用户名: 密码: 验证码:
煤地下自燃时覆岩中氡气运移规律及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国重要的基础能源和重要原料,是不可再生资源。煤炭自燃严重威胁着矿井的安全生产,而且造成资源大量浪费。然而,煤层自燃火灾发生于地下数百米深处,由于人员无法靠近以及火源的隐蔽性,给防灭火工作带来了巨大的困难。因此,自燃火源位置的精确探测一直是煤矿安全生产中的重大难题之一,也是一项世界性难题。地面同位素测氡法探测火源位置作为一种行之有效的技术已在自然发火严重的矿井进行了应用,但没有形成一个完善的理论;因此,深入研究煤地下自燃时覆岩中氡的运移规律及其影响因素,可进一步提高同位素测氡法探测煤层自燃火源位置的精度,可有效地解决矿井防灭火火源位置探测这一关键技术,具有重要的科学意义和应用价值。
     通过分析氡运移规律的影响因素,得出了自燃煤层覆岩中氡运移的基本原理,借助自行研制的国内外最大的煤自燃与测氡实验台,通过实验研究、理论分析、数值模拟、以及现场探测的方法,对煤地下自燃时覆岩中氡迁移机理、不同温度下和不同深度处氡的析出特征、不同地表条件下现场实际探测分析、以及对自燃煤层开采过程中采空区自燃危险区域模拟,结合地表探测分析氡的异常区域进行了系统的研究。
     主要研究内容及结果如下:
     (1)自燃煤层覆岩中氡异常形成的机理。从氡的产生、性质和来源入手,分析了煤自燃对覆岩中氡的影响,结合“geogas”理论的特点,提出了自燃煤层覆岩中氡异常形成的机理。
     (2)煤自燃与测氡实验台的研制。在分析煤自燃过程中覆岩中氡的迁移机理基础上,研制了国内外自动化程度最高的煤自燃与测氡实验台。该实验装置可模拟不同粒度、不同漏风强度下煤自燃的全过程,以及氡在不同射气介质、构造条件下的析出规律。
     (3)煤自燃生成气体与氡析出的相关性及实验台温度场的实验研究。通过煤自燃实验,得出煤自燃的特征温度及各特征温度下的标志气体与氡析出的关系;分析了自燃过程中各层位高温区域与时间的关系及中心测点高温区域与层位的关系和特点,为研究煤地下自燃时布置覆岩中测氡点的位置提供了参考。
     (4)煤自燃时覆岩中氡运移的实验研究。应用实验台研究了不同射气介质在煤自燃过程中氡的析出规律,得出不同孔隙率、不同温度以及不同位置及深度对氡析出率的影响及程度。
     (5)矿井自燃火灾中氡气探测的现场观测研究。给出了地面测氡技术探测自燃火源的探测工艺及野外原始数据的有效取值、分析方法;通过对4个典型条件下的现场探测,结合实际灭火工程效果,得出典型条件下地表氡异常与煤地下自燃的相互关系,为同类条件下的探测提供参考依据。
     (6)采空区自燃危险区域数值模拟及上覆地表氡的析出规律。通过对乌达矿区黄白茨矿1293长壁工作面采空区气体的长期观测,应用CFD模拟技术模拟了自燃危险区域,结合地表氡气探测技术,验证自燃危险区域一致性,同时为采空区自燃地面测氡法探测测场布置提供科学依据。
Coal is an important basic energy and raw materials. More importantly, it is a non-renewable resource. The spontaneous combustion of coal, resulting in substantial waste of resources, threats to the safety of production. However, fire prevention has faced to great difficulties dut to the imperceptibility of fire and its hundred meters below under the ground. Therefore, it has been being a major worldwide problem to precisely detect the location of fire source. The measurement of radon isotope has been applied to many coal mines to detect fire source, but it is short of a complete theory. Therefore, radon migration law in overlying strata and its influencing factors are the keys to further enhance the precision of fire detection, showing the scientific significance and application value.
     The basic principle of radon migration was obtained on the basis of the analysis of the influcing factors on the radon migration. Using the largest self-developed spontaneous combustion of coal and radon laboratory bench, the migration mechanism of radon under overburden rock during the spontaneous combustion of coal underground, the characteristics of radon liberation at the different temperatures and in the different depth were systematically studied through experimental research, theoretical analysis and numerical simulation combined with on-site detection. The dangerous zone of the spontaneous combustion of coal in goaf was simulated. The abnormal regions of radon were analyzed according to detection on the ground.
     The main research contents and results are as follows:
     (1) The forming machnism of abnormal radon in overlying strata during the spontaneous combustion of coal. The forming machanism of abnormal radon was proposed on the basis of the combination of the effects of coal spontaneous combustion on radon in overlying strata and the "geogas" theory, according to the formation of radon, characteristics and sources.
     (2) The research and development of the spontaneous combustion of coal and radon bench. On the basis of the mechanism of radon migration, the spontaneous combustion of coal and radon bench was developed with the highest level of automation, which can be used to research the whole process of spontaneous combustion of coal with the different sizes and air leakage intensity, as well as radon libration laws in different media and under different construction conditions.
     (3) Research on the relationship between gases generated during the coal spontaneous combustion and the radon libration and the experiments on temperature field in the bench. The relationship between the index gases and the radon libration at the characteristic temperature was obtained. The relationship between the high temperature zones in different horizons and time and that between the high temperature zones in the centre measuring point and horizons, giving a guide for the arrangement of the radon measuring points during the coal spontaneous combustion.
     (4) Experiment of radon migration in overlying strata. The radon libration law in the different emanation media was studied during the spontaneous combustion of coal in the bench, giving out the effect of the porosity, temperature, position and depth on the radon libration.
     (5) On-site observation of the radon detection. The ground radon detection process, the data effective values and the analytical method were given. The relationship between the spontaneous combustion of coal underground and the abnormal radon amount on the ground through the on-site detection under four typical conditions, combined with the actual fire-fighting project results.
     (6) The numerical simulation of spontaneous combustion dangerous zone in goaf and the earth’s surface radon libration law. Through long-term observation on gases in goaf on Wuda mining 1293 longwall working face, the danger zone was simulated with CFD, suggesting the consistency of spontaneous combustion dangerous zone with the on-site observation.
引文
[1]张建明等.中国地下煤火研究与治理[M].北京:煤炭工业出版社,2008.
    [2]《中国可持续能源发展战略》.http://baike.baidu.com/view/1671741.htm.
    [3]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望[J].中国安全科学学报, 2003,13(3):76-78.
    [4]武建军,蒋卫国,刘晓晨等.地下煤火探测、监测与灭火技术研究进展[J].煤炭学报,2009,35(12):1669-1673.
    [5]邬剑明.煤自燃火灾防治新技术及矿用新型密闭堵漏材料的研究与应用[D].太原:太原理工大学,2008.
    [6]邬剑明,翟建山等.煤矿自燃火灾治理关键技术的研究与应用[J].中国安全科学学报, 1998,8(4):47-50.
    [7]胡省山,成玉琪.21世纪前期我国煤炭科技重点发展领域探讨[J].煤炭学报,2005,(2):1-7.
    [8]邬剑明,王俊峰.基于神经网络的煤层自然发火的非线性预测[J].中国安全科学学报, 2004,14(5):11-13.
    [9]周心权等.矿井火灾救灾理论与实践[M] .北京:煤炭工业出版社,1996.
    [10]戚颖敏.我国煤矿火灾防治技术的现代发展与应用[J].煤,1999,8(2):1-3.
    [11]赵耀江,邬剑明.测氡探火机理的研究[J].煤炭学报,2003,28(3):260-263.
    [12]李金良,张友谊.浅谈煤矿火源探测技术[J].煤矿开采,2006,(08),86-91.
    [13]王洪权,邬剑明,徐精彩等.煤炭自燃早期预测预报与火源探测技术[M].煤炭工业出版社,2001,:9-18.
    [14]邓军,徐精彩,阮国强,王秀林.国内外煤炭自然发火预测预报技术综述[J].西安矿业学院学报,1999(10).
    [15]陈振永,张吉林,周军民.红外探测仪在防灭火中的应用[J].中州煤炭,2004(04):59.
    [16]符宏如,姜家贵.井中无线电波法在西藏香嘎山铬铁矿区的试验结果[J].物探与化探,1986,10(1):57-59.
    [17]邹正明,何金武,王林.地质雷达在长坞岭隧道超前地质预报中的应用[J].山西建筑,2008,(02):334-335.
    [18]宋雷,黄家会,南生辉.地质雷达用于探测煤田自燃区的研究[J].煤炭科学技术,1999,27(12):23-25.
    [19]戴广龙.双元示踪技术探测煤炭自燃火源的研究[J].西安矿业学院学报,1996,16(4).
    [20]邵辉,戴广龙.煤炭自燃火源探测示踪气体的筛选研究[J].淮南矿业学院学报, 1994,(4): 19-23.
    [21]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望[J].中国安全科学学报,2003,11(3),76-78.
    [22]徐精彩.煤炭自燃过程研究[J].煤炭工程师,1989,(5):17-21.
    [23]邓军,徐精彩,文虎.忻州窑矿8916综放面采空区自燃性预测[J].西安矿业学院学报,1998,18(增刊):10-13.
    [24]徐精彩,邓军,文虎.采煤工作面采空区可能发火区域分析[J].西安矿业学院学报,1998,18(1):13-16.
    [25]康高峰,雷学武,吴军虎等.TM图像在新疆奇台北山煤田火区动态监测中的应用[J].国土资源遥感,1996(6),No.2.
    [26]管海晏.遥感技术在煤田地质工作中的应用研究[J].地质学报,1989,(2).
    [27]康高峰.应用遥感技术调查煤层自燃灾害[J].国土资源遥感,1992,(4).
    [28]祁明星,万兆昌.陕北煤田火区磁探工作方法及效果[J].物探与化探,1987,No.8.
    [29]煤炭科学研究总院抚顺分院情报室.利用磁感应及远距离测定作出煤层火灾区域地图[J].国外煤矿安全信息,1996,No.7.
    [30]张瑜麟.电阻率法在隐伏铝土矿勘查中的应用效果[J].有色金属矿产与勘查,1997,6(3):172-175.
    [31]马海明,马志飞.煤层自燃规律及火区探测技术研究[J].陕西煤炭,2009,(1):59-60.
    [32]贾苓希,李大心.一米测温在漳州地热区的应用效果[J].地球科学——中国地质大学学报,1988,13(3):263-269.
    [33]唐庆兵,李大心,樊武义.综合物探方法在煤田采空区圈定和着火区调查中的应用研究[J].地质科技情报,2001,3(20).
    [34] To rrance K E,Char V W C,Turco tte D L. A model of hydro thermal convection in an aquifer [J]. J. Geop hy s. R es. ,1980,85: 2544-2588.
    [35]О.Б.Нещеткин,马占中译,氡运移的机制问题,国外铀矿地质,No.2,42-43,1987
    [36] Malmqvist L.,et al.,Radon migration through soil and bedrock,Geoexploration,No.26,1989
    [37]吴慧山等.氡迁移的接力传递作用[J].地球物理学报,1997,40(1).
    [38] Kristiansson K.,et al.,Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport,Geophysics,Vol.47,No.10:1444-1452,1982
    [39] Abdoh A.,et al.,Radon emanation studies of the Ile Bizad Fault,Montreal,Geoexploration No.25,1989
    [40] Varhegyi A.,et al.,Experimental study of radon transport in water as test for a transportation microbubble model,Journal of applied geophysics,Vol.9,1992
    [41] Technology Today,Geogas prospecting method highlighted in stockholm,Mining Journal,June, 1987
    [42] Technology Today,Czech work on metallic emanations,Mining Journal,April,1988
    [43] Tidjani A.,et al.,Realization of a simulator for radon-222 underground migration studies, Nuclear Instruments and Methods A255,423,1987
    [44] Vandergraaf T.T. , Radionuclide migration experiments under laboratory conditions,Geophysical research letters,Vol.22,No.11:1409-1412,1995
    [45] Holford D.J.,et al.,Modeling radon transport in dry,cracked soil,Journal of geophysical research letters,Vol.08,NB1,1993
    [46] Chen C.,et al.,Modeling of radon transport in unsaturated soil,Journal of geophysical research,Vol.100,No.8,1995
    [47]曹玲玲等.氡迁移机理研究进展概述[J].地震研究,2005,28(3):302-306.
    [48]苏尔坦霍贾耶夫А?И等,放射性气体在研究地质过程中的应用[M],地震出版社,1983
    [49] Thomas M.Semkow and Pravin P.Parekh,The role of Radium distribution and porosity in Radon emanation from solids,Geophysical Research Letters,Vol.17,No.6,1990
    [50] J.E.Gingrich,Radon as a geochemical exploration tool,Journal of Geochemical Exploration,VOL.21,19-13,1984
    [51] Nazarpff,W.W.,Radon Transport from soil to air. Re Geophys. 199230(2):137-160.
    [52] G.M.Reimer,Reconnaissance Techniques for Determining Soil–gas Radon Concentrations: an Example from Prince Georges County,Maryland,Geophysical Research Letters,Vol.17,No.6,Pages 809-812,May,1990.
    [53] Lennart Malmqvist,Mats Isaksson and Krister Kristiansson,Radon Migration through Soil and Bedrock,Geoexploration,26(1989)135-144.
    [54]刘庆成,陈业勋,张晔,等.介质中氡运移的模拟[J].华东地质学院学报, 1995,18 (4): 366 - 370.
    [55]李良,李忠伟.应用气体扩散和氡蜕变理论讨论水氡异常的形成[J].东北地震研究, 1999,15(2) : 22-28.
    [56]李韧杰.氡析出率的测定及其影响因素的探讨[J].铀矿冶,2000, 19 (1) : 56-61.
    [57]程业勋,王南萍,侯胜利等.空气氡的大地来源理论研究[J].辐射防护通讯, 2001,21(2): 15-18.
    [58] S.lombardi,G.M.Reimer,Radon and Helium in Soil Gases in The Phlegraean Fields,Central Italy,Geophysical Research Letters,Vol.17,No.6.PAGE 848-652,May 1990.
    [59] WilkeningM H,Watkins D E. Air exchange and Radon 222 co2centration in the Carlsbad cavens [ J ]. Health Phys,1976,31(2): 139.
    [60]李亚平,许正繁.氡迁移的富集及对环境的影响[ J ].广东地质, 1999, 14 (2): 75 - 78.
    [61]叶树林,黄国夫.放射性勘查方法圈定滑坡边界的机理及应用[ J ].中国地质灾害与防治学报, 2000, 11 (3) : 86 - 97.
    [62]戴华林,胡建平,包乾宗等.关于浅层地震勘探和测氡定位隐伏断裂的初步探讨[ J ].西安工程学院学报, 2001, 23(4) : 65 - 68.
    [63] Varhegyi A.,et al.,Experimental study of radon transport in water as test for a transportation microbubble model,Journal of applied geophysics,Vol.9,1992.
    [64]车用太,鱼金子,刘五洲.水氡异常的水动力学机制[J].地震地质, 1997, 19 (4) : 353 - 357.
    [65]张朝明,朱方保,余华扬等.地下水逸出气动态特征形成机制的实验研究[ J ].地震, 2000,20(1):96-102.
    [66]李韧杰.氡析出率的测定及其影响因素的探讨[J].铀矿第3期, 2000,19(1):56-61.
    [67]周瑞,安海忠,杜世汉等.氡气异常与煤田陷落柱关系的探讨[J].中国煤田地质, 1993,5(1):67-69.
    [68] Peter. F. folger, Eileen Poeter, et al. 222 Rn transport in frac2tured crystalline rock aquifer: result from numerical simulation[ J ]. Journal of Hydrology, 1997, 195: 45 - 77.
    [69]白云生,林玉飞,常桂兰.铀矿找矿中氡的迁移机制探讨[J].铀矿地质, 1995,11 (4):224-231.
    [70]吴慧山,林玉飞,白云生等.氡的迁移接力传递作用[J].地球物理学报,1997, 40 (1):136-142.
    [71]贾文懿,方方,周蓉生等.氡及其子体向上运移的内因与团簇现象[J].成都理工学院学报,1999,26(2):171-175.
    [72]贾文懿,方方,周蓉生等.氡释放的实验研究与机理探讨[J].成都理工学院学报, 2002,29(1):61-64.
    [73]乐仁昌,贾文懿,吴允平等.氡运移实验研究与氡团簇运移机理[J].辐射防护, 2002,22(3):175-181.
    [74]乐仁昌,贾文懿,吴允平.理想条件下氡及其子体运移新理论及其运移方程[J].物理学报, 2003,52(10),2457-2461.
    [75] G.Etiope,G.Martinelli,Migration of carrier and trace gases in the geosphere:anoverview,Physicsof the Earth and Planetary Interiors 129(2002)185-204.
    [76]周子勇,陶澍.地气的宏观效应与微观效应[J].地学前缘,2003,10(1):249-255.
    [77] Kristiansson,K.,Malmqvist,L.,1984. The depth dependence of the concentration of 222Rn in soil-gas near the surface and its implication for exploration. Geoexploration 22, 17-41.
    [78] Kristiansson,K.,Malmqvist,L.,1987. Trace elements in the geogas and their relation to bedrock composition. Geoexploration 24, 517-534.
    [79] Malmqvist,L.,Kristiansson,K.,1984. Experimental evidence for an ascending microflow of geogos in the ground. Earth Planet. Sci. Lett. 70, 407-416.
    [80] Malmqvist,L.,Kristiansson,K.,1985. A physical mechanism for the release of free gases in the lithosphere. Geoexploration 23, 447-453.
    [81] [Malmqvist,L.,Isaksson,M.,Kristiansson,K.,1989. Radon migration through soil and bedrock. Geoexploration 26,135-144.
    [82] RYSS Yu S,GOLDBERG I S,AL EKSEEV S G,et al. Streammigration of matter in the process of forming secondary halo ofdispersion[J ] . Dokl A N SSS R ,1987,297(4):9562958 (in Rus2sian).[РЫССЮС,ГОЛЬДБЕРГИС,АЛЕКСЕЕВСГидр.Струйнаямиграциявеществавобразованиивторичныхореоловрассеяния[J ] .ДАНСССР,1987,297(4):9562958. ]
    [83] Gingrich,J.E.,Fisher J.C.,1976. Uranium exploration using the track etch method. In: Explor. For uranium ore dep.,IAEA,Vienna, pp. 213-224.
    [84] Fleischer,R.L.,Mogro-Campero,A.,1978. Mapping of integrated radon emanation for detection of long-distance migration of gases within the Earth: techniques and principles.J.Geophys.Res.83(B7),3539-3549.
    [85] Fleischer,R.L.,Mogro-Campero,A.,19789a. Randon enhancement in the Earth: evidence for intermittent upflows. Geophys.Res.Lett.6(5),361-364.
    [86] Fleischer,R.L.,Mogro-Campero,A.,19789b. Techniques and principles for mapping of integrated radon emanation within the Earth.In: Gesell,Lowder,McLaughlin(Eds.),Proceedings of the Third Natural Radiation Environment. Conference DOE 780422,Washington, DC.
    [87] Fleischer,R.L.,Hart, H.R.,Mogro-Campero,A.,1980. Radon emanation over an ore body: search for long-distance transport of randon. Nucl. Instrum. Meth. 173, 169-181.
    [88] Mogro-Campero,A.,Fleischer,R.L.,1977. Subterrestrial fluid convection: a hypothesis for long-distance migration of radon within the Earth. Earth Planet. Sci. Lett. 34, 321-325.
    [89] Mogro-Campero,A.,Fleischer,R.L.,1979. Search for long-distance migration of s Mubsurface radon. In: Gesell,Lowder,McLaughlin(Eds.),Proceedings of the Third Natural RadiatIon Environment. DOE Conference 780422,Washington, DC.
    [90] Etiope,G. and Lombardi,S.,1995. Evidence for radon transport by carrier gas through faulted clays in Italy. Journal of Radioanalytical and Nuclear Chemistry, 193,291-300.
    [91]刘亚明,刘垚.氡的性质及空气中氡浓度的测量综述[J].中国测试技术,2005,31(5):121-124.
    [92]石辉,李占斌,赵晓光.铀钍衰变系核素在土壤侵蚀应用研究的进展[J].核农学报,2003,17(5):396-399.
    [93]曲向荣.环境保护概论[M].沈阳:辽宁大学出版社,2007
    [94]乐仁昌.氡及其子体的释放和运移规律及机理研究[D].成都:成都理工学院,2001.
    [95]卢新卫,室内空气中氡的来源、危害及控制措施分析[J],桂林工学院学报,2004,2(1),87~92
    [96]杨钦元.氡的来源、性质与防护[J].中国建材,1996,7,37~38.
    [97]贾文懿,方方,周蓉生,等,氡及其子体运移规律与机理研究[J].核技术,2000,23(3),179~175.
    [98]何登良,刘家琴,王海滨等.环境中氡及其子体的危害与防治[J].绵阳师范学院学报,2007,26(8):55-59.
    [99]梁锦华,袁兆熊,张祖良.活性炭测量系统的最佳条件选择和影响因素[J].铀矿地质,1985,1(5):46-50.
    [100]辛晖,陈焱.辐射防护和氡[J].采矿技术,1992,(26):21-22.
    [101]孙世荃.人类辐射危害评价[M].北京:原子能出版社,1996. 156 - 168.
    [102] [苏].A.A.奥吉尔维,1962,地球物理探测方法,周镭庭(1965),北京:中国工业出版社,245~248
    [103]魏彪,王开成,冯鹏,贾文懿.测氡技术的工程地质应用及其在三峡库区滑坡监测中的应用展望[J].重庆交通学院学报,2003(12),Vol.22,117~120.
    [104]杨华,用测氦技术和激发极化法探测地下多层煤层火区位置与范围的尝试[硕士学位论文[D],太原理工大学,2003.
    [105]王桂香,唐岱茂,张新军,氡气测量在煤矿地质上的应用[J],太原理工大学学报,2001(9),32(5),523~526.
    [106]李学军,α探测技术及其在煤矿地质中的作用[J],煤田地质与勘探,1991,19(6),58~61.
    [107]董芳楚,房贺岩,气体动态变化与地震活动性的关系,断层气测量在地震科学中的应用,北京:地震出版社,1991,163~164)
    [108]赵友清,吴隆昌,利用Ra测氡法寻找隐伏构造及地下水,断层气测量在地震科学中的应用[D],北京:地震出版社,1991,217~218)。
    [109]李权国.煤层自燃引起覆岩破坏及地表移动变形规律探讨[D].太原:太原理工大学,2004.
    [110]周泉宇,杨仕教.铀矿井氡的危害、析出规律及其控制方法研究[J].现代矿业,2009,(2):114-116.
    [111]张哲,氡的析出与排氡通风[M],原子能出版社,1982年9月.
    [112]邬剑明,吴新文.同位素测氡技术在我国煤矿的研究应用[J].中国煤炭,1998,24(6):22-24.
    [113]邬剑明.煤矿井下氡分布状况与自然发火关系的研究[D].太原:太原理工大学,1995.
    [114]刘洪福,程小平,白春明.测氡技术在探测地下火区范围中的应用[J].物探与化探,1997,21(2):77-80.
    [115]刘艳.煤升温氧化过程中氡的析出与自然发火指标气体关系的实验研究[D].太原:太原理工大学,2007.
    [116]邬剑明,迟克勇,肖建红.煤自然发火过程的模拟实验研究[J].中国煤炭,2008,(4):49-51.
    [117]张国枢,戴广龙,王卫平.煤炭自燃模拟实验装置设计与研制[J].淮南工业学院学报,1999,19(4):11-13.
    [118]刘杰.石油化工圆筒炉的钢结构分析与优化[J].工业建筑,2009,(39):647-651.
    [119]但泽义,弋晓锋,王林.大型高炉炉体框架的结构形式及内力分析方法[J].钢铁技术,2005,(5):37-39.
    [120]张瑜,韩玉杰,蒋云飞.烘炉温度检测系统的发展[J].林业机械与木工设备2006,34(5):7-9.
    [121]韩少军,周斌,李召富.汽车拉杆总成试验台计算机测控系统研究[J].武汉理工大学学报,2009,31(3):440-442.
    [122]刘喜梅轮对跑合试验台计算机测控系统的研究与研发[J].铁路计算机应用2009,18(1):29-31
    [123]赵爱萍.基于气相色谱技术的采空区有害气体分析[J].科技情报开发与经济,2008,18(4):141-142.
    [124]刘小松,丘寿康.一种较准确而快速测量氡析出率的方法[J].辐射防护,2007,27(3):156-157.
    [125]苏君,徐鸣,李沫,郭艳玲,韩芹芹.乌鲁木齐市土壤中氡浓度水平及分布规律调查[J].辐射防护,2009,29(5):327-333.
    [126]邓军,徐精彩,王洪权圆柱形煤自然发火实验台的数值模拟研究[J].辽宁工程技术大学学报21(2),2002:130-133.
    [127]李林,B.B.Beamish,姜德义.煤自然活化反应理论[J].煤炭学报,2009,34(4):505-508.
    [128]肖旸,马砺,王振平等.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,35(5):73-76.
    [129]舒新前等.煤炭自燃的热分析研究[J].中国煤田地质,1994,6(2):25-28.
    [130]周春山.煤自燃实验过程中温度场的数值模拟研究[D].太原:太原理工大学,.2007年
    [131] B.Basil Beamish,Modher A. Baraka. Spontaneous combustion propensity of New Zealand coals under adiabatic conditions. International Journal of Coal Geology,2001,45,217-224.
    [132] B.Basil Beamish,Modher A. Barakat,John D. St George. Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochimica Acta,2000,362: 79-87
    [133]梁子荣.煤升温氧化过程中含断层上覆岩层对氡迁移影响的研究[D].太原:太原理工大学,2009年.
    [134]吴晓光,煤自然发火实验台温度场研究[D].西安:西安科技大学,2005年.
    [135]文虎.煤自燃过程的实验及数值模拟研究[D],西安:西安科技大学,2003年
    [136]王俊峰,邬剑明,靳钟铭.一种预测采空区自燃危险区域的新方法——CFD技术的应用[J].煤炭学报,2009,34(11):1483-14889
    [137]王福军.计算流体动力学分析[M]北京:清华大学出版社, 2004
    [138]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社, 2004
    [139]梁栋,周西华.回采工作面瓦斯运移规律的数值模拟[J].辽宁工程技术大学学报,1999,18(4):337-341
    [140]黄伯轩.采场通风与防火[M].徐州:煤炭工业出版社,1992.
    [141]谭允祯,张东俭,杨东岳等.综采放顶煤工作面采空区自燃区的划分[J] .山东科技大学学报,2002,21(1):69-71.
    [142]牛会永,周心权.综放面采空区遗煤自然发火特点及环境分析[J] .煤矿安全,2008,405(8):12-15.
    [143]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2004.
    [144] Fluent Inc.,FLUENT User’s Guide,2003.
    [145] H.K.Versteeg , W. Malalasekera , An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley,New York,1995.
    [146]胡千庭,梁运培,刘见中.采空区瓦斯流动规律的CFD模拟[J].煤炭学报,2007,32(7):719~723.
    [147] Bannerjee S.C. , 1990. Spontaneous Combustion of Coal and Mine Fires. A.A.Balkema,Rotterdam.
    [148] Beaubien, S.E.,Ciotoli,G. and Lombardi, S., 2003. Carbon dioxide and radon gas hazard in the Alban Hills area (central Italy). Journal of Volcanology andGeothermal Research,123,63-80.
    [149] Bossus,D.A.W.,1984. Emanating power and specific surface area. Radiat. Prot. Dosim. 7, 73-76.
    [150] Bunzl,K.,Ruckerbauer,F. and Winkler,R.,1998. Temporal and small-scale spatial variability of 222Rn gas in a soil with a high gravel content. The Science of the Total Environment,220,157-166.
    [151] Burton,M.,Neri,M. and Condarelli,D.,2004. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophysical Research Letters,31,L07618, doi:10.1029/2003GL019181.
    [152] Butt,C.R.M.,Gole,M.J. and Hart,M.K.W.,1987. A review of Australian experience in the evaluation of helium as a pathfinder in exploration. Journal of Geophysical Research,92B,12595-12603.
    [153] Davidson R.M.,1990. Natural Oxidation of Coals. IEA Coal Research– The Clean Coal Centre,London.
    [154] Davis,J.C.,1986. Statistics and Data Analysis in Geology,2nd ed. J.Wiley & Sons,New York. 645pp.
    [155] Dickson, B.L.,Giblin, A.M. and Snelling, A.A., 1987. The source of radium in anomalous accumulations near sandstone escarpments, Australia. Applied Geochemistry,2,385-398.
    [156] Dickson B.L. 1990. Radium in Groundwaters (Chapter 4.2) Monograph on The Environmental Behaviour of Radium, Technical Reports series No 310, I.A.E.A. Vienna.
    [157] Dyck,W. and Car,D.,1987. Detailed geochemical studies of a He-U lake anomaly in permafrost,Baker Lake area,N.W.T. Journal of Geochemical Exploration, 28, 409-429.
    [158] Etiope,G.,1997. Transport of radioactive and toxic matter by gas microbubbles in the ground. Journal of Environmental Radioactivity 40,11-13.
    [159] Etiope,G. and Lombardi,S.,1996. Laboratory simulation of geogas microbubble flow. Environmental Geology,27,226-232.
    [160] Etiope,G. and Lombardi,S.,1995. Evidence for radon transport by carrier gas through faulted clays in Italy. Journal of Radioanalytical and Nuclear Chemistry, 193, 291-300.
    [161] Etiope,G. and Lombardi,S.,1996. Laboratory simulation of geogas microbubble flow. Environmental Geology,27,226-232.
    [162] Etiope,G. and Martinelli,G.,2002. Migration of carrier and trace gases in the geosphere: an overview. Physics of the Earth and Planetary Interiors,129, 185-204.
    [163] Finkelstein,M.,Brenner,S.,Eppelbaum,L. and Ne'EmanE., 1998. Identification of anomalous radon concentrations due to geodynamic processes by elimination of Rn variations caused by other factors. Geophysical Journal International, 133, 407-412.
    [164] Fleischer,R.L. and Mogro-Campero,A.,1978. Mapping of integrated radon emanation for detection of long-distance migration of gases within the earth - techniques and principles. Journal of Geophysical Research,83B,3539-3549.
    [165] Garver E.,Baskaran M.,2004. Effects of heating on the emanation rates of radon-222 from a suite of natural minerals. Applied Radiation and Isotopes 61, 1477-1485.
    [166] Greeman D.J,Rose A.W., 1996. Factors controlling the emanation of radon and thoron in soils of the eastern U.S.A. Chemical Geology 129, 1-14.
    [167] Greenman,D.J. and Rose,A.W.,1996. Factors controlling the emanation of radon and thoron in soils of eastern USA. Chemical Geology, 129, 1-14.
    [168] Guerra,M. and Etiope,G.,1999. Effects of gas-water portioning, stripping and channelling on radon and helium gas distribution in fault areas. Geochemical Journal,33,141-151.
    [169] Guerra,M.,Lombardi,S.,2001. Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics 339,551-522.
    [170] Gundersen L.C.S.,Schumann R.R.,1989. The importance of metal oxides in enhancing radon emanation from rocks and soils. Abstracts with Programs, 21/6.Boulder,Colorado,Geological Society of America, A145.
    [171] Holub,R.F; Hovorka,J.; Reimer,G.M.; Honeyman,B.D.; Hopke,P.K.and Smrz, P.K.,2001. Further investigations of the "Geoaerosol" phenomenon. Journal of Aerosol Science 32, Supplement 1, 61-70.
    [172] Holub,R.F.; Reimer,G.M.; Honeyman,B. D.Smrz,P.K.,2001. Measurement and preliminary behavioral model of radioactive“geoaerosols”. Journal of Radioanalytical and Nuclear Chemistry,249, 239-244.
    [173] Holub,R.F.; Reimer,G.M.; Hopke,P.K.; Hovorka,J.; Krcmar,B.; Smrz,P.K., 1999.“Geoaerosols”: their origin, transport and paradoxical behavior: a challenge to aerosol science. Journal of Aerosol Science,30,Supplement 1,pp. 111-112.
    [174] Holub,R.F; Smrz,P. K.,2002. Localization of a bound particle outside the potential well. Canadian Journal of Physics, 80, 755–766.
    [175] Iakovleva,V.S. and Ryzhakova,N.K.,2003. A method for estimating the convective radon transport velocity in soils. Radiation Measurements 36, 389– 391
    [176] Iskandar,D.; Yamazawa,H. and Iida,T.,2004. Quantification of the dependency of radon emanation power on soil temperature. Applied Radiation and Isotopes, 60,971-973.
    [177] King,C. and Luo,G.,1990. Variations of electric resistance and H2 and Rn emissions of concrete blocks under increasing uniaxial compression. Pure and Applied Geophysics,134,45-56.
    [178] King,C.,King,B. and Evans,W.C.,1996. Spatial radon anomalies on active faults in California. Applied Geochemistry,11,497-510.
    [179] Planinic,J.,Vukovic,B. and Radolic,V.,2004. Radon time variations and deterministic chaos. Journal of Environmental Radioactivity 75, 35–45.
    [180] Przylibski T.A.,2000. Estimating the radon emanation coefficient from crystalline rocks into groundwater. Applied Radiation and Isotopes. 53, 473-479.
    [181] Richon,P.,Perrier,F.,Sabroux,J.,Trique,M.,Ferry,C.,Voisin,V. and Pili,E.,2005. Spatial and time variations of radon-222 concentration in theatmosphere of a dead-end horizontal tunnel. Journal of Environmental Radioactivity 78, 179–198.
    [182] Sasaki T.,Gunji Y.,Okuda T.,2004a. Mathematical modelling of radon emanation. Journal of Nuclear Science and Technology 41, 142-151.
    [183] Sun H.B.,Furbish D.J.,1995. Moisture content effect on radon emanation in porous media. Journal of Contaminant Hydrology 18, 239-255.
    [184] Unger,A.,Finsterle,S. and Bodvarsson,G.,2004. Transport of radon gas into a tunnel at Yucca Mountain—estimating large-scale fractured tuff hydraulic properties and implications for the operation of the ventilation system. Journal of Contaminant Hydrology 70,153–171.
    [185] Walker S.,1999. Uncontrolled Fires in Coal and Coal Wastes. IEA Coal Research– The Clean Coal Centre,London.
    [186] ]Wang H. , 2002a. Examination of CO2, CO and H2O formation during low-temperature oxidation of bituminous coal. Energy & Fuels 16, 586-592.
    [187] Wang H.,2002b. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuels 81, 1913-1923.
    [188] Wang,X.,Cheng,Z.,Lu,Y.,Li,X.,and Xie,X.,1997. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration,58,63-72.
    [189] Wanty R.B.,Lawrence E.P.,Gundersen L.C.S.,1992. A theoretical model for the flux of radon from rock to ground water. In: Gates A.E., Gundersen L.C.S. Geologic controls on radon. Special Paper 271. Boulder, Colorado, Geological Society of America,73-78.
    [190] Xie,X.,1999. Empirical prospecting,scientific exploration and information exploration. Journal of Geochemical Exploration, 67, 97-108.
    [191] Xue,S.,Ren,T.,Wesner,C. and Chen,H.,2004. Radon survey in LW KA101 at Dartbrook mine to detect potential underground heating zone. CSIRO Exploration and Mining Report 1230C.
    [192] Xue,S.,Wu,J.,Balusus, R. and Worrall, R. 2003. Demonstration of innovative radon detecting technique for locating underground heating area from surface. ACARP Project Report C12005. CSIRO Exploration and Mining Report 1080F.
    [193] Xue,S.,Wu, J. and Humphries, P. 2004. Locating underground heating zones at Southland mine with radon technique. CSIRO Exploration and Mining Report 1167C.
    [194] Zhou,Ziyong; Tao,Shu; Xu,Fuliu; Dawson,R.,2003. A physical–mathematical model for the transport of heavy metals and toxic matter from point sources by geogas microbubbles. Ecological Modelling,161,139–149.
    [195] Jean-Paul Toutain,Jean-Claude Baubron,Gasgeochemistry and seismotectonics:a review.Tetconphysics 304(1999)1-27.
    [196] G.etiope,G.Martinelli,Migration of carrier and trace gases in the geosphere:an overiew. Physics of the Earth and Planetary Interiors 129(2002)185-204.
    [197] Bruce Robertson, Jim Sandford, Bevan Kathage. Locating underground heatings with surfaceradon detecting technique[R]. Australia:ACARP,2008.
    [198]周子勇,陶澎,地气的宏观效应与微观效应[J],地学前沿. 2003,10(3):249-255.
    [199]章晔,华荣洲等,放射性方法勘察【M】,原子能出版社,1990年6月.
    [200]刘庆成,程业勋等,介质中氡运移模拟[J],华东地质学院学报. 1995,18(4):366-369.
    [201]万建华,于长春等,氡气法反演燃烧煤层深度新方法[J],物探与化探. 2007,31(6):556-559.
    [202]周玉华.层状介质氡分布数值模拟[C].北京:中国地质大学,2006.
    [203]刘菁华.活断层上覆盖层中氡迁移的数值模拟及反演拟合[D].中国优秀博硕士学位论文全文数据库.2006,(05).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700