用户名: 密码: 验证码:
摩擦叠焊试验装置及焊接工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦叠焊是摩擦焊接技术中的一种,是一种新型的固相连接技术。随着世界范围内海洋石油及天然气资源开发力度的加强,水下油气田开采深度不断加深,海洋深水工程钢结构的连接及其修复技术日渐受到重视。摩擦叠焊焊接接头因其性能优异且焊接质量受环境压力影响较小,在深水钢结构修复领域得到迅速发展。近年来,摩擦叠焊技术在海洋石油国家得到了高度重视。各国针对摩擦叠焊焊接装备、焊接工艺以及该技术在水下连接工程中的应用进行了一系列研究开发工作。在我国,随着海洋石油开采力度的加强和水下工程的发展,迫切要求展开摩擦叠焊技术的研究。目前,摩擦叠焊焊接装备和焊接工艺的研究在国内都还属于空白。因此,本研究中关于摩擦叠焊焊接试验装置及其焊接工艺的研究具有重要的工程价值和理论意义。
     本文首先根据国外相关研究资料中所提供的摩擦叠焊焊接过程以及影响焊接质量的几个主要焊接工艺参数的范围,提出摩擦叠焊试验装置的设计技术要求。根据技术要求设计了国内第一套摩擦叠焊试验装置。设计工作主要分为:机械系统设计、液压系统设计和电控系统设计。有限元分析结果表明机械系统设计结构合理、安全、可靠。在LY12铝合金摩擦叠焊焊接工艺试验过程中,液压系统能够提供足够的焊接转速、焊接压力和焊接扭矩,满足工艺试验的要求。电控系统结构设计合理,能够实现对焊接过程的控制。
     为了能够在摩擦叠焊焊接工艺试验过程中监控和采集各项试验数据,本研究针对影响摩擦叠焊焊接质量的几个主要工艺参数,设计开发了一套摩擦叠焊焊接工艺试验数据采集系统。该数据采集系统能够在工艺试验过程中实时采集并存储各项试验数据,人机界面简单明了,易学易用。所有试验数据能够直接存储为Excel格式,便于进行试验后的研究与分析。
     其次,在完成摩擦叠焊试验装置及摩擦叠焊焊接工艺试验数据采集系统的开发研制的基础上,针对影响摩擦叠焊单元成型焊接质量的几个主要工艺参数,设计并进行了一系列针对LY12铝合金的单元焊接工艺试验。主要内容包括:氩气保护对焊接质量的影响;塞棒转速对焊接质量的影响;塞棒进给速度对焊接质量的影响等。结果表明:在焊接过程中采用氩气进行保护能够有效减少氧化铝的产生,提高单元成型的焊接质量。焊接转速是摩擦叠焊焊接工艺中最重要的焊接参数之一,焊接转速的提高可以有效改善焊接质量。进给速度对焊接质量的影响受焊接转速的制约。在高转速的条件下,提高进给速度有利于提高焊接质量。在转速较低的条件下提高进给速度不利于提高焊接质量。通过以上的大量试验,确定了合理的焊接工艺参数范围并获得了无焊接缺陷的单元填充焊缝。
     本研究在进行了单元焊接工艺试验后,进一步开展了LY12铝合金叠焊焊缝成型的焊接试验研究,实现了LY12铝合金摩擦叠焊的无缺陷焊接。试验结果表明:在叠焊过程中为了避免钻孔时钻头两侧受力不均匀,采用跳序法进行焊接较为合理。另外,在叠焊焊接过程中对焊接试件进行预热,有利于减小焊接残余应力,提高叠焊焊缝的焊接质量。
     然后,本研究基于传热学、摩擦学、接触力学等学科的相关理论,通过MSC. Marc有限元计算分析软件建立了摩擦叠焊单元成型焊接初期的热力耦合仿真模型,并对Q235钢材料进行了仿真计算。仿真计算的结果表明:各焊接工艺参数对其焊接过程的影响与LY12铝合金各焊接工艺参数的影响情况基本相同。这说明在摩擦叠焊单元成型焊接过程中各焊接工艺参数对焊接情况的影响规律一般不随材料的变化而变化,只是不同材料的热物性能和力学性能不同导致对各焊接工艺参数的数值大小要求有所不同而已。这为以后开展钢材料的焊接工艺试验奠定了基础。
     最后,基于摩擦叠焊试验装置在焊接试验过程中体现出的一些缺点和不足,提出了新的针对管道的摩擦叠焊试验装置的设计要求。新的试验装置采用总线通讯的控制方式,除焊接主轴的转动和轴向进给外,其它自由度的运动均采用交流伺服电机驱动,这提高了设备的控制精度和响应速度,设备性能得到了很大的改善。
     本论文的以上研究内容对我国摩擦叠焊焊接装备及焊接工艺的研究具有重要的意义。
Friction stitch welding is a kind of friction welding technology, which belongs to a new type of solid-phase connection technology. With the reinforcement of worldwide offshore oil and gas resource developing, the exploiting depth of underwater oil and gas field increase continually, the connection and repair technology of deepwater engineering steel structure have been paid more attentions day by day. Because the performance of friction stitch welding joint is excellent and there is less effect resulting from environmental pressure on the welding quality, friction stitch welding technology develops rapidly in the repairmen areas of deepwater steel structure. In recent years, friction stitch welding technology has received great attention in the offshore oil countries. They have carried out a series of research and development work for the friction stitch welding equipment, welding process and the application of the technology in underwater connection engineering. In our country, as the strengthening of offshore oil exploitation and the developing of underwater engineering, the requirements of research on friction stitch welding are very urgent. At present, the studies of friction stitch welding equipment and welding process are still non-existent in China. Therefore, in this paper, the study on friction stitch welding test device and welding process has important engineering value and theoretical significance.
     Firstly, in this paper, the friction stitch welding test device design requirements have been proposed based on the friction stitch welding process and the parameters affecting the welding quality provided by the data from foreign research related. The first set of friction stitch welding test device has been designed meeting the technical requirements. Design work can be divided into mechanical system design, hydraulic system design and electrical control system design. Finite element analysis results show that the design of mechanical system is reasonable, safe and reliable. During the test of friction stitch welding process for LY12 aluminum alloy, the hydraulic system can provide adequate welding speed, welding pressure and welding torque to meet the requirements of process test. The design of electronic control system structure is reasonable; it can achieve the control of welding process.
     In the friction stitch welding process test, in order to monitor and acquire the parameters, a set of friction stitch welding test data acquisition system has been designed and developed for the process parameters. The data acquisition system can capture and store the test data. Its man-machine interface is simple and easy to learn. All test data can be stored directly as Excel format, which is easy to be researched and analyzed.
     Secondly, on the basis of friction stitch welding test equipment and friction stitch welding test data acquisition system, a series of LY12 aluminum ally welding process test have been designed and carried out, in order to study the influence of the several key process parameters on the welding quality. The main contents include:influence of argon gas protection on welding quality, influence of rotational speed on welding quality and influence of feed speed on welding quality The results show that:In the welding process, the use of argon gas protection can reduce the production of alumina and improve the welding quality of unit forming. Welding speed is the most important welding parameters for the welding process. The welding quality can be improved through increase the welding speed. The influence of feed speed on welding quality is restricted by the welding speed. Under the condition of high rotational speed, the increase of feed speed will help improve the welding quality. But, under the condition of lower rotational speed, the increase of feed speed can not improve the welding quality. Through a lot of test, a reasonable range of welding parameters have been determined, and a perfect FHPP weld has been acquired.
     In the study, after test of unit weld process, the experiment of friction stitch welding for LY12 aluminum alloy have been carried out further. The perfect weld of friction stitch welding has been acquired in the experiment. The results show that:the jump continued method is reasonable for friction stitch welding, which can avoid the unbalanced force on both sides of the drill in drilling. Other, the preheating of workpiece for friction stitch welding can help reduce the welding residual stress and improve the weld quality.
     Then, in the study, based on heat transfer, tribology, contact mechanics and other related theories, the thermal coupled simulation model of FHPP has been established by the finite element analysis software MSC.Marc. And the model Q235 steel material is also simulated. The computed results show that:the influence of welding process parameters is the same as that for LY12 aluminum alloy. It means that the influence variation of welding process parameters on friction unit welding do not change with changes in the material. Just, the different thermal properties and mechanical properties of materials lead to the numerical size requirement of welding process parameters are different. That will lay the foundation for the study of steel material welding process test in the future.
     Finally, the design requirements of the new pipeline friction stitch welding test equipment have been proposed based on the shortcomings and deficiencies of friction stitch welding test equipment reflected in the welding process experiments. The new test device adapts the bus communication. In addition to the spindle rotation and axial feed, the other movements are driven by AC servo motor, that have improved the control precision and equipment response speed. The equipment performance is improved greatly.
     The studies in this paper have great significance for the study of friction stitch welding equipment and welding process in our country.
引文
[1]周灿丰,焦向东,陈家庆,等.海洋工程深水焊接新技术[J].焊接,2006,(4):11-15,28.
    [2]俞建荣,张奕林,蒋力培.水下焊接技术及其进展[J].焊接技术,2001,30(4):专题.
    [3]吴伦发,王君民,郑晓光,等.低合金钢用湿法水下焊条的研制及应用[J].热加工工艺,2006,35(11):65-67.
    [4]林文清.水下焊接技术的开发与应用[J].造船技术,1993,157(3):34-36.
    [5]刘占户,曾鹏飞,李晓娜.水下管道焊接技术的研究现状及发展趋势[J].电焊机,2006,36(7):1-3.
    [6]陈晓强,张可玉,詹发民,等.水下爆炸焊接修补实验与分析[J].爆破,2004,21(1):77-79.
    [7]陈晓强,张可玉,段宇.水下复合板的爆炸焊接[J].焊接技术,2004,33(6):23-24.
    [8]周灿丰,焦向东,房晓明.高压TIG焊接技术及其应用研究[J].焊接技术,2004,33(5):34-35.
    [9]高辉,周灿丰,焦向东,等.水下干式高压焊接电弧摄像研究[J].焊接技术,2007,36(6):35-37.
    [10]薛龙,焦向东,周灿丰,等.水下干式高压焊接试验系统研究[J].中国机械工程,2006,17(9):881-884.
    [11]朱加雷,焦向东,沈秋平,等.核电厂检修局部干法自动水下焊接实验[J].上海交通大学学报,2008,42(增刊):126-128.
    [12]高辉,焦向东,周灿丰,等.水下高压局部干式自动焊接试验装置控制系统[J].焊接学报,2008,29(10):65-68.
    [13]周灿丰,焦向东,朱加雷,等.水下焊接计算机辅助质量保证系统[J].上海交通大学学报,2008,42(增刊):112-114.
    [14]王国荣,易耀勇,刘世明,等.水下局部干法药皮焊条焊接的研究[J].华南理工大学学报(自然科学版),1995,23(2):34-39.
    [15]董继红,朱加雷,高辉,等.水下局部干式GMAW焊接的计算机辅助质量保证系统研究[J].北京石油化工学院学报,2008,16(1):45-48.
    [16]陈家庆,焦向东,邱宗义,等.摩擦叠焊——一种新型的固相连接技术[J].焊接技术,2007.36(1):1-6.
    [17]周君.摩擦焊技术发展与展望[C].第十一次全国焊接会议.2006,上海:中国机械工程学会焊接学会.
    [18]柳咏枝.螺柱焊焊接工艺[J].焊接技术,2002,31(4):20-21.
    [19]黄贤聪.螺柱焊技术的应用与发展趋势[J].机械工人,2001,(09):4-5.
    [20]王元良.螺柱焊接技术的发展及应用[J].电焊机,2006,36(1):15-18.
    [21]尤建兵.螺柱焊接技术的发展趋势[J].电焊机,2006,36(1):9-10.
    [22]刘雪梅,姚君山,张彦华,等.摩擦堆焊技术研究进展[J].热加工工艺,2007,37(11):62-65.
    [23]陈家庆,焦向东,周灿丰,等.新型材料成形加工技术——摩擦叠焊[J].焊接学报,2007,28(9):108-112.
    [24]杜随更.摩擦焊接工艺新发展(二)[J].焊接技术,2000,29(6):48-50.
    [25]陈世攀,胡波.钻杆摩擦焊接参数实时检测系统的研制[J].电气传动自动化,2006,28(3):36-38.
    [26]毛信孚,傅莉,刘小文.Monel K500合金摩擦焊接工艺研究[J].航空精密制造技术,2006,42(1):39-42.
    [27]傅莉,杜随更,刘小文.地质钻杆摩擦焊接头组织与性能[J].焊接学报,2001,22(1):49-52.
    [28]孙家钟.摩擦焊工艺及其应用[J].航天工艺,1988,(5):34-37.
    [29]Maalekian M. Friction welding-critical assessment of literature[J].Science and Technology of Welding and Joining,2007,12(8):738-759.
    [30]木村真晃,藤井利充,内海大辅,等.Development of autocompleting fricting welding method[C].焊接学会论文集,2007,平城:轻结构连接加工委员会.
    [31]滦国红.搅拌摩擦焊匙孔去除技术[J].现代焊接,2006,46(10):34-35.
    [32]Thomas W M and Nicholas E D. Friction stir welding for the transportation[J]. Materials&Design,1997,18(4/6):269-273.
    [33]徐晓菱.径向摩擦焊[J].四川兵工学报,1995,16(3):15-16.
    [34]徐晓菱,朱凌云,申捷,等.轴向摩擦焊机上的径向摩擦焊[J].电焊机,1995,(5):29-31.
    [35]马铁军,温国栋,张勇,等.Ti-17线性摩擦焊摩擦功率、界面温度及剪切强度之间的关系[J].航空精密制造技术,2009,45(1):39-42,46.
    [36]Pauly D, Santos J F, et. al. A preliminary study on the application of friction welding in structural repairs[R].1998.
    [37]Nicholas E D. Friction processing technologies[R].2003, TWI:UK.2-9.
    [38]高辉.焊接发展史(三)——水下焊接技术发展史[J].焊接技术,2007,36(1):3-4.
    [39]Axel M, DirkAI P, Santos J, et. al. Considerations on robotic friction stitch welding for the repair of marine structures [C].20th International Conference on Offshore Mechanics and Arctic Engineering.2001, GKSS:Rio de Janeiro. 145-151.
    [40]G. Blakemore, Hammerin. Subsea Robotic Friction-Welding-Repair System[C]. Offshore technology conference,1999, Circle Technical Services Ltd:Houston.
    [41]周灿丰,焦向东,陈家庆,等.海洋工程水下连接新技术[J].北京石油化工学院学报,2006,14(3):20-25.
    [42]陈忠海,陈家庆,焦向东,等.摩擦叠焊的基础研究及工程应用[J].电焊机,2009,39(4):109-116.
    [43]胡建,陈鹏.径向摩擦焊夹持模型优化设计三维有限元分析[J].电焊机,2006,36(2):52-55.
    [44]杜随更,段立宇,吴诗惇,等.半自然热电偶测温法——一种测量摩擦界面温度及其分布的新方法[J].焊接,1996,(7):5-9.
    [45]金蔚青,小松启.固液界面温度的一种测量方法[J].物理学报,1985,34(9):1166-1171.
    [46]王希靖,阿荣,郭瑞杰.LY12铝合金的搅拌摩擦焊接工艺研究[J].兰州理工大学学报,2004,30(4):12-14.
    [47]王希靖,韩晓辉.基于FLUENT的铝合金搅拌摩擦焊三维流场数值模拟[J].电焊机,2006,36(1):48-50.
    [48]许晓嫦.铝合金超塑性分析用试样的一种制备方法[J].理化检验(物理分册),1997,33(2):41.
    [49]周鹏展,钟掘,贺地求,等.2519厚板搅拌摩擦焊接工艺及组织分析[J].中南大学学报(自然科学版),2006,37(1):114-118.
    [50]栾国红,季亚娟,董春林,等.LY12铝合金摩擦塞焊接头组织分析[J].焊接学报,2006,27(10):1-3.
    [51]蔡刚毅,吕广庶,马壮,等.Al-Zn-Mg-Cu铝合金ECAP变形后的组织和性能[J].轻合金加工技术,2008,36(4):45-48.
    [52]王轶农,武保林,王刚.LY12铝合金的再结晶织构、晶界特征分布及抗腐蚀性能[J].金属学报,2000,36(10):1085-1088.
    [53]刘克文,邢丽,柯黎明.LY12铝合金摩擦点焊接头组织及性能[J].中国有色金属学报,2008,18(2):288-293.
    [54]辜纯民,邓卫华,杨成刚,等.搅拌摩擦焊工艺参数对LY12铝合金接头组织和力学性能的影响[J].机械工程材料,2008,32(6):22-24.
    [55]刘耀辉,何镇明,董桂田,等.Al_2O_3颗粒与Al合金固液界面的相互作用[J].材料科学进展,1991,5(4):284-288.
    [56]连建设,郭威,刘玉文.LY12CZ铝合金超塑性孔洞长大及其对断裂的影响[J].材料科学进展,1991,5(3):215-220.
    [57]许晓嫦,吴纯,谭玉华.LY12CZ铝合金超塑性应变速率变化规律探讨[J].国外金属热处理,2002,23(2):19-20.
    [58]张程勇.LY12工业铝合金的超塑性预处理及超塑性拉伸变形研究[J].上海金属.有色分册,1989,10(2):7-11.
    [59]高中会.LY12铝合金超塑性挤压工艺的试验研究[J].矿山机械,2001,(9):46-47.
    [60]钱宗琦,陈昌麒,田世兴.LY12铝合金的弹塑性断裂韧度[J].兵器材料科学与工程,1986,(8):1-6.
    [61]安希墉,林均品.LY12铝合金的动态形变机制[J].稀有金属,1988,(5):353-357.
    [62]刘克文,邢丽,柯黎明.LY12铝合金摩擦点焊工艺及力学性能[J].焊接学报,2007,28(9):21-25.
    [63]王敏,马彩霞.LY12铝合金在超塑性变形中的空洞行为[J].塑性工程学报,2007,14(1):27-35.
    [64]ANDRZEJ, AMBROZIAK B G. Investigations of underwater FHPP for welding steel overlap joints [J]. ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING,2007,7(2): 67-76.
    [65]姚祖斌.纯铝的超塑性[J].模具技术,1989,(4):68-78.
    [66]何国,李建国,毛协民,等.单晶高温合金固液界面形状及对凝固组织的影响[J].航空材料学报,1995,15(1):9-14.
    [67]许晓静,王伟.工业供应态LY12铝合金的超塑性[J].宇航材料工艺,2002,(3):44-46.
    [68]陆博翘.固液界面接触角的微观理论[J].辽宁师范大学学报(自然科学版),1992,15(3):211-216.
    [69]范新会,李建国,傅恒志.固液界面与单晶连铸表面质量[J].材料研究学报,1999,13(3):320-322.
    [70]陶为民.固液界面自由能[C].第二届中国材料研讨会,1988,武汉:中国金属学会.
    [71]雷永平,史耀武,段立宇.管体摩擦焊摩擦变形阶段界面污物自清除的估算[J].焊接学报,1995,16(4):233-238.
    [72]彭立明,毛协民,徐匡迪,等.基于数值模拟的定向连续铸造固液界面位置人工神经网络模型的研究[J].铸造,2001,50(11):683-686.
    [73]李宝华,柯黎明,邢丽,等.搅拌摩擦焊工艺参数对LY12铝合金焊缝金属流动形态的影响[J:.机械工程材料,2009,33(1):55-58.
    [74]张彦华,常金玲,刘雪梅.搅拌摩擦焊过程的流变学初步分析[C].第十一次全国焊接会议,2005,上海:中国机械工程学会焊接学会.
    [75]王训宏,王快社,徐可为,等.搅拌摩擦焊接过程塑性流动形态与试验分析[J].兵器材料科学与工程,2006,29(006):47-50.
    [76]王训宏,王快社,周鹏,等.搅拌摩擦焊接接头结合质量的超声无损评价[J].轻合金加工技术,2006,34(3):32-34,40.
    [77]张永昌,Grant N J.快速凝固粉末铝合金的超塑性[J].金属科学与工艺,1985,4(3):11-15.
    [78]蔡云,童国权,葛永成.铝合金超塑性气胀成形壁厚分布工艺研究[J].模具工业,2009,35(3):23-25.
    [79]班春燕,巴启先,崔建忠,等.脉冲电流作用下LY12铝合金的微观结构和合金元素分布[J].物理学报,2001,50(10):2028-2031.
    [80]张立,常国威,曹丽云.凝固过程中固液界面形态稳定性理论的研究现状[J].辽宁工学院学报,1999,19(5):70-74.
    [81]张昭,陈金涛,张洪武.搅拌摩擦焊接中压紧力的变化对焊接过程的影响[J].航空材料学报,2005,25(6):33-37.
    [82]汪冰峰,刘煜,定向凝固固液界面温度场的探讨[J].湖南工程学院学报(自然科学版),2003,13(2):40-43.
    [83]曹朝霞.搅拌摩擦焊产热机制的研究[J].新技术新工艺,2009,(1):45-47.
    [84]苏晓莉,王快社,周俊杰,等.铝合金搅拌摩擦焊接参数对温度场的影响[J].轻合金加工技术,2006,34(2):40-42.
    [85]王希靖,李晶,达朝炳,等.LY12搅拌摩擦焊接过程中搅拌针摩擦行为的研究[J].热加工工艺,2006,35(3):18-21.
    [86]王忠平,张林,张立军,等.工进和顶锻速度对摩擦焊接面形变织构的影响[J].航空精密制造技术,2006,42(1):36-38.
    [87]王文英,王玉,高大路,等.低碳钢Q235A搅拌摩擦焊接的接头金相组织分析[J].航天制造技术,2005,(5):42-44.
    [88]欣也青田,建二池内.Development of friction stir spot welding using rotating tool without probe and its application to low carbon steel plates[C].焊接学会论文集,2008,平城:轻结构连接加工委员会.
    [89]Gibson D E, David E, Meyer A, et. al. Engineering applications of friction stitch welding[C].20th International Conference on Offshore Mechanics and Arctic Engineering,2001, GKSS:Rio de Janeiro.
    [90]Blakemore, Gordon R. Friction welding-Technology for the new Millennium[C]. Offshore technology conference,1999, Circle Technical Services Ltd:Houston.
    [91]Meyer A. Friction Hydro Pillar Processing Bonding Mechanism and Properties[R],2003.
    [92]张宝生,焦向东,陈家庆,等.FHPP单元成形过程初期阶段的热力耦合分析[J].焊接学报,2008,29(5):73-80.
    [93]OKURA K, TAMAKI. Optimal metal mold design using MSC. AutoForge and optical design support software DesignDirector[R],1997, NHK Spring CO. LTD:Yokohama.
    [94]陈家庆,焦向东,邱宗义,等.基于MSC. Marc的摩擦叠焊面接触问题数值模拟[J].石油化工高等学校学报,2008,21(4):68-77.
    [95]陈家庆,焦向东,邱宗义,等.摩擦液柱成形初始阶段的二维轴对称数值模拟[J].中国机械工程,2008,19(23):2867-1872.
    [96]杜随更,段立宇,吴诗享,等.摩擦焊接初始阶段的摩擦机制及摩擦系数[J].机械科学与技术,1997,16(4):15-17.
    [97]张全忠,张立文,桂方亮,等.GH4169合金连续驱动摩擦焊接过程三维数值模拟[J].塑性工程学报,2005,12(6):109-113.
    [98]赵衍华,林三宝,贺紫秋,等.2014铝合金搅拌摩擦焊接过程数值模拟[J].机械工程学报,2006,42(7):92-97.
    [99]郭晓娟.搅拌摩擦焊中热过程数值模拟分析[D].2007,天津大学:天津.
    [100]廖世杰,田荣璋.定向凝固固-液界面温度场数学模型[J].中南矿冶学院学报,1986,(6):60-65.
    [101]赵旭东,张忠科,孙丙岩,等.基于DEFORM的搅拌摩擦焊接过程数值模拟及流动分析[J].机械研究与应用,2009,(3):43-46.
    [102]张辉,王玉,尹欣,等.基于Matlab的钛合金TC4搅拌摩擦焊温度场数值模型[J].热加工工艺,2008,37(1):53-58.
    [103]刘雪梅,张彦华.搅拌摩擦焊过程接触熔化物理模型与分析[J].中国机械工程,2005,16(18):1688-1691.
    [104]孙占国,王玉,高大路,等.搅拌摩擦焊搅拌区动态再结晶的数值模拟[J].热加工工艺,2009,38(1):118-120.
    [105]王希靖,韩晓辉,郭瑞杰,等.搅拌摩擦焊接过程温度场数值模拟[J].焊接学报,2005,26(12):17-20.
    [106]张洪武,张昭,陈金涛.搅拌摩擦焊接过程中材料的三维流动分析[J].中国机械工程,2006,17(7):719-723.
    [107]张昭,张洪武.搅拌摩擦焊接技术实现非直线焊缝过程中的材料行为分析[J].塑性工程学报,2006,13(3):108-114.
    [108]张昭,张洪武.搅拌摩擦焊接中材料变形及残余应力分析[J].兵器材料科学与工程,2006,29(3):61-65.
    [109]韩晓辉.铝合金搅拌摩擦焊三维流场研究[D].2005,兰州工业大学:兰州.
    [110]韩晓辉,王希靖.铝合金搅拌摩擦焊三维模拟流场水平流动状况分析[J].电焊机,2006,36(3):52-54.
    [111]严铿,雷艳萍,章正,等.铝合金搅拌摩擦焊时焊接速度与热输入的关系[J].焊接学报,2009,30(1):73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700