T. Zou, Appl. Phys. Lett. 2008, 92, 223116.
    [22] G. Cheng, Z.H. Li, S.J. Wang, H.C. Gong, K. Cheng, X.H. Jiang, S.M. Zhou, Z.L. Du, T. Cui, G.T. Zou, Appl. Phys. Lett. 2008, 93, 123103.
    [23] S.J. Wang, W.J. Lu, G. Cheng, K. Cheng, X.H. Jiang, Z.L. Du, Appl. Phys. Lett. 2009, 94, 106263.
    [24] L.X. Wang, G. Cheng, X.H. Jiang, S.J. Wang, X.T. Zhang, Z.L. Du, Appl. Phys. Lett. 2009, 95, 083107.
    [25] J. Gong, Y.H. Li, X.H. Chai, Z.S. Hu, Y.L. Deng, J. Phys. Chem. C. 2010, 114, 1293.
    [26] J.D. Prades, R.J. Diaz, F.H. Ramirez, S. Barth, A. Cirera, A.R. Rodriguez, S. Mathur, J.R. Morante, Sens. Actuat. B. 2009, 140, 337.
    [27] E.H. Rhoderick, R.H. Willams. Metal-semiconductor contact. Clarenoon, Oxford, 1988
    [28] J.H. Liu, H.J. Huang, G. Ye, W. Liu, Z. Jiao and Z.L. Yu, Sensors 2003, 3, 110.
    [29] J.J. Chen, K. Wang, L. Hartman, and W.L. Zhou, J. Phys. Chem. C, 2008, 112, 16017.
    [30] A. Chowdhuri, V. Gupta, and K. Sreenivas, Appl. Phys. Lett. 2009, 84, 1180.
    [31] P. Camagni, G. Faglia, G. Sberveglieri, Sens.Actuators. B, 1996, 31, 99.
    [32] Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
    [33] F.M. Ross, J. Tersoff, M.C. Reuter, Phys. Rev. Lett. 2005, 95, 146104.
    [34] S.H. Sun, G.W. Meng, Y.W. Wang,T. Gao, M.G. Zhang,Y. T. Tian, X.S. Peng, L.D.Zhang, Appl. Phys. A,2003, 76, 287.
    [35] K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, Appl. Phys. Lett. 2009, 94, 242902.
    [36] A. Maiti, J.A. Rodriguez, M. Law, P. Kung, J.R. McKinney, and P.D. Yang, Nano Lett, 2003, 3, 1025.
    [37] G.S. Devi, S. Manorama, and V.J. Rao, J. Electrochem. Soc, 1995, 142, 2754,
    [38] V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, and A.Kolmakov, Nano Lett, 2007, 7, 3182.
    [39] Z.Y. Zhang, K.Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, and L. M. Peng, Adv. Funct. Mater.2007 17: 2478
    [40] Y.W. Heo, K.H. Baik, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 2004, 84, 2835
    [41] O.V. Harnack, C. Pacholski, H.Weller, A. Yasuda, J.M. Wessels, Nano Lett, 2003, 3, 8.
    [42] G. Cheng, S.J Wang, K. Cheng, X.H. Jiang, L.X. Wang, L.S. Li, Z.L. Du, G.T. Zou, Appl. Phys. Lett. 2008, 92, 223116.
    [43] X.H. Chen, and M. Moskovits, Nano Lett. 2007, 7, 807.
    [44] H.Kind, H.Q. Yan, B. Messer, M. Law, and P.D. Yang, Adv. Mater. 2002, 14, 158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700