用户名: 密码: 验证码:
钛酸钡晶粒的微结构缺陷及相关性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于铁电材料具有压电、热电、铁电、光电和电致伸缩等独特性能,而且与其它功能材料具有良好的结构功能相容性,使得其在现代科技的诸多方面获得应用。对铁电材料的研究已经持续了近一个世纪,其研究领域主要涉及应变、极化和温度的耦合作用。随着国防工业,生物技术,精密机械和电子信息技术等重要领域的发展,对铁电材料又提出了新的和更高的要求,如高压电活性和复杂环境下使用等,使其成为当前材料科学与工程发展的前沿领域和研究热点。
     晶体中的电子分布以及变化规律反映了晶体的物理性能。微结构缺陷的存在破坏了晶体结构的完整性,从而改变了电子分布和跃迁规律,将直接影响材料的各项性质。经典铁电唯象理论表明铁电性质与材料所处应力状态密切相关,应力的存在不但会改变居里温度,极化强度,压电系数,电滞回线,甚至会改变相变级数和诱发相变,因此缺陷结构带来的应力场对铁电体的微结构和性质有重要影响。在铁电材料的应用中存在着诸如铁电疲劳、极化印刻、铁电死层和尺度效应等问题,这其中微结构缺陷的影响至关重要,除此之外,缺陷还对铁电材料的电导和光谱等性质有重要影响。随着器件尺寸的不断缩小,多层异质结构的广泛应用,各类缺陷结构的存在对材料性质的影响也越来越大,因此对铁电材料中缺陷结构的精确表征,明确缺陷结构形成的条件,对于材料设计和性质调控,研究和开发新型功能器件,探索铁电尺度效应及其稳定极限条件,并建立正确的理论模型,具有重要的理论和应用价值。
     位错、孪晶和点缺陷是铁电材料中主要的缺陷类型。(1)位错带来的应力场与极化的耦合会造成局部较大的极化梯度,对铁电性有较大影响,尤其在纳米尺度的材料或异质结构中,位错对于铁电尺度效应以及其他与尺度有关的物理性质都是重要的非本征因素。此外,因为固体材料的一些性质在很大程度上受缺陷的影响,所以缺陷在小尺度材料中的状态一直受到关注,在临界尺度附近位错的产生与消失带来的应力场的变化对铁电性的临界尺度可能带来的影响成为重要的研究课题。(2)孪晶结构的存在会对铁电畴的生成和运动造成影响,另外孪晶面处其它类型缺陷的聚集和偏离相组分的结构对材料性质的调控有一定作用。(3)点缺陷的聚集在很大程度上影响材料和器件的铁电性质,点缺陷同时对材料的原子扩散、电导率、能带结构和磁性等产生影响,因此研究点缺陷的类型和分布规律,以及运用缺陷工程的手段对材料的点缺陷进行调控,对于材料设计和性质调控有重要意义。
     钛酸钡(BaTiO3)是典型的钙钛矿铁电体,对它的研究不但具有一定的代表性,而且可能延伸到其它钙钛矿铁电体中。本研究将BaTiO3微纳米晶粒作为研究对象,实现了不同尺度的BaTiO3晶粒的制备,并研究了其缺陷的结构和性质,探索了缺陷结构的调控方法,并对缺陷造成的物理性质的特征进行了初步探讨。本论文主要包括以下几方面的工作:
     1) BaTiO3纳米立方体的制备和表征。
     通过碱热法制备了BaTiO3纳米立方体,用XRD, TEM, SEM等手段对其进行了表征。其尺度约为40纳米到80纳米,具有规则的立方体或长方体形貌,边缘尖锐,XRD和拉曼的结果表明了其整体呈四方相特征。这些BaTiO3纳米立方体的暴露面是良好的结晶面(100)pc面(pc代表赝立方,以下省略),其生长过程为溶解.结晶机制,由碱热条件下Ti-O八面体的结合和Ba2+的扩散控制。
     2) BaTiO3纳米立方体的选择性腐蚀和位错尺度效应分析。
     对BaTiO3纳米立方体在酸性溶液中的水热腐蚀进行了研究,结果表明腐蚀过程由Ba2+的溶解和Ti-O八面体结构单元的溶解并重结晶组成。最终BaTiO3会被完全腐蚀掉,并且在水热条件下形成包含锐钛矿和金红石相的纺锤状TiO2纳米结构。腐蚀实验表明,在一定条件下,在BaTiO3纳米立方体中会形成腐蚀坑,腐蚀坑出现在BaTiO3纳米立方体的外表面上,尺寸约为几纳米到十几纳米,并可相互贯通,使纳米立方体形成中空结构。腐蚀坑的形成是由于位错处的应力场提高了反应活性,造成了局部的优先腐蚀。对BaTiO3纳米立方体腐蚀坑的统计分析表明,腐蚀坑只出现在尺寸大于60纳米的晶粒中,而较小尺寸晶粒的腐蚀只跟各个面的热力学稳定性和Ostwald溶解有关,其只有边角处被优先腐蚀。同时用HRTEM对不同尺寸BaTiO3晶粒的晶格结构做了表征,结果表明碱热法制备的BaTiO3纳米立方体的表面由于缺钡,造成其具有类似TiO2的扭曲的晶格结构,同时在尺寸小于60纳米的晶粒中没有位错,与腐蚀实验观察到的结果一致,证明了位错在BaTiO3纳米立方体中存在的临界尺度约为60纳米。
     使用经典弹性力学理论对四方相BaTi03晶粒中位错的临界尺度进行了估算,结果表明位错存在的临界尺度为22纳米,与实验结果(60纳米)差别较大,造成此差别的原因可以归结为以下几点:①计算中将BaTi03晶粒假设为球形,而实际形貌为具有良好结晶面的立方块状;②四方相BaTi03的弹性各向异性(各向异性因子为~2.5);③实际BaTi03晶粒表面存在Ti-O表面层,改变了其局部力学性质。用第一性原理计算的方法得到立方相BaTi03的剪切模量为116.2 GPa,用此数据得到的立方相BaTi03的位错临界尺度为46.5纳米,说明铁电相变对位错的临界尺度有较大影响。
     3)含{111}pc孪晶的BaTi03晶粒的可控制备及生长机理研究。
     此部分研究首先利用两步碱热法实现了TiO2的无定形化和含{111}孪晶的BaTiO3微米晶粒的可控制备。对无定形TiO2的研究表明,Ti-O八面体的近程有序是产生BaTiO3{111}孪晶结构的主要原因,共面的Ti-O八面体结构是组成BaTiO3{111}孪晶面的基本单元。用XRD,Raman,SEM等手段对含{111}孪晶的BaTiO3晶粒进行了表征,结果表明其尺度为10-40微米,具有彼此穿插生长的立方块状特征。通过对生长过程的研究发现,BaTiO3在反应进行4小时后即可生成,而反应进行8小时后产物中即有穿插结构。随着过饱和度降低,反应20天后,产物中基本都是BaTiO3微米晶粒。
     SEM和AFM的结果表明含{111}孪晶的BaTiO3晶粒主要是二维层状生长并且具有快速生长面。当孪晶面形成,其凹角处(TPRE)由于具有较低的成核势垒,造成在TPRE处的优先成核,使得某些晶面较快速生长,这是{111}孪晶晶粒具有较大尺寸的原因。由于多重孪晶的存在和局部的热力学不稳定性,最终的产物具有非对称的穿插形貌,并且多个晶粒通过孪晶的关系生长在一起。通过腐蚀法和缀饰法可观察到含{111}孪晶的BaTiO3晶粒的90°畴结构,其畴带的宽度一般在300纳米左右。此外,生长条件的改变对含{111}孪晶的BaTiO3晶粒的形貌有较大影响,实验发现,加2m1 H2O能够得到具有{111}孪晶结构的BaTiO3微米立方体,随着加水量的增加,产物的形貌将变得不规则;掺杂对BaTiO3晶面的生长起到阻碍作用,掺杂后的产物尺寸变小,但不会破坏其{111}孪晶结构。
     4)BaTiO3晶粒的点缺陷调控及其对物理性质的影响。
     含{111}孪晶的BaTiO3晶粒具有可逆光致变色的性质,在紫外光辐照下,其颜色由淡黄色变为棕色,在近红外光辐照或退火处理下,其颜色又能回复。对紫外辐照前后样品的光谱表征说明:①含{111}孪晶的BaTiO3晶粒的吸收边红移,说明样品本身含有大量缺陷造成的缺陷能级;②辐照后有新的吸收红移的现象,说明紫外辐照会促使新的点缺陷生成,新生成的点缺陷为Ti3+,氧空位,以及点缺陷之间相互结合形成的复杂缺陷结构。紫外辐照使得大量缺陷聚集,Ti3+或氧空位捕获的孤对电子为磁矩的有序化创造了条件,实验发现,紫外辐照会使BaTiO3晶粒的饱和磁化率增加接近十倍,从实验上证明,缺陷的调控能成为在传统非磁性材料中调控磁性的方法之一。拉曼和电滞回线的结果表明,含{111}孪晶的BaTiO3晶粒为铁电体,说明通过缺陷调控能在铁电体中引入磁性。
     综上所述,本论文采用碱热法可成功制备形貌规则和尺寸均一的BaTiO3晶粒,并采用不同表征手段对BaTiO3晶粒的缺陷结构和性质进行了分析;采用水热腐蚀法对位错结构以及位错在不同尺度BaTiO3晶粒中的分布作了分析,结合高分辨电镜表征,提出了尺寸依赖的腐蚀机理,并探讨了位错的尺度效应,有利于进一步研究缺陷尺度效应与铁电尺度效应之间的关系;实现了含{111}穿插孪晶缺陷的晶粒的可控制备,分析了孪晶造成的凹角结构(TPRE)对晶体生长的促进作用;对含{111}孪晶的BaTiO3晶粒的光致变色行为进行了表征和分析,探讨光子作用下缺陷的产生与复合的机理,并用紫外辐照对BaTiO3晶粒的磁性进行调控,对其机理进行了初步探讨,为进一步研究其在光开关、传感器及磁电器件中的可能应用提供了基础。
Ferroelectricity involves a complex interplay of electrical, mechanical, and thermal effects. Ferroelectric materials have been extensively studied for nearly a century due to their unique properties such as piezoelectricity, pyroelectricity, ferroelectricity, photoelectricity, and electrostriction effects. In addition, ferroelectric materials usually show good structural compatibility when integrated into electronic devices. As a result, ferroelectric materials can be successfully utilized as capacitors, transducers, sensors, in areas ranged from national defense, biotechnology, precise mechanical components, and information technology. However, there are still many technical challenges remained to be solved for ferroelectrics.
     The physical properties of crystal materials are largely determined by the behaviors of electrons. However, the existence of lattice defects such as point defects, dislocations, and twins, could significantly change their properties. Classical ferroelectric phenominonical theory indicates that ferroelectric properties are closely related to the state of stress conditions. It has been extensively demonstrated that the Curie temperature, polarization, piezoelectric coefficients, ferroelectric switching behaviors, and phase transition can be changed when the state of stress is changed. As a result, one would expect that the stress field associated with microstructural defects will also change ferroelectric properties. For example, ferroelectric materials suffer from electrical fatigue with repetitive cycling, polarization imprint, and dead layer, all of which are closely linked to defects. Furthermore, defects should be considered when some particular behaviors such as ferroelectric size effect, conductivity, and spectroscopy features are analyzed. The effects of defects could be enhanced with the miniaturization of devices and applications of multilayer heterostructure. As a result, the study of microstructural defects in ferroelectrics is significant to analyze ferroelectric behaviors and design materials and devices with controlled properties. The main defects in ferroelectric materials include dislocations, twins, and point defects. Fristly, polarization can be induced by the stress field of dislocations. Dislocations are closely linked to ferroelectric size effect and other properties related to the size of a ferroelectric heterostructures. Since the properties of solids are controlled largely by spatial arrangment of atoms, dislocated atoms have to be carefully treated to understand the relationship between dislocation size effect and ferroelectric size effect. Secondly, twinned structures can influence the formation and motion of ferroelectric domains. Furthermore, the aggregation of other kind of defects and nonstoichiometric structure on the twin plane is unavoidable in material. Thirdly, the aggregation of point defects can greatly influence the ferroelectric properties, in particular domain dynamics, switching kinetics. In addition, point defects, i.e. oxygen vancancies also play an important role on conductivity, band structure, and magnetism properties. As a result, it is both scientifically and technologically of importance to systematically study defect structures of ferroelectric materials.
     As a model ferroelectric perovskite, BaTiO3 has benn extensively studied due to its simple structure. In this dissertation, BaTiO3 crystallites of various sizes are successfully prepared. The properties and structures of defects are studied systematically with emphasis on dislocations,{111} twins, and point defects. Several methods for the controlled synthesis of BaTiO3 with different defect structures were developed. The particular physical properties induced by defects are discussed. The main topics of this dissertation are as follows:
     1) The preparation and characterization of BaTiO3 nanocubes.
     The BaTiO3 nanocubes are prepared through Composite-Hydroxides-Mediated (CHM) approach and characterized by using XRD, TEM, and SEM etc. XRD and Raman results indicate that the product is tetragonal BaTiO3. The size of the as synthesized particles is-40-80 nm. They are cubic or cuboid in shape with sharp edges. The exposed surfaces are (100)pc facets (subscript pc denotes pseudocubic and will be omitted for convenience hereafter). The growth of BaTiO3 nanocubes in molten hydroxides follows the dissolution-crystallization process and it is controlled by the combination of Ti-O octahedra and the diffusion of Ba2+cations.
     2) The selective etching of BaTiO3 nanocubes and analysis of dislocation size effect.
     The hydrothermal etching process of BaTiO3 nanocubes in acid solution is studies. It is indicated that the etching process contains dissolution of Ba2+ and Ti-O octahedra and the re-crystallization of Ti-O octahedra. The BaTiO3 nanocubes can be totally etched and form spindle liked TiO2 particles with either anatase or rutile phases. However, with controlled experimental conditions, nanosized cavities can be formed in the exposed faces of BaTiO3 nanocubes and finally to form a hollow structure. Since the stress field of dislocation increase the reaction activity around the dislocation core area, localized preferential etching is expected and etch pits will be created on nanocubes with dislocations. A statistic analysis of the etch pits indicated that they only formed in the BaTiO3 crystallites with size greater that-60 nm. The etching of smaller particles undergoes the Ostwald process controlled mainly by thermodynamic stability so that the edges and corners of the nanocubes are preferentially etched. HRTEM results indicate that distorted surface lattices with deficiency of Ba2+can be formed in the BaTiO3 nanocubes. It can also be investigated from the HRTEM images that there are no dislocations in particles smaller that-60 nm. It is consistent with the etching results and proved that the critical size of dislocation in BaTiO3 nanocubes is about 60 nm.
     The dislocation critical size of tetragonal BaTiO3 is 22 nm as calculated by using the classical elastic theory of dislocations. The calculated result is different from the experimental result (60 nm). The reasons of the difference are as follows.①The BaTiO3 is assumed as a sphere in the model of calculation.②The elastic anisotropy of BaTiO3 (with anisotropy factor-2.5).③The surface layer of Ti-O structures. The first-principles calculated shear modulus of cubic BaTiO3 is 116.2 GPa, and the calculated dislocation critical size of cubic BaTiO3 is 46.5 nm which indicated that the phase transition of ferroelectric is correlated with dislocation critical size.
     3) Controlled growth of{111}pc twinned BaTiO3 crystallites.
     The{111} twinned BaTiO3 crystallites can be synthesized through a two step CHM approach. The studies on amorphous TiO2 indicate that the short range order of Ti-O octahedra is important to the formation of{111} twin in BaTiO3.The face-shared Ti-O octahedra is the elementary unit of{111} twin plane. The{111} twinned BaTiO3 crystallites are characterized by using XRD, Raman, and SEM etc. The size of the {111} twinned BaTiO3 crystallites is-10-40μm. These particles show morphology of penetrated cubes. The study indicates that BaTiO3 is formed after 4 hours reaction and the penetrated structures can be investigated after 8 hours reaction. The product is BaTiO3 microsized crystallites after react for 20 days with the decrease of supersaturation.
     SEM and AFM results indicate that the growth of{111} twinned BaTiO3 crystallites follows the 2D layered growth model. The nucleus is preferentially formed at Twin Plane Reentrant Edges (TPRE) since the lower nucleate barrier. That is why the BaTiO3 particles with{111} twin can grow much bigger. The asymmetrical penetrated morphology is induced by the multiple twins and localized thermodynamic instability. The 90°domain can be investigated through etching or decoration method. The width of the domain ribbon is about 300 nm. The experimental conditions can greatly influence the morphology of{111} twinned BaTiO3. The product becomes irregular with more H2O added to the reaction system. Experiments also indicate that doping can slower the growth of{111} twinned BaTiO3.
     4) The control of point defects and related properties of BaTiO3 crystallites.
     Photochromic effect is demonstrated with UV irradiation on{111} twinned BaTiO3. This photochromic effect is confirmed to be reversible under near infrared irradiation or heat treatment. The red shift of absorption edge of as synthesized{111} twinned BaTiO3 indicates that the sample has defect energy levels. The red shift of absorption after UV irradiation indicates that new defect energy levels can be formed during UV irradiation. The UV induced point defects could be Ti3+, oxygen vacancies, and complex defects. Large amount of point defects could be aggregated after UV irradiation. The lone pair electrons of Ti3+and trapped by oxygen vacancies can lead to ferromagnetism. It is shown that the saturated magnetism is greatly enhanced by UV irradiation. Raman and hysteresis loop results indicated that the BaTiO3 crystallites are still ferroelectric phase. It is expected that the control of point defects could be an effective method to bring ferromagnetism to typically non-magnetic materials.
     In conclusion, BaTiO3 crystallites with regular and uniform morphology can be successfully prepared through CHM approach. The defect structures and properties are carefully studied. The dislocation structures are investigated by hydrothermal etching method and HRTEM measurements. It is proposed that etching is size selective. The dislocation critical size is discussed and its influence to ferroelectric size effect is expected. The multiple{111} twinned BaTiO3 with penetrated structure is controllably synthesized. The TPRE promoted growth is studies. The photochromic effect of{111} twinned BaTiO3 is investigated and the produce of point defects under photo irradiation is discussed. The UV irradiation enhanced ferromagnetism in BaTiO3 is also discussed. It is expected that these properties can be used in photoswitch, sensors, and magnetoelectric devices.
引文
[1]钟维烈著,铁电体物理学,1996,科学出版社。
    [2]J. Fousek, Applications of Ferroelectrics,1994. ISAF'94., Proceedings of the Ninth IEEE International Symposium on.
    [3]Markus Zahn, IEEE Transactions on Electrical Insulation,1988,23,791-800.
    [4]J. F. Scott, Science,2007,315,954.
    [5]M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials,1979, Oxford:Clarendon.
    [6]D. Damjanovic, Rep. Prog. Phys.,1998,61,1267-1324.
    [7]Joseph Vito Mantese, S. P. Alpay, Graded ferroelectrics, transpacitors, and transponents,2005, Springer.
    [8]J. Harada, T. Pedersen, Z. Barnea, Acta. Cryst.,1970, A26,336.
    [9]J. F. Scott, Rev. Mod. Phys.,1974,46,83.
    [10]G. Shirane, Rev. Mod. Phys.,1974,46,437.
    [11]A. Smekal, Handb. Phys.,1933,24,795.
    [12]C.R.A. Catlow, Handbook of Materials Modeling,2005, Springer,1851-1854.
    [13]J. Narayan, J. Appl. Phys.,2006,100,034309.
    [14]F. Agullo-Lopez, C. R. A. Catlow, P. Townsend, Point Defects in Materials,1988, Academic Press, London.
    [15]A. M. Stoneham, Theory of Defects in Solids,1976, Clarendon Press, Oxford.
    [16]O. T. Sorensen, Non-Stoichiometric Oxides,1980, Academic Press, New York.
    [17]R. Waser, D. M. Smyth, Ferroelectric Thin Films:Synthesis and Basic Properties, ed. C. A. P. Araujo, J. F. Scott,1996, pp.47-92, GW Taylor, Singapore:Gordon & Breach.
    [18]S. Aggarwal, R. Ramesh,Annu. Rev. Mater. Sci.,1998,28,463-499.
    [19]J. F. Scott, C. A. P. Araujo, Science,1989,246,1400.
    [20]W. L. Warren, D. Dimos, R. M. Waser, Mater. Res. Bull.,1996,21,40.
    [21]T. Mihara, H. Watanabe, C. A. Paz de Araujo, Jpn. J. Appl. Phys.,1993,32,4168.
    [22]Q. Y. Jiang, E. C. Subbarao, L. E. Cross, J. Appl. Phys.,1994,75,7433.
    [23]Q. Y. Jiang, E. C. Subbarao, L. E. Cross, Ferroelectrics,1994,154,119.
    [24]Q. Y. Jiang, W. Cao, L. E. Cross, J. Am. Ceram. Soc.,1994,77,211.
    [25]J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, L.D. McMillan, R. Zuleeg, J. Appl. Phys.,1991,70,382.
    [26]H. N. Al-Shareef, D. Dimos, W. L. Warren, B. A. Tuttle, Integr. Ferroelectr., 1997,15,53.
    [27]W. L. Warren, B. A. Tuttle, D. Dimos, Appl. Phys. Lett.,1995,67,1426.
    [28]H. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, J. D. Cuchiaro, L. D. McMillan, J. Appl. Phys.,1990,68,5783.
    [29]J. F. Scott, M. Dawber, Appl. Phys. Lett.,2000,76,3801.
    [30]I. K. Yoo, S. B. Desu, Phys. Status Solidi a,1992,133,565.
    [31]T. Mihara, H. Watanabe, C. A. Paz de Araujo, Japan. J. Appl. Phys.,1994,33, 5281.
    [32]H. Z. Jin, J. Zhu, J.Appl. Phys.,2002,92,4594.
    [33]W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, D. C. McIntyre, J. Appl. Phys.,1995,77,6695.
    [34]R. Ramesh, H. Gilchrist, T. Sands,V. G. Keramidas, R. Hakenaasen, Appl. Phys. Lett.,1993,63,3592.
    [35]R. Ramesh, J. Lee, T. Sands, V. G Keramidas, O. Auciello, Appl. Phys. Lett., 1994,64,2511.
    [36]T. W. Shaw, S. Trolier-McKinstry, P. C. McIntyre, Annu. Rev. Mater. Sci.,2000, 30,263.
    [37]P. K. Larsen, G J. M. Dormans, D. Taylor, P. V. Veldhoven, J. Appl. Phys.,1994, 76,2405.
    [38]C. Zhou, D. M. Newns, J. Appl. Phys.,1997,82,3081.
    [39]H. J. Chen, Y. W. Chen, Ind. Eng. Chem. Res.,2003,42,473.
    [40]P. K. Dutta, R. Asiaie, S. A. Akbar, W. Zhu, Chem. Mater.,1994,6,1542.
    [41]J. O. Eckert. Jr, C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, J. Am. Ceram. Soc.,1996,79,2929.
    [42]D. Hennings, S. Schreinemacher, J. Euro. Ceram. Soc.,1992,9,41.
    [43]S. Wada, T. Suzuki, T. Noma, Jpn. J. Appl. Phys.,1995,34,5368.
    [44]S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn.,1996,104,383.
    [45]S. Kapphan, G. Weber, Ferroelectrics,1981,37,673.
    [46]S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn.,1995,103,1220.
    [47]T. Noma, S. Wada, M. Yano, T. Suzuki, J. Appl. Phys.,1996,80,5223.
    [48]M. S. Zhang, J. Yu, J. Chu, Q. Chen, W. Chen, J. Mater. Proce. Tech.,2003,137, 78.
    [49]C. L. Jia, M. Lentzen, K. Urban, Science,2003,299,870.
    [50]Y. Namai, O. Matsuoka, J. Phys. Chem. B,2005,109,23948.
    [51]J. Robertson, W. L. Warren, Mater. Res. Soc. Symp. Proc.,1995,361,123.
    [52]R. I. Eglitis, E. A. Komomin, G. Borstel, Phys. Stat. Sol. (c),2005,2,113.
    [53]C. R. A. Catlow, Handbook of Materials Modeling, S. Yip (Ed.),2005 Springer, 1851-1854.
    [54]J. W. Matthews, A. E. Blakeslee, J. Cryst. Growth,1974,27,118.
    [55]S. Stemmer, S. K. Streiffer, F. Ernst, M. Ruhle, Phys. Status Solidi A,1995,147, 135.
    [56]S. Y. Hu, Y. L. Li, L. Q. Chen, J. Appl. Phys.,2003,94,2542.
    [57]M. W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, U. Gosele, Nat. Mater.,2004,3,87.
    [58]S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, R. Ramesh, Appl. Phys. Lett.,2004, 85,2044.
    [59]V. Nagarajan, C. L. Jia, H. Kohlstedt, R. Waser, I. B. Misirlioglu, S. P. Alpay, R. Ramesh, Appl. Phys. Lett.,2005,86,192910.
    [60]R. W. Siegel,Annu. Rev. Mater. Sci.,1991,21,149.
    [61]A. Madhukar, S. Y. Lu, A. Konker, M. Ho, S. M. Hughes, A. P. Alivisatos, Nano Lett.,2005,5,479.
    [62]J. Narayan, A. Tiwari, J. Nanosci. Nanotechnol.,2004,4,726.
    [63]V. G. Gryaznov, I. A. Polonsky, A. E. Romanov, L. I. Trusov, Phys. Rev. B,1991, 44,42.
    [64]R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th Edition,1995, Wiley.
    [65]B. Joos, M. S. Duesbery, Phys. Rev. Lett.,1997,78,266.
    [66]K. Sangwal, Etching of Crystals,1987, North-Holland, Amsterdam, Netherlands.
    [67]M. J. Buerger, Am. Min.,1945,30,469.
    [68]R. L. Penn, J. F. Banfield, Am. Min.,1998,83,1077.
    [69]R. L. Penn, J. F. Banfield, Science,1998,281,969.
    [70]M. K. Kang, Y. S. Yoo, D. Y. Kim, J. Am. Ceram. Soc.,2000,83,385.
    [71]P. Bennema, "Growth and Morphology of Crystals:Integration of Theories of Roughening and Hartman Perdok Theory," pp.481-581 in Handbook of Crystal Growth, Vol.1 A. Edited by D. T. J. Hurle,1993, North-Holland, Amsterdam, Netherlands.
    [72]P. W. Forsbergh. Jr, Phys. Rev.,1949,76,1187.
    [73]J. P. Remeika, J. Am. Chem. Soc.,1954,76,940.
    [74]E. A. D. White, Acta. Cryst.,1955,8,845.
    [75]V. J. Tennery, F. R. Anderson, J. Appl. Phys.,1959,29,755.
    [76]H. Opplzer, H. Schmelz, J. Am. Ceram. Soc.,1983,66,444.
    [77]O. Eibl, P. Pongratz, P. SkaLicky, J. Am. Ceram. Soc.,1987,70, C195.
    [78]A. Recnik, J. Bruley, W. Mader, D. Kolar, M. Riihle, Phil. Mag. B.,1994,70, 1021.
    [79]C. H. Lei, C. L. Jia, M. Siegert, K. Urban, Phil. Mag. Lett.,2000,80,371.
    [80]C. L. Jia, K. Urban, M. Mertin, S. Hoffmann, R. Waser, Phil. Mag. A,1998,77, 923.
    [81]B. Jiang, J. L. Peng, L. A. Bursill, T. L. Ren, P. L. Zhang, W. L. Zhong, Phys. B, 2000,291,203.
    [82]B. Jiang, J. L. Peng, L. A. Bursill, Ferroelectrics,1998,207,587.
    [83]T. Yamamoto, T. Sakuma, J. Am. Ceram. Soc.,1994,77,1107.
    [84]P. W. Rehrig, G. L. Messing, S. T. McKinstry, J. Am. Ceram. Soc.,2000,83, 2654.
    [85]V. Skumryev, S. Stoyanov, Y. Zhang, G Hadjipanayis, D. Givord, J. Nogues, Nature,2003,423,850.
    [86]W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H. M. Cheng, Z. H. Yang, L. X. Li, J. Phys.:Condens. Matter,1993,5,2619.
    [87]W. L. Zhong, Y. G Wang, Phys. Rev. B,1994,50,698.
    [88]R. Kretschmer, K. Binder, Phys. Rev. B,1979,20,1065.
    [89]D. R. Tilley, B. Zeks, Solid State Commun.,1984,49,823.
    [90]R. Kretschmer, K. Binder, Phys. Rev. B,1979,20,1065.
    [91]D. R. Tilley, B. Zeks, Solid State Commun.,1984,49,823.
    [92]W. L. Zhong, B. D. Qu, P. L. Zhang, Y. G Wang, Phys. Rev. B,1994,50,12375.
    [93]W. L. Zhong, Y. G Wang, P. L. Zhang, B. D. Qu, Phys. Rev. B,1994,50,698.
    [94]C. L. Wang, S. R. P. Smith, J. Phys.:Condens. Matter,1995,7,7163.
    [95]Y. G Wang, W. L. Zhong, Phys. Rev. B,1995,51,17235.
    [96]L. H. Ong, J. Osman, D. R. Tiley, Phys. Rev. B,2001,63,144109.
    [97]K. Ishikawa, K. Yoshikawa, N. Okada, Phys. Rev. B,1988,37,5852.
    [98]A. E. Feuersanger, P. Lublin, J. Electrochem. Soc.,1963,110, C192.
    [99]A. E. Feuersanger, A. K. Hagenlocher, A. L. Solomon, J. Electrochem. Soc.,1964, 111,1387.
    [100]J. R. Slack, J. C. Burfoot, J. Phys. C,1971,4,898.
    [101]Y. Y. Tomashpolski, Ferroelectrics,1974,7,253.
    [102]Y. Y. Tomashpolski, M. A. Sevostia, M. V. Pentegov, Ferroelectrics,1974,7, 257.
    [103]Y. Y. Tomashpolski, M. A. Sevostia, Kristallografija,1974,19,1040.
    [104]Y. Y. Tomashpolski, M. A. Sevostia, Fiz. Tverd. Tela,1974,16,2689.
    [105]J. Junquera, P. Ghosez, Nature,2003,422,506.
    [106]A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, A. Zlatkin, Nature,1998,391,874.
    [107]T. Tybell, C. H. Ahn, J. M. Triscone, Appl. Phys. Lett.,1999,75,856.
    [108]S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. Ramana Murty, O. Auciello, G. R. Bai, G. B. Stephenson, Phys. Rev. Lett; 2002, 89,067601.
    [109]D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, C. Thompson, Science,2004,304,1650.
    [110]B. Jiang, J. L. Peng, L. A. Bursill, W. L. Zhong, J. Appl. Phys.,2000,87,3462.
    [111]W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H. M. Cheng, Z. H. Yang, L. X. Li, J. Phys.:Condens. Matter,1993,5,2619.
    [112]K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc.,1989,72,1555.
    [113]S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z. Q. Li, Y. Kawazoe, Phys. Rev. B, 2000,62,3065.
    [114]G. Arlt, D. Hennings, and G. de With, J. App. Phys.,1985,58,1619.
    [115]K. Uchino, T. Hirose, E. Sadanaga, J. Am. Ceram. Soc.,1989,72,1555.
    [116]Y. Park, W. J. Lee, H. G Kim,J. Phys:Conden. Matter,1997,9,9445.
    [117]X. Deng, X. Wang, H. Wen, L. Chen, L. Chen, and L. Li, App. Phys. Lett.,2006, 88,252905.
    [118]J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom, Nature,2004,430,758.
    [119]H. Jaffe, D. Berlincourt, J. M. McKee, Phys. Rev.,1957,105,57.
    [120]T. Kumazawa, Y. Kumagai, H. Miura, M. Kitano, K. Kushida, App. Phys. Lett., 1998,72,608.
    [121]M. B. Kelman, P. C. McIntyre, B. C. Hendrix, S. M. Bilodeau, J. F. Roeder, J. App. Phys.,2003,93,9231.
    [122]L. Lian, N. R. Sottos, J. App. Phys.,2004,95,629.
    [123]X. B. Ren, Nat. Mater.,2004,3,91.
    [124]A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross, M. Tsukada, App. Phys. Lett.,2003,83,728.
    [125]P. K. Larsen, G. J. M. Dormans, D. J. Taylor, P. J. van Veldhoven, J. Appl. Phys., 1994,76,2405-2413.
    [126]N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev, Phys. Rev. Lett.,1998,80, 1988.
    [127]I. K. Yoo, S.B. Desu, Phys. Sat. Sol. A,1992,133,565.
    [128]S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, P. V. Dressendorfer,J. Appl. Phys.,1990,68,6463.
    [129]A. K. Tagantsev, M. Landivar, E. Colla, N. Setter, J. Appl. Phys.,1995,78, 2623.
    [130]M. Dawber, J. F. Scott, Appl. Phys. Lett.,2000,76,1060.
    [131]V. C. Lo, J. Appl. Phys.,2002,92,6778.
    [132]M. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, U. Gosele, Nat. Mater.,2004,3,87.
    [133]W. Sun, J. App. Phys.,2006,100,083503.
    [134]W. Eerenstein, N. D. Mathur, J. F. Scott, Nature,2006,442,759.
    [135]N. A. Hill, J. Phys. Chem. B,2000,104,6694.
    [136]J. F. Scott, Nat. Mater.,2007,6,256.
    [137]M. Fiebig, J. Phys. D:Appl. Phys.,2005,38, R123.
    [138]王克峰,刘俊明,王雨,科学通报,2008,53,1098.
    [139]J. B. Goodenough, J. M. Longo, Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, vol. Ⅲ.4,1970, Springer, Berlin.
    [140]T. Mitsui, Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, vol.16(1),1981, Springer, Berlin.
    [141]D. I. Khomskii, J. Magn. Magn. Mater.,2006,306,1.
    [142]R. Z. Levitin, JETP. Lett.,2004,79,531.
    [143]E. Ascher, H. Rieder, H. Schmid,Appl. Phys. Lett.,1966,37,1404.
    [144]S. A. Ivanov, H. Rundlof, J. Phys.:Cond. Matt.,2000,12,2393.
    [145]R. Wongmaneerung, X. Tan, R..W. McCallum, Appl. Phys. Lett.,2007,90, 242901.
    [146]T. Kimura, S. Kawamoto, I. Yamada, Phys. Rev. B,2003,67,180401.
    [147]Y. Yang, J. M. Liu, H. B. Huang, Phys. Rev. B,2004,7,132101.
    [148]G. Trinquier, J. R. Hoffman, J. Phys. Chem.,1984,88,6696.
    [149]R. Seshadri, N. A. Hill, Chem. Mater.,2001,13,2892.
    [150]T. Portengen, O. Ostreich, L. T. Sham, Phys. Rev. B,1996,54,017452.
    [151]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Phys. Rev. B,2006,74,161306(R).
    [152]A. Sundaresan, C. N. R. Rao, Nano Today,2009,4,96.
    [153]M. M. Abraham, Y. Chen, L. A. Boatner, R. W. Reynolds, Solid State Commun., 1975,16,1209.
    [154]I. S. Elfimov, S. Yunoki, G. A. Sawatzky, Phys. Rev. Lett.,2002,89,216403.
    [155]C. D. Pemmaraju, S. Sanvito, Phys. Rev. Lett.,2005,94,217205.
    [156]N. H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B,2006,73,132404.
    [157]N. H. Hong, J. Sakai, Virginie Briz, J. Phys.:Condens. Matter,2007,19, 036219.
    [158]J. Osorio-Guillen, S. Lany, S. V. Barabash, A. Zunger, Phys. Rev. B,2007,75, 184421.
    [159]A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. Munoz Ramo, H. M. R(?)nnow, J. Phys.:Condens. Matter,2007,19,255208.
    [160]P. Larson, S. Satpathy, Phys. Rev. B,2007,76,245205.
    [161]B. Jaffe, R. S. Roth, S. Marzullo, J. Res. Natl Bur. Stand.,1955,55,239.
    [162]S. J. Zhang, C. A. Randall, T. R. Shrout, Appl. Phys. Lett.,2003,83,3150.
    [163]T. Karaki, K. Yan, M. Adachi, Jap. J. Appl. Phys.,2007,46,7035.
    [164]Y Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature,2004,432,84.
    [165]W. Liu, X. Ren, Phys. Rev. Lett.,2009,103,257602.
    [166]武盟佳,杨群保,李永祥,无机材料学报,2007,22,1025.
    [167]S. Wada, Ferroelectrics,2009,389,3.
    [168]S. S. Flaschen, J. Am. Chem. Soc.,1955,77,6194.
    [169]K. Byrappa and T. Ohachi (Eds), Crystal Growth Technology,2003, William Andrew Inc., Norwich, New York.
    [170]Environmental and Corrosion Simulation Program (ESP/CSP) version 6.0, OLI Systems, Inc, Morris Plains, NJ (1998).
    [171]M. M. Lencka, R. E. Riman, Chem. Mater.,1993,5,61.
    [172]M. M. Lencka, A. Anderko, R. E. Riman, J. Am. Ceram. Soc.,1995,48,2609.
    [173]K. C. Beal, Advances in Ceramics, Ceramic Podwer Science. The American Ceramic Society.1987,73-6,625.
    [174]D. Hennings, G. Rosenstein, H. Schreinemacher, J. Euro. Ceram. Soc.,1991,8, 107.
    [175]J. O. Eckert Jr, C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, J. Am. Ceram. Soc.,1996,79,2929.
    [176]E. U. Franck, Pure. Appl.Chem.,1970,24,13.
    [177]M. Uematsu, W. Harder, E. U. Franck, The Dielectric Constant of Water, Technical Paper 38p (WLKg. Gp.3), Int. Assoc. for Prop., of Stern. Inter. Mtg. Kyoto Mtg. Jpn. (1976).
    [178]R. C. Weast, ed., Handbook of Physics and Chemistry,64th Ed.,1983, CRC Press, Boca Raton, D261.
    [179]施尔畏,陈之战,元如林,郑燕青,水热结晶学,2004,科学出版社。
    [180]H. Liu, C. G. Hu, Z. L. Wang, Nano Lett.,2006,6,1535.
    [181]X. S. He, C. G. Hu, Y. Xi, B. Y. Wang, C. H. Xia, Sensor. Actuat. B,2009,137, 62.
    [182]H. Xu, L. Gao, J. Guo, J. Euro. Ceram. Soc.,2002,22,1163.
    [183]陈继勤,陈敏熊,赵敬世编著,晶体缺陷,1992年,浙江大学出版社。
    [184]Y. Arimoto, H. Ishiwara, MRS Bulletin,2004,29,823.
    [1]J. F. Scott, Science,2007,315,954.
    [2]D. Damjanovic, Rep. Prog. Phys.,1998,61,1267.
    [3]M. S. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B,2008,77,125424.
    [4]H. N. Lee, D. Hesse, N. Zakharov, U. Gosele, Science,2002,296,2006.
    [5]Wan. S. Yun, J. J. Urban, Q. Gu, H. Park, Nano. Lett.,2002,2,447.
    [6]H.Liu, C. G Hu, Z. L. Wang, Nano Lett.,2006,6,1535.
    [7]X. S. He, C. G. Hu, Y. Xi, B. Y. Wang, C. H. Xia, Sensors and Actuators B,2009, 137,62.
    [8]J.A.迪安 主编,兰氏化学手册(第十三版),1991年,科学出版社。
    [9]K. Byrappa and T. Ohachi (Eds), Crystal Growth Technology,2003, William Andrew Inc., Norwich, New York.
    [10]H. W. Otto, R. P. Seward, J. Chem. Eng. Data,1964,9,507.
    [11]施尔畏,陈之战,元如林,郑燕青,水热结晶学,2004年,科学出版社。
    [12]G. Busca, G Ramis, J. M. G Amores, V. S. Escribano, P. Piaggio, J. Chem. Soc. Faraday Trans.,1994,90,3181.
    [13]S. Kapphan, G Weber, Ferroelectrics,1981,37,673.
    [14]S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn.,1996,104,383.
    [15]S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn.,1995,103,1220.
    [16]R. Asiaie, W. Zhu, S. A. Akbar, P. K. Dutta, Chem. Mater.,1996,8,226.
    [17]C. H. Perry, D. B. Hall, Phys. Rev. Lett.,1965,15,700.
    [18]M. DrDomenico. Jr, S. H. Wemple, S. P. S. Porto, Phys. Rev.,1968,174,522.
    [19]M. Cardona, Phys. Rev.,1965,140, A651.
    [20]C. N. Berglund, H. J. Braun, Phys. Rev.,1967,164,790.
    [21]郑燕青,施尔畏,李汶军,陈之战,仲维卓,胡行方,中国科学(E辑),2001年,31,204。
    [22]仲维卓,夏长泰,施尔畏,王步国,李汶军,华素坤,人工晶体学报,1996年,25,192。
    [23]H. W. Nesbitt, G M. Bancroft, W.S. Fyfe, S. N. Karkhanis, A. Nishima, S. Shin, Nature,1982,289,358.
    [24]S. Myhra, D. Savage, A. Atkinson, J. C. Riviere, Am. Mineral.,1984,69,902.
    [25]K. Osseo-Asare, F. J. Arriagada, J. H. Adair, Ceram. Truns.,1988,1,47753.
    [26]T. Sugimoto, K. Okada, H. Itoh, J. Coll. Inter, Sci.,1997,193,140.
    [27]H. Salehi, S. M. Hosseini, N. Shahtahmasebi, Chin J. Phys.,2004,42,619.
    [28]X. Y. Xue, C. L. Wang, W. L. Zhong, Surf. Sci.,2004,550,73.
    [29]J. T. Last, Phys. Rev.,1957,105,1740.
    [30]H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater.,1995,7,663.
    [31]钟维烈著,铁电体物理学,1996,科学出版社。
    [32]R. Eglitis, I. G. Borstel, E. Heifets, S. Piskunov, E. Kotomin, E. J. Electroceram., 2006,16,289.
    [33]I. J. Clark, T. Takeuchi, N. Ohtori, D. C. Sinclair, J. Mater. Chem.,1999,9,83.
    [34]M. C. Blanco-Lopez, B. Rand, F. L. Riley, J. Eur. Ceram. Soc.,1997,17,281.
    [35]A. Testino, V. Buscaglia, M. T. Buscaglia, M. Viviani, P. Nanni, Chem. Mater., 2005,17,5346.
    [36]W. M. Tong, R. S. Williams, Annu. Rev. Phys. Chem.,1994,45,401.
    [37]K. Okada, T. Yanagisawa, Y. Kameshima, A. Nakajima, Mater. Res. Bull.,2007, 42,1921.
    [38]P. Cordier, T. Ungar, L. Zsoldos, G. Tichy, Nature,2004,428,837.
    [39]T. Suzuki, M. Ueno, Y. Nishi, M. Fujimoto, J. Am. Ceram. Soc.,2001,84,200.
    [40]N. Doukhan, J. C. Doukhan, Phys. Chem. Miner.,1986,13,403.
    [41]J. P. Poirier, J. Peyronneau, J. Y. Gesland, G Brebec, Phys. Earth. Planet. Inter., 1983,32,307.
    [42]T. Noma, S. Wada, M. Yano, T. Suzuki, J. Appl. Phys.,1996,80,5223.
    [43]A. Madhukar, S. Y. Lu, A. Konker, M. Ho, S. M. Hughes, A. P. Alivisatos, Nano. Lett.,2005,5,479.
    [44]R. W. Siegel,Annu.Rev. Mater. Sci.,1991,21,559
    [45]J. Narayan, J. Appl. Phys.,2006,100,034309.
    [46]V. G Gryaznov, I. A. Polonsky, A. E. Romanov, L. I. Trusov, Phys. ReV. B,1991, 44,42.
    [47]B. Joos, M. S. Duesbery, Phys. Rev. Lett.,1997,78,266.
    [48]J. P. Watt, L. Peselnick, J. Appl. Phys.,1980,51,1525.
    [49]D. Liu, M. Chelf, K. W. White, Acta Mater.,2006,54,4525.
    [50]K. H. Hellwege, Ed. Landolt-Bornstein:Numerical Data and Functional Relationships in Science and Technology, New Series, Group Ⅲ, Vols.11 and 18; Springer-Verlag:Berlin,1979 and 1984.
    [51]P. Sharma, S. Ganti, J. Mater. Res.,2003,18,1823.
    [1]D. Dragan, Rep. Prog. Phys.,1998,61,1267.
    [2]A. Recnik, J. Bruley, W. Mader, D. Kolar, M. Riihle, Phil. Mag. B.,1994,70, 1021.
    [3]P. W. Forsbergh. Jr, Phys. Rev.,1949,76,1187.
    [4]J. P. Remeika, W. M. Jackson, J. Am. Chem. Soc.,1954,76,940.
    [5]E. A. D. White, Acta. Cryst.,1955,8,845.
    [6]V. J. Tennery, F. R. Anderson, J. Appl. Phys.,1958,29,755.
    [7]V. Krasevec, M. Drofenik, D. Kolar, J. Am. Ceram. Soc.,1990,73,856.
    [8]B. K. Lee, S. Y. Chung, S. L. Kang, J. Am. Ceram. Soc.,2000,83,2858.
    [9]R. L. Penn, J. F. Banfield,Am. Min.,1998,83,1077.
    [10]R. L. Penn, J. F. Banfield, Science,1998,281,969.
    [11]J. Padilla, D. Vanderbilt, Phys. Rev. B,1997,56,1625.
    [12]I. Sunagawa, Crystals Growth, Morphology, and Perfection,2005, Cambridge University Press.
    [13]M. A. Tamor, M. P. Everson, J. Mater. Res.,1994,9,1839.
    [14]G. Busca, G. Ramis, J. M. G. Amores, V. S. Escribano, P. Piaggio, J. Chem. Soc. Faraday Trans.,1994,90,3181.
    [15]S. Kapphan, G. Weber, Ferroelectrics,1981,37,673.
    [16]S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn.,1996,104,383.
    [17]R. Asiaie, W. Zhu, S. A. Akbar, P. K. Dutta, Chem. Mater.,1996,8,226.
    [18]C. H. Perry, D. B. Hall, Phys. Rev. Lett.,1965,15,700.
    [19]N. G. Eror, T. M. Loehr, B. C. Cornilsen, Ferroelectrics,1980,28,321.
    [20]T. Noma, S. Wada, M. Yano, T. Suzuki, J. Appl. Phys.,1996,80,5223.
    [21]J. L. Ciocondi, G. S. Rohrer, Mater. Res. Soc. Symp. Proc.,2001,654, AA7.4.1.
    [22]J. L. Ciocondi, G. S. Rohrer, Chem. Mater.,2001,13,241.
    [23]K. Nassau, H. J. Levinstein, G. M. Loiacono, Phys. Chem. Solids,1966,27,983.
    [24]T. Ueda, Y. Takai, R. Shimizu, H. Yagyu, T. Matsushima, M. Souma, Jpn. J. Appl. Phys.,2000,39,1200.
    [25]F. Kulcsar, J. Am. Ceram. Soc.,1956,39,13.
    [26]Z. Y Yuan, J. F. Colomer, B. L. Su, Chem. Phys. Lett.,2002,363,362.
    [27]Z. Y. Yuan, B. L. Su, Colloid. Surface. A,2004,241,173.
    [28]仲维卓,夏长泰,施尔畏,王步国,李汶军,华素坤,人工晶体学报,1996年,25,192。
    [29]V. V. Hoang, Phys. Stat. Sol. (b).,2007,244,1280.
    [30]J. P. Rino, N. Studart, Phys. Rev. B,1999,59,6643.
    [31]L. A. Bursill, M. G. Blanchin, A. Mebarek, D. J. Smith, Radiat. Eff. Defect. S., 1983,74,253.
    [32]H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater.,1995,7,663.
    [33]M. K. Kang, Y. S. Yoo, D. Y. Kim, J. Am. Ceram. Soc.,2000,83,385.
    [34]T. A. Land, T. L. Martin, S. Potapenko, G. T. Palmore, J. J. D. Yoreo, Nature, 1999,399,442.
    [35]A. D. Derksen, W. J. P. van Enckevort, M. S. Couto, J. Phys. D:Appl. Phys., 1994,27,2580.
    [36]H. Xu, L. Gao, J. Guo, J. Eur. Ceram. Soc.,2002,22,1163.
    [37]H. J. Chen, Y. W. Chen, Ind. Eng. Chem. Res.,2003,42,473.
    [38]T. Yan, Z. G. Shen, J. F. Chen, X. L. Liu, X. Tao, J. Yun, Chem. Lett.,2005,34, 1196.
    [39]J. Padilla, D. Vanderbilt, Phys. Rev. B.,1997,56,1625.
    [40]W. Heywang, J. Mater. Sci.,1971,6,1214.
    [41]B. Huybrechts, K. Ishizaki, M. Takata, J. Mater. Sci,1995,30,2463.
    [42]Y. M. Chiang, T. Takagi, J. Am. Ceram. Soc.,1990,73,3286.
    [1]J. F. Scott, Nat. Mater.,2007,6,256.
    [2]N. A. Hill, J. Phys. Chem. B,2000,104,6694.
    [3]C. N. R. Rao, C. R. Serrao, J. Mater. Chem.,2007,17,4931.
    [4]W. Eerenstein, N. D. Mathur, J. F. Scott, Nature,2006,442,759.
    [5]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Phys. Rev. B,2006,74,161306.
    [6]A. Sundaresan, C. N. R. Rao, Nano Today,2009,4,96.
    [7]J. Hu, Z. Zhang, M. Zhao, H. Qin, M. Jiang, Appl. Phys. Lett.,2008,93,192503.
    [8]C. Madhu, A. Sundaresan, C. N. R. Rao, Phys. Revs. B,2008,77,201306.
    [9]R. V. K. Mangalam, N. Ray, U. V. Waghmar, A. Sundaresan, C. N. R. Rao, Solid State Commun.,2009,149,1.
    [10]R. V. K. Mangalam, M. Chakrabrati, D. Sanyal, A. Chakrabati, A. Sundaresan, J. Phys.:Condens. Matter.,2009,21,445902.
    [11]W. J. Lo, Y. W. Chung, G. A. Somorjai, Surf. Sci.,1978,71,199.
    [12]M. Miyauchi, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Chem. Mater.,2000,12,3.
    [13]S. Mochizuki, F. Fujishiro, S. Minami, J. Phys.:Condens. Matter.,2005,17,923.
    [14]M. Cardona, Phys. Rev.,1965,140, A651.
    [15]H. W. Gandy, Phys. Rev.,1959,113,795.
    [16]D. C. Cronemeyer, Phys. Rev.,1959,113,1222.
    [17]H. Xu, L. Gao, J. Guo, J. Eur. Ceram. Soc.,2002,22,1163.
    [18]L. T. Hudson, R. L. Kurtz, S. W. Robey, Phys. Rev. B,1993,47,1174.
    [19]U. Paik, J. G. Yeo, M. H. Lee, V. A. Hackley, Y. G. Jung, Mater. Res. Bull.,2002, 37,1623.
    [20]B. Cord, R. Courths, Surf. Sci.,1985,162,34.
    [21]S. Kimura, J. Yamauchi, M. Tsukada, Phys. Rev. B,1995,51,11049.
    [22]T. Noma, S. Wada, M. Yano, T. Suzuki, J. Appl. Phys.,1996,80,5223.
    [23]V. M. Khomenko, K. Langer, H. Rager, A. Fett, Phys. Chem. Miner.,1998,25, 338.
    [24]M. Schrader, D. Mienert, T. S. Oh, H. I. Yoo, K. D. Becker, Solid State Sciences, 2008,10,768.
    [25]S. Kohne, O. F. Schirmer, H.Hesse; Th. W. Kool, V. Vikhnin, Ti3+Jan-Teller polarons and bipolarons in BaTiO3, J. Supercond.,1999,12,193-195.
    [26]E. Possenriede, H. Krose, T. Varnhorst, R. Scharfschwerdt, O. F. Schirmer, Shallow acceptor and electron conduction states in BaTiO3, Ferroelectrics,1994, 151,199-204.
    [27]R. Scharfschwerdt, A. Mazur, O. F. Schirmer, H. Hesse, S. Mendricks, Oxygen vacancies in BaTiO3, Phys. Rev. B,1996,54,15284-15290.
    [28]R. Scharfschwerdt, O. F. Schirmer, H. Krose, Th. W. Kool, Oxygen vacancy related defects in BaTiO3, Ferroelectrics,1996,185,9-12.
    [29]T. Kolodiazhnyi, A. Petric, J. Phys. Chem. Solid.,2003,64,953.
    [30]S. Jida, T. Miki, J. Appl. Phys.,1996,80,5234.
    [31]T. Varnhorst, O. F. Schirmer, H. Krose, R. Scharfschwerdt, Th.W. Kool, Phys. Rev. B,1996,53,116.
    [32]T. R. N. Kutty, P. Murugaraj, N. S. Gajbhiye, Mater. Lett.,1984,2,396.
    [33]R. I. Eglitis, E. A. Kotomin, G. Borstel, Phys. Status Solidi (C),2005,2,113.
    [34]M. A. Garcia, E. Fernandez, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernandez, J. J. Romero, M. S. Martin Gonzalez, J. L. Costa-Kramer, J. Appl. Phys.,2009,105,013925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700