用户名: 密码: 验证码:
高温高压条件下冲击—切削钻孔破岩实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地热开发被越来越多的国家关注并采取实质性的开发行动。中国有极丰富的高温岩体地热资源,仅云南腾冲和西藏羊八井两地可开发的资源量就超过1.56×1011Kw.a,它的开发利用对改善我国能源结构,保证我国能源安全具有重大战略意义。高温岩体地热主要蕴藏在花岗岩体中,从其中提取地热能,就需要在花岗岩中施工钻孔,进行以水压致裂技术为主的人工储留层建造。钻孔施工的机械方式主要有三种:冲击破岩、切削破岩、冲击-切削复合破岩。在常温下,冲击破岩一般用于钻进坚硬岩石;切削破岩一般用于钻进较软的岩层。
     对钻井工程而言,破岩效率的实质是提高机械钻速,而影响机械钻速的首要因素是地层岩石性质。地热钻井中随着钻井深度的增加,岩石温度逐渐升高,岩石内部发生了热破裂,导致岩石的性质发生变化:强度降低、塑性增强等。研究高温高压条件下以上几种破岩方式的破岩效率随着温度升高如何变化,在不同的温度下哪种破岩方式能取得更佳效果具有重要的工程意义。
     在高温岩体地热开发钻井施工中,钻孔围岩的稳定性受到温度应力、钻井液特性及原岩应力等多种因素的影响,钻井围岩在温度场、渗流场、应力场的多场耦合作用下,在钻井施工中会发生缩颈、变形失稳、井壁坍塌等事故。致使钻井费用及井壁维护费用大幅增加,工程计划难以实现。
     为此,本文对高温高压条件下(4000m埋深、500℃以内)大尺寸(φ200mm×400mm)花岗岩试件的破碎规律进行实验研究,通过理论分析得出三种破岩方式的破岩效果随温度变化的趋势,总结出高温下钻进速度、破岩能耗与钻进参数的关系,给出了不同温度下的最佳破岩方式。对高温岩石钻进中的井壁稳定机理进行分析,得出钻进中井壁失稳的条件。钻井液的密度和滤失性对井壁稳定具有重要影响,本文对高温钻井液的特性及配制也做了初步研究。
     主要研究内容及结论如下:
     (1)在高围压状态下,温度升高时破岩速度的变化趋势研究。在4000m埋深静水压力,不同的温度状态下,三种破岩方式采用不同的参数组合进行正交试验,通过分析得出:在高温下花岗岩内部发生热破裂,强度降低,三种破岩方式的钻进速度随着温度的升高而增大,但冲击凿岩速度在150℃以上时增幅较小。
     (2)在高围压状态下,温度升高时单位破岩能耗的变化趋势研究。利用破碎单位体积岩石所做功来衡量岩石破碎的难易程度,通过计算分析得出:在4000m埋深静水压力下,三种破岩方式的单位破岩能耗随着温度的升高而减小。
     (3)在高温高压状态下,钻进参数与钻进速度的关系研究。通过分析实验数据得出:在4000m埋深静水压力、高温状态下,在一定的钻压范围内,三种破岩方式的钻进速度随着钻压、冲击功率、钻头转速的增大而增大,冲击凿岩时,单纯靠增大钻压或冲击功率不能有效提高凿岩速度。
     (4)在高温高压状态下,钻进参数与单位破岩能耗的关系研究。通过分析实验数据得出:在4000m埋深静水压力、高温状态下,三种破岩方式的单位破岩能耗随着钻压的增大而减小;切削破岩、冲击-切削复合破岩单位破岩能耗随着转速的增大而增大;冲击-切削复合破岩单位破岩能耗随着冲击功率的增大而减小。
     (5)冲击凿岩方式适用于不超过150℃左右的低温坚硬岩石地层的钻进中,不适合高温条件下的钻井;切削破岩可以应用在高温(约300℃以上)岩层钻进中,建议使用耐高温的钻头和保证钻井液排量;冲击-切削复合破岩方式在温度不太高(约150℃~300℃)的岩层钻进中可以取得较好的钻进效果。
     (6)钻进中的钻孔围岩稳定机理研究。通过试验得出在花岗岩钻进中,4000m埋深静水压力、300℃条件下,花岗岩体具有明显的加速蠕变现象,500℃时产生明显的破坏。
     (7)高温钻井液配方初步研究。通过试验研制了高密度无极欠饱和盐水聚磺钻井液在220℃高温下能达到良好的流动性和较小的滤失量。
Geothermal development has been paid attention to by more and more countries, and has been put into practice. China is rich in geothermal resources of hi-temp rock body. The resources available in Chunteng of Yunnan area and Yangbajin of Tibet area are more than 1.56×1011Kw.a, whose development is of great strategic significance to improving the energy structure of our country and ensuring the energy safety of our country. Since geothermal resources of hi-temp rock body are mainly deposited in the granite, drilling hole in it is necessary to construct the artificial deposit space under hydraulic cracking technique in order to get thermal resources from it. Mechanical manner for drilling hole includes mainly three as follows: impacting, cutting, and impacting plus cutting. Under normal temperature, impacting is generally used to drill the hard rock, and cutting is used to drill the soft one.
     As far as the drilling engineering is concerned, rock breaking efficiency means the higher drilling speed. However, it is affected most by the property of the rock. As the drilling depth increases during the geothermal drilling process, temperature of rock increases gradually and thermal cracking arises inside the rock, leading to the variation of the rock property. That is, its intensity decreases and its plasticity increases. Study on variation of rock breaking efficiency caused by using different manners with the increase in temperature, and study on which manner can lead to the best cracking effect under different temperatures are of significant engineering meaning.
     In the drilling process of geothermal development to hi-temp rock body, stability of wall rock is influenced by temperature stress, property of drilling fluid, and virgin rock stress, etc. The wall rock may become neck-closed, distorted and instable, and even wall breaking down under the coupled influence from temperature field, seepage field, and stress field. This shall result in the enormous increase in the cost of drilling and wall maintenance, making the engineering program impossible to carry out.
     In this paper, crashing rule of granite (φ200mm×400mm) under hi-temp and hi-press (4000 meter depth and 500℃limited) is tested and studied. Through theoretical analysis, variation trend of crashing efficiency under different crashing manners is concluded; relationship between drilling speed, energy cost, and drilling parameter under high temperature is concluded; the best crashing manner under different temperature is advised. Moreover, wall stabilizing principle in hi-temp rock drilling process is discussed; and its wall instability condition is studied. Density of drilling fluid and its fluid loss capacity can greatly influence the stability of the wall, so, this article also discusses the property and the manufacturing manner of the hi-temp drilling fluid.
     Research and conclusion of this study mainly includes:
     a. This paper studies the variation of rock-breaking progress against temperature rising at higher surrounding pressure. It also studies the relationship between drilling progress and temperature variation in those three rock-breaking manners at static hydraulic pressure in 4000 meter depth. Through orthogonal experiment on those three rock-breaking manners at different parameter group in a particular temperature condition, the following conclusion can be reached: with the temperature rising, granitite becomes thermal cracking, and drilling progress of those three manners is improved greatly. Meanwhile, impact drilling progress is seldom improved at 150℃above.
     b. This paper studies unit energy consumption against temperature rising at higher surrounding temperature. It also studies the relationship between unit energy consumption and temperature variation in those three rock-breaking manners at static hydraulic pressure at 4000 meter depth. Through the calculation of power consumption to unit cubic rock, the following conclusion can be reached: with the temperature rising, the intensity of granitite becomes weak, and power consumption of those three manners decreases.
     c. This paper studies the relationship between drilling progress and drilling parameters under hi-temp and hi-press condition. Through the analysis of experiment, the following conclusion can be reached: under the condition of static hydraulic pressure at 4000 meter depth, and temperature of 300℃, but a limited drilling weight range, drilling progress of those three rock-breaking manners is improved with the increase in drilling weight, impact power, and drilling revolution; simply increasing drilling weight or impact power can’t improve the drilling progress effectively.
     d. This paper studies the relationship between drilling parameter and unit power consumption at hi-temp and hi-press condition. Through the analysis of experiment data, the following conclusion can be reached: under the condition of static hydraulic pressure at 4000 meter depth, and temperature of 300℃, power consumption of those three rock-breaking manners decreases with the increase in drilling weight; power consumption in cutting manner increases with the increase in revolution; power consumption in cutting plus impacting manner decreases with the increase in impact power.
     e. Impacting drilling technique is available in lower temperature (within 150℃) for hard rock, and is not available in higher temperature condition. Cutting drilling technique is available in higher temperature (300℃above) condition, whereas the hot-endurable pit and drilling fluid discharging is required. Cutting plus impacting technique can achieve a better drilling progress under temperature range of 150℃to 300℃, and the harder rock condition.
     f. This paper describes wall satiability principle in drilling operation. Through the experiment under condition of static hydraulic pressure at 4000 meter depth, and temperature of 300℃, the following conclusion can be reached: the granite creeps at a faster rate, and is obviously damaged under 500℃condition.
     g. The property and the manufacturing manner of the hi-temp drilling fluid is discussed in this article. Through the test developed high-density non-polar polysulfide drilling fluid saturation owe salt in 220 degrees Celsius can achieve good under the liquidity and smaller filtration.
引文
[1]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004.
    [2]陈墨香,汪集旸,邓孝.中国地热资源——形成特点和潜力评价[M].北京:科学出版社,1994.
    [3]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社,2007
    [4]赵阳升.高温岩体地热开发与利用的基础研究[国家自然科学基金申请书],2005
    [5]朱合华,闫治国,邓涛,等. 3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1960
    [6]杜守继,刘华.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364.
    [7]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332-335.
    [8]黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,24(增):203-206.
    [9]万志军,赵阳升,董付科,等.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,2008,27(1):72-77
    [10]王绳祖.高温高压岩石力学—历史、现状、展望[J].地球物理学进展,1995,10(4):1-31.
    [11]王绳祖,施良骐,张流.岩石的塑性成分对失稳型式的影响[J].地震地质,1986,8(4):77-84.
    [12]王绳祖.岩石的脆性-延性转变及塑性流动网络[J].地球物理学进展,1993,8(4):25-37.
    [13]王绳祖.高温高压岩石力学述评──地球科学中的岩石力学[J].矿山压力与顶板管理,1995,2:2-8.
    [14]周永胜,何昌荣.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,2003,25(1):109–122.
    [15]王靖涛,赵爱国,黄明昌.岩石断裂韧度的高温效应[J].岩土工程学报,1989,11(6):113-119
    [16]万志军.非均质岩体热力耦合作用及煤炭地下气化通道稳定性研究[博士学位论文][D].徐州:中国矿业大学,2006.
    [17]林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991.
    [18]林睦曾.岩石裂隙中的含水量对岩石声波速度的影响[J].重庆大学学报(自然科学版),1983,4:71-80.
    [19]李力,林睦曾,刘康敏.岩石受热后的强度、变形破坏特性的微观研究[J].岩土力学,1990,11(4):51-61.
    [20]小林良二,古住光正,林睦曾.关于在压缩破坏过程中岩石弹性波速度的研究[J].矿业工程,1980,6:9-14.
    [21]沈显杰,杨淑贞,张文仁.岩石热物理性质及其测试[M].北京:科学出版社,1988.
    [22]周克群,楚泽涵,张元中,等.岩石热开裂与检测方法研究[J].岩石力学与工程学报,2000,19(4):412-416.
    [23]吴晓东,刘均荣.岩石热开裂影响因素分析[J].石油钻探技术,2003,31(5):24-27.
    [24]陈颙,吴晓东,张福勤.岩石热开裂的实验研究[J].科学通报,44(8):880-883.
    [25]赵阳升,孟巧荣,康天合,等.显微CT实验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27(1):28~34.
    [26]康健,赵明鹏,赵阳升,等.随机介质固热耦合模型与高温岩体地热开发人工储留层二次破裂数值模拟[J].岩石力学与工程学报,2005,24(6):969-974.
    [27]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984
    [28] Shimada M. Lithosphere strength inferred from fracture strength of rocks at high confining pressures andtemperatures[J] .Tectonophysics, 1993, :21755-64 .
    [29] Aydan O, Akagi T, Kavamoto T. The squeezing potential of rock around tunnels: theory and prediction with examples taken from Japan[J] .Rock Mech Rock Eng, 1996, :29125-143 .
    [30] Ravalec M Le,Darot M,Reuschile T,et al. Transport properties and microstructural characteristics of a thermally cracked mylonite[J].Pure and Applied Geophysics,1996,146(2):151-160.
    [31] Chen Yong,Wang Chiyuen. Thermally induced acoustic emission in Westerly granite[J]. Geophysical Research Letters,1980,7:1089~1092.
    [32]高澜庆.液压凿岩机主要工作参数对凿岩速度影响的实验研究[J].凿岩机械气动工具,1996(4):52-54
    [33]赵伏军,李夕兵,冯涛.动静载组合破碎脆性岩石试验研究[J].岩石力学与工程学报,2005,26(7):1038-1042.
    [34]李夕兵,周子龙,叶洲元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报, 2008, 27(7):1387-1395.
    [35]赵伏军,冯涛,等.动静载荷耦合作用下岩石破碎理论分析及试验研究[J].岩石力学与工程学报,2005,24(8):1315–1321
    [36]李夕兵,左宇军,马春德,等.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2815-2824.
    [37]魏昕,王成勇,谭哲丽.PDC刀具切削花岗岩过程的微裂纹扩展[J].岩石力学与工程学报,1996,15(1):71-76.
    [38]魏昕,王成勇,谭哲丽.PDC刀具切削花岗岩的过程研究[J].广东工学院学报,1995,12:80-85.
    [39]卢世红,胡湘炯,陈庭根.刮刀钻头钻速规律的初步研究[J].华东石油学院学报,1984(1):65-72.
    [40]郑仁.刮刀钻头钻进中几个问题的讨论[J].煤田地质与勘探,21(3):56-59.
    [41]李昱,张海滨.液动冲击旋转钻井技术及其发展趋势[J].石油矿场机械,2006,35(3):107-109.
    [42]常玉军,殷琨.冲击回转碎岩机理试验研究[J].探矿工程,2001,4:62-64
    [43]陶兴华.冲击旋转钻井破岩特点分析[J].钻采工艺,1996,19(3):1-3.
    [44]闫铁,李玮,毕雪亮,等.一种基于破碎比功的岩石破碎效率评价新方法[J].石油学报,2009,30(2):291-294.
    [45]李娟,何金南.国内外深井钻井技术进步与经济评价初探[J ] .石油钻探技术,2002 (6):17-19.
    [46]陈勉,金衍.深井井壁稳定技术研究进展与发展趋势[J ] .石油钻探技术,2005 (5):17-21.
    [47]何金南.深井钻井技术问题及其系统分析[J ] .石油钻采工艺,2005 (5) :47-49.
    [48]宫常斌,高德利,徐秉业.井眼稳定性的研究方法和进展[J].武汉交通科技大学学报,1997,21(6):644-648.
    [49]刘玉石,周煌辉,黄克累.井眼温度变化对井壁稳定的影响[J].石油钻采工艺,1996,18(4):1-4.
    [50]刘厚彬,孟英峰,李皋,等.超深井井壁稳定性分析[J].天然气工业,2008,28 (4) :67-69.
    [51] X. LI,L CUI,J. C. ROEGIERS. Thermoporoelastic Modelling of Wellbore Stability in Non-hydrostatic Stress Field[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(4/5):584.
    [52] Chen Guizhong. A Study of Wellbore Stability in Shales Including Poroelastic,Chemical,And Thermal Effects,PhD thesis,The University of Texas at Austin,USA,2001.
    [53]中国岩石力学与工程学会高温高压岩石力学专业委员会编,第一届高温高压岩石力学学术讨论会论文集,北京:学术期刊出版社,1988.
    [54] K. Tezuka,H. Niitsuma. Stress estimated using microseismic clusters and its relationship to the fracturesystem of the Hijiori hot dry rock reservoir. Engineering Geology,2000,56(3):47-62.
    [55] F. H. Cornet,Th. Berard,S. Bourouis. How close to failure is granite rock mass at 5km depth . Int. J. Rock Mech. Min. Sci,2007,44(2):47-66.
    [56] Haimson B C,Chang C. True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimatate the maximum horizontal in situ stress. J Geophys Res,2002,107(15):1-14.
    [57]梁利喜,许强,刘向君.基于极限平衡理论定量评价井壁稳定性.石油钻探技术,2006,34(2):15-17.
    [58]冯巨恩,吴超.金属矿床采掘过程围岩失稳状态的声发射监测实践.地球物理学报,2005,48(6):1460-1465.
    [59] B.Haimson. Micromechnisms of borehole instability leading to breakouts in rocks. Int. J. Rock Mech. Min. Sci,2007,44(2):157-173.
    [60]黄荣樽,陈勉,邓金根,等.泥页岩井壁稳定力学与化学的耦合研究.钻井液与完井液,1995,12 (3):56-61.
    [61]马德新,方英.井壁岩石流动和软化特性的力学分析.钻采工艺,2000,23(1):17-20.
    [62]陈秀云,汤洪杰.垂直井眼井眼稳定的理论分析.石油钻探技术,1999,27(4):21-22.
    [63]丰全会,祖峰,邓金根.井壁稳定性研究及其在盐城地区的应用.钻采工艺,2000,23(4):22-26.
    [64]邓虎,邓虎,孟英峰泥页岩稳定性的化学与力学耦合研究综述[J].石油勘探与开发,2003,30(1):109-111.
    [65]邓金根,田红,王治中,等.非均匀外载作用下油井套管强度特性的实验研究[J].岩土力学,2005,26(6):855-858.
    [66]王炳印,邓金根,宋念友.力学温度和化学耦合作用下泥页岩地层井壁失稳研究[J].钻采工艺,2006, 29 (6): 1-4.
    [67]秦启群,邓辉.裂缝对石油井壁力学稳定性影响[J].西南石油大学学报,2007,29(4):167-170.
    [68]薛世峰,马国顺,葛洪魁,等.液-固-水耦合形式的井眼稳定性模型研究[J].石油钻探技术,2007,35(1):41-44.
    [69]郭光辉,大庆深探井水基钻井液体系研究.硕士论文.2006.
    [70]乔英杰,王慎敏,甄捷,等.抗高温抗盐降滤失剂SHK-AN的合成及性能研究[J].哈尔滨师范大学自然科学学报,2001,17(5):86-89.
    [71]韩琳,王锦锋,吴文辉.黄胞胶接肢共聚物降滤失剂应用性能评价[J].石油钻探技术,2006,34(2):38-40
    [72]王中华.AM/AMPS/木质素磺酸接枝共聚物降滤失剂的合成与性能[J].精细石油化工进展,2005(11):1-3
    [73]王松,胡三清.抗高温降黏剂PNK的研制与评价[J].石油钻探技术,2003,31(2):24-26
    [74]樊泽霞,王兰兰,孙明波,等.具有抑制性的抗温耐盐改性腈纶钻井液降滤失剂KWY的研制[J].油田化学,2005,22(1):10-12
    [75]刘明华.AMPS/MTAAC/AM共聚物降滤失剂的合成及性能[J].精细石油化工进展,2002,3(8):22~24.
    [76]周永胜,蒋海昆,何昌荣.不同温压条件下居庸关花岗岩脆塑性转化与失稳型式的实验研究[J].中国地震,2002,18(4):389-400.
    [77]郭孝先.液压凿岩机冲击功能参数研究目标[J].凿岩机械气动工具,1989(2):50-56.
    [78]刘欣.冲击凿岩时转角对凿碎比功的影响[J].凿岩机械气动工具,1982,04:33-37.
    [79]党治国.评Детистов的凿岩机轴推力公式[J].凿岩机械气动工具,1981,04:59-62.
    [80]郤保平.热-流-固多场耦合作用下钻井围岩系统稳定性研究.博士学位论文,2009.
    [81]赵阳升,万志军,张渊,等.20 MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报,2008,27(1):1-8.
    [82]孙明光,陈庭根.PDC钻头切削齿磨损规律的试验研究[J].石油大学学报,1996,20(增):26-29.
    [84]王希勇,张艺瀚,熊继有.PDC钻头与动力钻具的优化匹配和钻进特性研究[J].石油矿场机械,2005,34(1):27-29.
    [85]王成勇,刘培德,胡荣生.花岗岩切削破碎过程研究[J].岩石力学与工程学报,1991,10(2):185-195
    [86]张晶晶,李巨龙,谭俊,等.煤矿用PDC钻头钻进参数试验研究[J].能源技术与管理,2009(4):94-96.
    [87]张渊.高温三轴应力条件下岩石热破裂机制与试验研究[博士学位论文][D].徐州:中国矿业大学,2006.
    [88]左明星,王佟,曾铁军,定福庄地热试验井成井工艺研究[J].中国煤田地质,2006,12(6):52-54.
    [89]赵光贞,山东地区地热井钻井工艺技术[J].探矿工程2006,6:43-45.
    [90]姚冬春译.用新型PDC钻头钻地热井[J].国外石油机械,1995,6(4):10-17.
    [91]田志坤.地热钻井用钻头[J].编译自日本《地热》,
    [92] Zarestskii-Feoktistov G.G.,Tanov G.N.,Belousov S.N.,et al. Prediction of rock creep[J]. Soviet mining science,1990,26(2):137-141.
    [93]Fabre Géraldine,Pellet Frédéric. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6): 950-960.
    [94]Tomanovic Zvonko. Rheological model of soft rock creep based on the tests on marl[J]. Mechanics of Time-Dependent Materials,2006,10(2): 135-154.
    [95]张晓东,易发全,张强,等.PDC钻头与岩石相互作用规律试验研究[J].江汉石油学院学报, 2003,25:64-65.
    [96]王成勇,刘培德,胡荣生.岩石切削断裂的应力性质研究[J].岩石力学与工程学报,1990,9(3):209-215.
    [97]韦忠良,陈庭根. PDC钻头钻进时扭矩影响因素研究[J].石油钻探技术,1995,23(1):50-52
    [98]张云连.冲击旋转钻井工具的发展现状及应用研究[J].OIL FIELD EQUIPMENT, 2001,30(5):12-14.
    [99]菅志军,张玉霖,王茂森,等.冲击旋转钻进技术新发展[J].地质与勘探,2003,39(3):78-83
    [100]黄万志,林元华.冲击回转钻具的能量传递和参数选择[J]西南石油学院学报,1997,19(4)74-79.
    [101]常玉军,殷琨.冲击回转碎岩机理试验研究[J].探矿工程,2001,04:62-64.
    [102]夏宏南,王克雄,翟应虎,等.围压条件下PDC钻头不同齿形的破岩实验研究[J].江汉石油学院学报,1997,19(4)48-50.
    [103]刘泉声,许锡昌,山口勉,等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    [104]许爱.PDC钻头切削齿破岩载荷规律的分析[J].探矿工程,2006,7:59-61.
    [105]张晶瑶等.高温条件下岩石结构特征的研究.东北大学学报(自然科学版),1996,17(1):5、9
    [106]王克雄,翟应虎,夏宏南,等.模拟深井条件下的PDC钻头破岩试验研究[J].探矿工程,1997,2:46-47.
    [107]黄万志,林元华.冲击回转钻具的能量传递和参数选择[J].西南石油学院学报,1997,19(4):74-79.
    [108]王克雄.冲击旋转钻井技术在石油钻井中的应用研究[J].石油钻井工艺,1999,21(5):5-9.
    [109]李夕兵,赖海辉,朱成忠.冲击载荷下岩石破碎能耗及其力学性质的探讨[J].矿冶工程,1988,8(1):15-19.
    [110]李国华.陶兴华.动、静载岩石破碎比功试验研究[J].岩石力学与工程学报,2004,23(14):2448-2454.
    [111]闫铁,李玮,毕雪亮,李士斌.旋转钻井中岩石破碎能耗的分形分析[J].岩石力学与工程学报,2008,23(增2):3649-3654.
    [112]闫铁,李,玮,毕雪亮,李士斌.一种基于破碎比功的岩石破碎效率评价新方法[J].石油学报,2009,30 (2):291-294
    [113]谢和平,彭瑞东,鞠杨,周宏伟.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2604-2608.
    [114]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [115] M·林德维斯特等.岩石的压缩破碎和冲击破碎的能耗[J].国外金属矿选矿,2008,11:2-6
    [116]王敏生,李祖奎,耿应春,等.室内岩石破岩机制试验及应用研究[J].岩土力学,2008,29(3):711-716.
    [117]张河,蒋宏伟,李建粉,等.冲击旋转钻井破岩规律的研究[J].内蒙古石油化工,2008,5:120-123.
    [118]邹德永,尹宏锦. PDc钻头钻进的岩石可钻性研究[J].石油大学学报(自然科学版),1993,17(1):31-35.
    [119]谢世勇,王艳霞,赵伏军.冲击载荷作用下岩石破碎数值模拟及试验研究[J].中国钨业,2007,22(5):5-9.
    [120]翟越,马国伟,赵均海,等.花岗岩在单轴冲击压缩荷载下的动态断裂分析[J].岩土工程学报,2007,29(3):385-390.
    [121]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781–1783.
    [122]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778–781.
    [123]邹德永,梁尔国.硬地层PDC钻头设计的探讨[J].石油机械,2004,32(9):28-31.
    [124]李娟,何金南.国内外深井钻井技术进步与经济评价初探[J].石油钻探技术,2002 (6):17-19.
    [125]陈勉,金衍.深井井壁稳定技术研究进展与发展趋势[J].石油钻探技术,2005 (5):17-21.
    [126]何金南.深井钻井技术问题及其系统分析[J ].石油钻采工艺,2005 (5):47-49.
    [127]宫常斌,高德利,徐秉业.井眼稳定性的研究方法和进展[J].武汉交通科技大学学报,1997,21(6):644-648.
    [128]刘玉石,周煌辉,黄克累.井眼温度变化对井壁稳定的影响[J].石油钻采工艺,1996,18(4):1-4.
    [129]刘厚彬,孟英峰,李皋,等.超深井井壁稳定性分析[J].天然气工业,2008,28 (4):67-69.
    [130] X. LI,L CUI,J. C. ROEGIERS. Thermoporoelastic Modelling of Wellbore Stability in Non-hydrostatic Stress Field[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(4/5):584.
    [131] Chen Guizhong. A Study of Wellbore Stability in Shales Including Poroelastic,Chemical,And Thermal Effects,PhD thesis,The University of Texas at Austin,USA,2001.
    [132]中国岩石力学与工程学会高温高压岩石力学专业委员会编,第一届高温高压岩石力学学术讨论会论文集,北京:学术期刊出版社,1988.
    [133] K. Tezuka,H. Niitsuma. Stress estimated using microseismic clusters and its relationship to the fracture system of the Hijiori hot dry rock reservoir. Engineering Geology,2000,56(3):47-62.
    [134] F. H. Cornet,Th. Berard,S. Bourouis. How close to failure is granite rock mass at 5km depth? . Int. J. Rock Mech. Min. Sci,2007,44(2):47-66.
    [135] Haimson B C,Chang C. True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimatate the maximum horizontal in situ stress. J Geophys Res,2002,107(15):1-14.
    [136]梁利喜,许强,刘向君.基于极限平衡理论定量评价井壁稳定性.石油钻探技术,2006,34(2):15-17.
    [137]冯巨恩,吴超.金属矿床采掘过程围岩失稳状态的声发射监测实践.地球物理学报,2005,48(6):1460-1465.
    [138] B.Haimson. Micromechnisms of borehole instability leading to breakouts in rocks. Int. J. Rock Mech. Min. Sci,2007,44(2):157-173.
    [139]黄荣樽,陈勉,邓金根,等.泥页岩井壁稳定力学与化学的耦合研究[J].钻井液与完井液,1995,12 (3):56-61.
    [140]马德新,方英.井壁岩石流动和软化特性的力学分析.钻采工艺,2000,23(1):17-20.
    [141]陈秀云,汤洪杰.垂直井眼井眼稳定的理论分析.石油钻探技术,1999,27(4):21-22.
    [142]丰全会,祖峰,邓金根.井壁稳定性研究及其在盐城地区的应用.钻采工艺,2000,23(4):22-26.
    [143]邓虎,邓虎,孟英峰泥页岩稳定性的化学与力学耦合研究综述[J].石油勘探与开发,2003,30(1):109-111.
    [144]邓金根,田红,王治中,等.非均匀外载作用下油井套管强度特性的实验研究[J].岩土力学,2005,26(6):855-858.
    [145]王炳印,邓金根,宋念友.力学温度和化学耦合作用下泥页岩地层井壁失稳研究[J].钻采工艺,2006, 29 (6): 1-4.
    [146]秦启群,邓辉.裂缝对石油井壁力学稳定性影响[J].西南石油大学学报,2007,29(4):167-170.
    [147]薛世峰,马国顺,葛洪魁,等.液-固-水耦合形式的井眼稳定性模型研究[J].石油钻探技术,2007,35(1):41-44.
    [148]乌效鸣.钻井液与岩土工程浆液[M].中国地质大学出版社,2002.
    [149]苏义脑,徐鸣雨.钻井基础理论研究与前沿技术开发新进展[M].石油工业出版社,2005.
    [150]周金葵.钻井液工艺技术[M].石油工业出版社,2009.
    [151]黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理[M].北京:石油工业出版社,1976.
    [152]徐同台,赵忠举.21世纪初国外钻井液和完井液技术[M].东营:中国石油大学出版社,2004.
    [153]李世忠.深孔钻探孔底碎岩的过程和特点[C]//王达.中国大陆科学钻探工程钻探技术论文选集. 2007:135-139.
    [154]刘向君.井壁力学稳定性原理及影响因素分析[J].西南石油学院学报,1995,17(4):51-57.
    [155]蔚宝华,卢晓峰,王炳印,等.高温井地层温度变化对井壁稳定性影响规律研究[J].钻井液与完井液,2004,21(6):15-18.
    [156]李士斌,阎铁,韩辉,等.模拟井底应力条件下的岩石可钻性实验研究[J].天然气工业,2003,23(2):64-66.
    [157]何湘清,刘向君,罗平亚.温度扰动对井壁稳定和油田开发的影响[J].天然气工业,2003,23(1):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700