用户名: 密码: 验证码:
板管成形的快速有限元模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板管成形在材料加工中占有相当大的比重,广泛应用于汽车、航空、航天、船舶、电机电器等领域,尤其是型材弯曲和管材胀形,顺应轻量化、降低能耗和成本的需要,在零部件生产中扮演着重要的角色。在这些成形过程的数值模拟研究中,增量分析和一步及多步模拟互补长短,相辅相成。增量法能反映加载历史、处理坯料与模具间的接触,可以比较全面的考虑板料成形中的各类影响因素,是可以对板管成形过程进行精确计算的方法,相对比较成熟。而一步和多步法则主要致力于对成形过程的快速模拟,可以在设计方案还比较模糊,没有工模具信息,或者是只有初步设计的时候,考察产品的成形质量,优化板坯,使用起来也非常容易。
     目前一步和多步法的研究主要是针对初始构形为平面的板料成形。本文的研究目标则是建立一个应用范围更广、可计算一般的板管成形、可考虑弯曲效应的一步和多步正反向快速模拟系统OMSTEP。本文的主要研究内容和成果如下:
     通常针对板料成形问题的一步和多步法在考虑弯曲效应时,将公式局限于初始构形为平面的一步反向计算,若将该公式应用于一般的板管成形过程,则会引入转动自由度,增加计算规模,并使一步和多步法的处理相对复杂。为此,本文引入BST壳单元描述变形。该单元没有转动自由度,膜变形的计算与传统一步法所使用的膜单元完全等价,曲率计算不限于初始构形是否为平面的条件,也不局限于反算,同时能够保持一步法公式的简洁性和计算效率。基于极值功原理,将全量本构关系应用于一步法,将由标量预测-回归映射方法得到的本构关系应用于多步法,推导建立了一种适用于一般板管成形的正反向快速模拟公式。
     现有的各类初始猜测值生成方法都是针对板料成形问题的,其中的几何方法难以通用,其中基于计算机图形学理论的参数化方法也要求预先完成边界节点的映射后才能使用。因此,本文首先借助边界调整法将板料的边界映射到平面上,保持板料边界的形状特征,再将其与参数化方法结合,实现通用的板料初始猜测值生成方法。为型材弯曲和管材胀形提供合适的初始解,则是个新的课题,本文提出了两种方法,一种是简单有效的几何方法,通过展开型材和管材的扫掠线来实现网格映射,效率比较高,但没有很好的通用性;另一种是将参数化方法由平面拓展到圆柱坐标系中,将工件节点映射到截面形状复杂的型材表面,或者半径尺寸任意的圆柱面上,这种方法高效、通用。此外,还给出了一种思路简单的中间构形初始解生成方法,该方法与参数化方法结合,可高效地得到较精确的中间构形初始猜测值。
     接触的处理是一步和多步法中的关键技术,对外力的施加、计算的收敛性和准确性有着重要的影响。但传统的滑动约束算法主要是针对板料的,无法适用于型材和管材。为此,本文提出了接触滑动约束算法。该算法通过接触搜索找到与工件节点最近的滑动约束面单元,通过罚函数法的方式引入法向刚度,由弹簧单元模拟所受到的工模具摩擦,保持节点只在滑动约束面(可以是截面形状封闭的复杂曲面)上运动,从而将滑动约束方法应用于型材和管材成形。此外,为了能够直观考察脱离接触面的缺陷,如起皱、截面的畸变等,本文对多步正向计算中的实际接触状态的模拟进行了一些尝试,引入LS-DYNA中的方法进行全局搜索,采用高效的内外侧算法进行局部搜索找到接触对,使用罚函数法计算实际的接触力,考察了规则化摩擦模型,并针对大穿透量问题,做了些设置,通过选取合适的参数使接触计算稳定。
     对板料成形过程进行了一步和多步正反向模拟计算,检验了OMSTEP系统求解板料成形问题的可行性。其中一步反算高效易用,多步模拟则可以获得更接近实际状况的结果。算例表明采用滑动约束计算更容易收敛,而采用罚函数法处理接触,可以观察到脱离接触面而产生的成形缺陷。
     将一步和多步正反向模拟推广应用于一般的管材和型材成形过程。进行了矩形管3点弯曲试验和复杂截面异型材的拉弯实验。通过矩形管弯曲试验模拟考察截面畸变问题,通过复杂截面异型材的拉弯实验模拟考察型材的壁厚变化和回弹情况。一步模拟所得到的截面畸变、壁厚变化结果与增量分析及实验结果非常接近。多步模拟由于中间构形的引入,计算结果较一步法有所改进,可以捕捉到更为细微的变化趋势,基于多步模拟结果的回弹计算也比基于一步模拟结果的回弹更接近实验结果。在对复杂截面异型材的模拟中,采用滑动约束,避免填充物与型材间的接触处理。在胀形计算中,实现了一步正反向计算的结合,通过反算为正算提供优化的管坯,而多步法也自然地与多工步的胀形过程相匹配。
Sheet, tube and profile formings take up a large proportion in the material forming, being widely used in the fields such as automobile, aerospace, aviation and shipping etc. Particularly, profile bending and tube hydroforming play an important role in the metal manufacturing to meet the needs of lightweight, reduction of energy consumption and cost. In the study of numerical simulations concerning such formings, the incremental analysis and the one- and multi- step simulation have complemented each other. Incremental analysis is a relatively accurate finite element computation method for sheet, tube and profile forming since the deformation history, contacts and frictions between blank and forming tools, and other factors influencing forming and product performance can be considered in the round, while the one- and multi-step approach is a kind of fast finite element computation method and can be used to inspect formability and possible forming defects, optimize blank shape without the information of tools and dies, or only with simplified tool surfaces.
     However, most one- and multi-step approaches are only applied in the sheet metal forming with a flat blank. This paper is to achieve a more widely-used fast simulation system named OMSTEP, with which sheet, tube and profile forming proecesses can be generally simulated forward or inversely with bending effects being considered. The main research content is concluded as follows.
     When the bending effects are considered in the traditional one-step approaches which are based on the sheet metal forming, the resulted formulation is limited in the one-step inverse simulation with flat initial configuration, not suited to the general forming processes of sheet, tube and profile. Therefore, the BST shell element is introduced here to describe deformation without sacrificing the efficientcy of computation and the simplicity of formulation. In the BST element, the membrane compuation results equal to those gained by traditional one-step membrane elements and the curvature is calculated without using rotational DOF, not limited either by the condition whether the initial blank is flat or by the inverse simulation. Then based on the extreme principle, total deformation theory adopted for one-step and the constitutive equations from scalar prediction-return mapping method adopted for multi-step, the basic fast FE inverse and forward formulation is deduced.
     Traditional methods to get initial guess solutions are all proposed for the sheet metal forming, among which the geometrical methods are not generally suited while the parameterization method in computer graphics can only be used after mapping the edge of sheet onto plane. So the edge tweaking method, which is shape-preserved, is firstly adopted here to map the outer edge of sheet, and then combined with the parameterization method to get initial satisfactory mesh of sheet by solving linear equations. It is a new issue to get initial guess solutions for profile bending and tube hydroforming. Two mehods are presented in this dissertation. One is a simple geometrical method in which the mesh is mapped by developing the sweepling line (center line) of profile and the other is an effective and general-suited parameterization method in which the column coordinate system is used to map mesh. Besides, a simple effective method is put forward to get good initial guess solutions for mid-configures.
     Traditional sliding constrait algorithm is mainly proposed for the sheet metal forming too, not suited to profile and tube forming. Therefore, a new contact sliding constraint method is presented, in which the nearest constraint surface element of a node is found by contact search, and then the node normal stiffness is calculated by the penalty method and the friction is computed by the spring element. This method avoids the problem of geometrical adjustment of coordiate in traditional sliding constraints and is suited to profile and tube forming. Some attempts are also made to employ the penalty method to treat real contacts between blank and tools for multi-step forward simulation. Effective inside-outside algorithm is utilized to search contact pairs, the regularized friction model is investigated and some parameters are set up to deal with the problem of big penetration.
     Sheet metal forimg processes are simulated inversely and forward by the developed in-house one- and multi- step program OMSTEP. It is shown that the one-step inverse simulation is highly efficient and easy to use and the simulation results can be improved by the multi-step approach. Besides, the numerical examples show that the convergence can be more easily achived by the sliding constraint than by the penalty method. However, the wrinkling can be oberserved directly only when the penalty method is used to treat real contacts.
     The applications of one- and multi- step approach are extended to general forming processes of profile and tube, which is hard for the traditional one- and multi- step approach based on the sheet metal forming. The experiment of three point bending of rectangular tube, in which the cross-sectional distortions are inspected, and the experiment of stretch bending of profile with a complicated cross-section, in which the variation of thickness and the springback are inspected, is conducted to inspect the suitability of OMSTEP system to the profile bending. The variation of wall thickness and cross-section distortions gained from the one-step simulation show good agreements with the incremental analyses and experimental results, but the detailed deformation tendency can only be achieved correctly from multi-step simulations since the mid-configurations are increased and the deformation history is considered. The springback values based on the results of multi-step simulation are also closer to the experimental results than those based on the one-step simulation. In the simulation of profile bending, the sliding constraint is adopted to avoid the contacts between the fillers and profile. In addition, the inverse simulation affords optimized tube blank for the forward simulation in the one step simulation of hydroforming while the multi-step approach matches with the multi-stage hydroforming.
引文
[1]肖景容,姜奎华.冲压工艺学[M].北京:机械工业出版社, 1990.
    [2]梁炳文,胡世光.板料成形塑性理论[M].北京:机械工业出版社, 1987.
    [3]刁可山,周贤宾,金朝海.铝合金型材拉弯成形研究进展.塑性工程学报, 2003, 10(6): 38-42.
    [4] Ko? M, Altan T. An overall review of the tube hydroforming (THF) technology [J]. Journal of Materials Processing Technology, 2001, 108: 384-393.
    [5] Lücke H U, Hartl Ch, Abbey T. Hydroforming [J]. Journal of Materials Processing Technology, 2001, 115: 87-91.
    [6] Dohmann F, Hartl Ch. Hydroforming ? a method to manufacture light-weight parts [J]. Journal of Materials Processing Technology, 1996, 60: 669-676.
    [7] Levy S, Shin C F, Wilkinson J P D, et al. Analysis of sheet metal forming to axisymmetric shpaes, formability topics-metallic materials [M], ASTM, Philadelphia, ASTMSTP, 1978, 647: 238-260.
    [8] Guo Y Q, Batoz J L. Finite element procedures for strain estimations of sheet metal forming parts [J]. International journal for numerical methods in engineering, 1990, 30: 1385-1401.
    [9] Guo Y Q, Batoz J L, Naceur H, et al. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach [J]. Computers and Structures, 2000, 78: 133-148.
    [10] Naceur H, Guo Y Q, Batoz J L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process [J]. International Journal of Mechanical Sciences, 2001, 43: 2407-2434.
    [11] Naceur H, Delaméziere A, Batoz J L, et al. Some improvements on the optimum process design in deep drawing using the inverse approach [J]. Journal of Materials Processing Technology, 2004, 146: 250-262.
    [12] Breitkopf P, Naceur H, Rassineux A, et al. Moving least squares response surface approximation: Formulation and metal forming applications [J]. Computers and Structures 2005, 83: 1411-1428.
    [13] Naceur H, Guo Y Q, Batoz J L. Blank optimization in sheet metal forming using an evolutionary algorithm [J]. Journal of Materials Processing Technology, 2004, 151: 183-191.
    [14] Debray K, Sun Z C, Radjai R, et al. Optimum design of addendum surfaces in sheet metal forming process [C]. NUMIFORM’2004, 2004: 1980-1984.
    [15] Naceur H, Ben-Elechi S, Knopf-Lenoir C, et al. Response surface methodology for the design of sheet metal forming parameters to control springback effects using the inverse approach [C]. NUMIFORM’2004, 2004: 1991-1996.
    [16] Naceur H, Guo Y Q, Ben-Elechi S. Response surface methodology for design of sheet forming parameters to control springback effects [J]. Computers and Structures, 2006, 84: 1651–1663.
    [17] Naceur H, Ben-Elechi S, Batoz J L. On the design of sheet metal forming parameters for springback compensation [C]. VIII International Conference on Computational Plasticity, 2005: 1-4.
    [18] Naceur H, Ben-Elechi S, Batoz J L, et al. Response surface methodology for the rapid design of aluminum sheet metal forming parameters [J]. Materials and Design, 2008, 29(4): 781-790.
    [19] Chebbah M S, Naceur H, Hecini M, et al. Response surface method for the rapid design of process parameters in tube hydroforming [C]. NUMIFORM’2007, 2007: 455-460.
    [20] Batoz J L, Naceur H, Guo Y Q. Formability predictions in stamping and process parameter optimization based on the inverse approach code Fast_Stamp [C]. NUMISHEET’2005, 2005: 831-836.
    [21] Duffett G A, Forgas A, Neamtu L, et al. Use of the inverse approach for the manufacture and decoration of food cans [C]. NUMISHEET’2005, 2005: 731-736.
    [22] Nguyen Ba N, Johnson K I, Khaleel M A. Analysis of tube free hydroforming using an inverse approach with FLD-based adjustment of process parameters [J]. Journal of Engineering Materials and Technology 2003, 125: 133-140.
    [23] Nguyen Ba N, Johnson K I, Khaleel M A. Analysis of tube hydroforming by means of an inverse approach [J]. Journal of Manufacturing Science and Engineering, 2003, 125: 369-377.
    [24] Yang S, Nezu K. Application of an inverse FE approach in the concurrent design of sheet stamping [J]. Journal of Materials Processing Technology, 1998, 79: 86–93.
    [25] Sabourin F, Morestin F, Brunet M. Sheet forming with a specific inverse approach for a further springback analysis [C]. NUMIFORM’2004, 2004: 832-837.
    [26]沈启彧.金属板料成形的数值模拟技术及其在汽车覆盖件成形工艺设计中的应用研究[D].上海交通大学博士论文, 1999.
    [27]沈启彧.金属板料成形的快速有限元分析[J].计算力学学报, 1999, 5: 3-6.
    [28] Shi X X, Wei Y P, Ruan X Y. Simulation of sheet metal forming by a one-step approach: choice of element [J]. Journal of Materials Processing Technology, 2001, 108: 300-306.
    [29] Wang Y, Shen Q Y, Wang Y G, et al. Research on applying one-step simulation to blank design in sheet metal forming [J]. Journal of Materials Processing Technology, 2002, 120: 111-114.
    [30] Du T, Liu Y Q, Zhang Zh B, et al. Fast FE analysis system for sheet metal stamping—FASTAMP [J]. Journal of Materials Processing Technology, 2007, 187-188: 402-406.
    [31]柳玉起,李志刚.钣金零件设计与制造的辅助快速分析软件FASTAMP [J].塑性工程学报, 2005, 12: 204-208.
    [32] Liu Y Q, Li Zh G. Fast accurate prediction of blank shape in sheet metal forming [J]. Acta Mechanica Solida Sinica, 2004, 17(1): 58-64.
    [33]杜亭,柳玉起,章志兵等.基于UGS NX的板料成形快速仿真系统[J].锻压技术, 2008, 33(4): 140-144.
    [34]章志兵,王同俊,柳玉起等.汽车覆盖件修边与翻边工序的快速仿真系统[J].锻压技术, 2008, 33(4): 145-149.
    [35]易国锋,柳玉起,李明林等.基于有限元逆算法的板料成形模拟拉深筋的灵敏度优化[J].中国机械工程, 2007, 18(1): 87-90.
    [36]陆善彬.一步模拟中冲压方向、单元模型及松驰因子算法研究[D].吉林大学硕士学位论文, 2004.
    [37]焦健.一步成形模拟中初始场预示、效率优化及弯曲修正的算法研究[D].吉林大学硕士学位论文, 2004.
    [38]那景新,高华,张丽等.一步成形模拟方法中松弛因子选取算法[J].吉林大学学报(工学版), 2005, 35(3): 292-296.
    [39]那景新,陆善彬,焦健等. 0.618法在一步成形模拟方法中的应用[J].塑性工程学报, 2003, 10(6): 30-33.
    [40]陆善彬,李威,那景新等.截面线展开法在一步成形中的应用[J].吉林大学学报(工学版), 2004, 34(1): 52-55.
    [41]那景新,崔岸,甘维迎等.局部减缩积分曲面展开单元在某汽车翼子板一步成形模拟中的应用[J].吉林大学学报(工学版), 2006, 36(1): 57-62.
    [42]那景新,闫亚坤,麻文焱.翘曲修正曲面展开四节点单元在某汽车油底壳快速成形模拟中的应用[J].中国机械工程, 2006, 17(2): 216-219.
    [43]杨柏豪.一步成形有限元方法中的拉深筋与压边力工艺参数的研究[D].吉林大学硕士学位论文, 2003.
    [44]鲍益东.汽车车身部件一步逆成形有限元法与碰撞仿真研究[D].吉林大学博士学位论文, 2004.
    [45] Bao Y D, Huh H. Optimum design of trimming line by one-step analysis for auto body parts [J]. Journal of Materials Processing Technology, 2007, 187-188: 108-112.
    [46]唐炳涛.板料成形反向模拟法及其在拼焊板零件分析中的研究[D].上海交通大学博士学位论文, 2006.
    [47] Tang B T, Zhao Zh, Wang Y. One-step FEM based control of weld line movement for tailor-welded blanks forming [J]. Journal of Materials Processing Technology, 2007, 187-188: 383-386.
    [48]唐炳涛,王兆清,鹿晓阳.一种快速有效的板料成形拉延筋优化设计方法[J].塑性工程学报, 2008, 15(5): 155-159.
    [49]唐炳涛,孙德明,王兆清等.用于板料成形反向模拟的特殊应力更新算法[J].力学学报, 2009, 41(3): 376-382.
    [50] Chung K, Richmond O. Ideal forming-I: homogeneous deformation with minimum plastic work [J]. Int. J. Mech. Sci., 1992, 34(8): 575-591.
    [51] Chung K, Richmond O. Ideal forming-II: sheet forming with optimum deformation [J]. Int. J. Mech. Sci., 1992, 34(8): 617-633.
    [52] Chung K, Richmond O. A deformation theory of plasticity based on minimum work paths [J]. International Journal of Plasticity, 1993(9): 907-920.
    [53] Chung K, Richmond O. Mechanics of Ideal Forming [J]. Journal of Applied Mechanics, ASME, 1994, 61: 176-181.
    [54] Chung K, Yoon J W, Richmond O. Ideal sheet forming with frictional constraints [J]. International Journal of Plasticity, 2000, 16: 595-610.
    [55] Chung K, Barlat F, Brem J C, et al. Blank shape design for a planar anisotropic sheet based on ideal forming design theory and FEM analysis [J]. Int. J. Mech. Sci., 1997, 39(1): 105-120.
    [56] Chung K, Yoon J W. Direct design method based on ideal forming theory for hydroforming and flanging processes [C]. NUMISHEET’2005, 2005: 40-45.
    [57] Ryou H, Chung K, Yoon J W, et al. Incorporation of sheet-forming effects in crash simulations using ideal forming theory and hybrid membrane and shell method [J]. Journal of Manufacturing Science and Engineering, 2005, 127: 183-192.
    [58] Park S H, Yoon J W, Yang D Y, et al. Optimum blank design in sheet metal forming by the deformation path iteration method [J]. International Journal of Mechanical Sciences, 1999, 41: 1217-1232.
    [59] Chung K, Alexandrov S. Ideal flow in plasticity [J]. Applied Mechanics Reviews ASME, 2007, 60(11): 316-335.
    [60]兰箭.钣料成形的有限元逆算法研究[D].华中科技大学博士学位论文, 2001.
    [61]杜臣勇.板料成形模拟的逆算法研究[D].华中科技大学硕士学位论文, 2003.
    [62] Lan J, Dong X H, Li Zh G. Inverse finite element approach and its application in sheet metal forming [J]. Journal of Materials Processing Technology, 2005, 170: 624-631.
    [63]徐国艳.板料冲压成形一步法有限元分析系统研究与实现[D].北京航空航天大学博士学位论文, 2003.
    [64]刘来英,马泽恩,陈雨.基于理想变形理论的板料成形过程的设计与分析[J].塑性工程学报, 1999, 6(1): 6-11.
    [65]刘来英,马泽恩.基于理想成形理论的板料设计[J].西北工业大学学报, 2000, 18(1): 65-68.
    [66]王亚红.基于最小功原理的成形过程数值模拟技术研究[D].西北工业大学硕士学位论文, 2002.
    [67]陈卫彬.基于反向模拟法的拉深成形性分析技术研究[D].西北工业大学硕士学位论文, 2003.
    [68]赵孜萍.基于反向模拟法的工艺优化技术研究[D].西北工业大学硕士学位论文, 2003.
    [69]吴建军,陈卫彬,李顺平.材料模型对成形过程一步法模拟结果的影响[J].锻压技术, 2004年第3期, pp27-30.
    [70] Parsa M H, Pournia P. Optimization of initial blank shape predicted based on inverse finite element method [J]. Finite Elements in Analysis and Design, 2007, 43: 218-233.
    [71] Lee C H, Huh H. Blank design and strain prediction of automobile stamping parts by an inverse finite element approach [J]. Journal of Materials Processing Technology, 1997, 63: 645-650.
    [72] Lee C H, Huh H. Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation [J]. Journal of Materials Processing Technology, 1998, 82: 145–155.
    [73] Tang S C. Elastp-plastic and large deformation analysis of thin shells by the deformation theory of plasticity [J]. Computer and structures, 1976, 6: 297-303.
    [74] Majlessi S A, Lee D. Further development of sheet metal forming analysis method [J]. J. Eng. Ind. (Trans. ASME), 1987,109(4): 330-337.
    [75] Majlessi S A, Lee D. Development of Multistage Sheet Metal Forming Analysis Method [J]. J. Materials Shaping Technology, 1988, 6(1):41-54.
    [76] Lee C H, Huh H. Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes [J]. Journal of Materials Processing Technology, 1998, 80–81: 76-82.
    [77] Kim S H, Kim S H, Huh H. Finite element inverse analysis for the design of intermediate dies in multi-stage deep-drawing processes with large aspect ratio [J]. Journal of Materials Processing Technology, 2001, 113: 779-785.
    [78] Lee C, Cao J. Shell element formulation of multi-step inverse analysis for axisymmetric deep drawing process [J]. International journal for numerical methods in engineering, 2001, 50: 681-706.
    [79] Kim S H, Huh H. Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis [J]. Journal of Materials Processing Technology, 2002, 130–131: 482-489.
    [80] Guo Y Q, Li Y M, Bogard F, et al. An efficient pseudo-inverse approach for damage modeling in the sheet forming process [J]. Journal of Materials Processing Technology, 2004, 151: 88-97.
    [81] Guo Y Q, Li Y M, Bogard F, et al. An efficient algorithm of plastic integration for damage modeling in sheet forming process [C]. NUMIFORM’2004, 2004: 1839-1844.
    [82] Huang Y, Du R X. On the development of multi-step inverse fem with shell model [C]. NUMISHEET’2005, 2005: 801-806.
    [83] Huang Y, Chen Y P, Du R X. A new approach to solve key issues in multi-step inverse finite-element method in sheet metal stamping [J]. International Journal of Mechanical Sciences, 2006, 48:591–600.
    [84] Huang Y, Lo Z Y, Du R X. Minimization of the thickness variation in multi-step sheet metal stamping [J]. Journal of Materials Processing Technology, 2006, 177: 84–86.
    [85]穆瑞芳.轴对称拉深件多步成形反向模拟技术研究[D].西北工业大学硕士学位论文, 2005.
    [86]穆瑞芳,吴建军.板料成形中毛坯外形的逆向多步算法研究[J].锻压装备与制造技术, 2004年第6期, pp.75-78.
    [87]吴建军,穆瑞芳.轴对称拉深件多步反向模拟方法研究[J].锻压装备与制造技术, 2006年第1期, pp.84-88.
    [88]唐炳涛,王兆清,赵震.板料成形多步反向模拟法的中间构形与运动约束[J].塑性工程学报, 2009, 16 (1):58-63.
    [89] Guo Y Q, Naceur H, Debray K, et al. Initial solution estimation to speed up inverse approach in stamping modeling [J]. Engineering Computations, 2003, 20: 810-834.
    [90]王昱皓,徐国艳,施法中.板料冲压成形有限元反向分析中初始解确定方法的研究[J].塑性工程学报, 2005, 12(4): 19-23.
    [91]陆善彬,李威,那景新等.截面线展开法在一步成形中的应用[J].吉林大学学报(工学版) , 2004, 34(1): 52-55.
    [92]吴建军,朱华.双展开平面映射法研究及在多步快速模拟中的应用[J].塑性工程学报, 2008, 15(5): 152-154.
    [93] Tang B T, Zhao Zh, Hagenah H, et al. Energy based algorithms to solve initial solution in one-step finite element method of sheet metal stamping [J]. Comput. Methods Appl. Mech. Engrg., 2007, 196: 2187-2196.
    [94] Floater M S. Parameterization and smooth approximation of surface triangulations [J]. Computer Aided Geometric Design, 1997, 14: 231-250.
    [95] Pinkall U, Polthier K. Computing discrete minimal surfaces [J]. Experimental Mathematics 2, 1993, 1: 15–36.
    [96] Eck M, Derose T, Duchamp T, et al. Multiresolution analysis of arbitrary meshes [C]. Proceedings of SIGGRAPH’1995, 1995:173-182.
    [97] Desbrun M, Meyer M, Alliez P. Intrinsic parameterization of surface meshes [J]. Computer Graphics Forum, 2002, 21(3): 209-218.
    [98] Wang C C L, Smith S S F, Yuen M M F. Surface flattening based on energy model [J]. Computer-Aided Desigh, 2002, 34: 823-833.
    [99] Li J T, Zhang D L, Lu G D, et al. Flattening triangulated surfaces using a mass-spring model [J]. Int J Adv Manuf Technol, 2005, 25: 108-117.
    [100]李基拓.三角化曲面展开技术研究及其应用[D].浙江大学博士学位论文, 2005.
    [101]陈功,周来水,安鲁陵等.基于弹簧-质点模型曲面展开的改进算法[J].计算机辅助设计与图形学学报,2007, 19(8): 1009-1014.
    [1] O?ate E, Flores F G. Advances in the formulation of the rotation-free basic shell triangle [J]. Comput. Methods Appl. Mech. Engrg., 2005, 194: 2406–2443.
    [2] Guo Y Q, Batoz J L, Naceur H, et al. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach [J]. Computers and Structures, 2000, 78: 133-148.
    [3] Lee C H, Huh H. Blank design and strain prediction of automobile stamping parts by an inverse finite element approach [J]. Journal of Materials Processing Technology, 1997, 63: 645-650.
    [4] Chung K, Richmond O. Ideal forming-I: homogeneous deformation with minimum plastic work [J]. Int. J. Mech. Sci., 1992, 34(8): 575-591.
    [5] Chung K, Richmond O. Ideal forming-II: sheet forming with optimum deformation [J]. Int. J. Mech. Sci., 1992, 34(8): 617-633.
    [6]兰箭.钣料成形的有限元逆算法研究[D].华中科技大学博士学位论文, 2004.
    [7]唐炳涛.板料成形反向模拟法及其在拼焊板零件分析中的研究[D].上海交通大学博士学位论文, 2006.
    [8] Guo Y Q, Gati W, Naceur H, et al. An efficient DKT rotation free shell element for springback simulation in sheet metal forming [J]. Computers and Structures, 2002, 80: 2299-2312.
    [9] O?ate E, Zarate F, Flores F G. A simple triangular element for thick and thin plate and shell analysis [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 2569-2582.
    [10] Flores F G, O?ate E. Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach [J]. Comput. Methods Appl. Mech. Engrg., 2005, 194: 907-932.
    [11] Guo Y Q, Batoz J L. Finite element procedures for strain estimations of sheet metal forming parts [J]. International journal for numerical methods in engineering, 1990, 30: 1385-1401.
    [12] Guo Y Q, Li Y M, Bogard F, et al. An efficient pseudo-inverse approach for damage modeling in the sheet forming process [J]. Journal of Materials Processing Technology, 2004, 151: 88-97.
    [13] Guo Y Q, Li Y M, Bogard F, et al. An efficient algorithm of plastic integration for damage modeling in sheet forming process [C]. NUMIFORM’2004, 2004: 1839-1844.
    [14] Simo J C, Ortiz M. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations [J]. Comput. Meth. Appl. Eng., 1985, 51: 221-245.
    [15] Majlessi S A, Lee D. Development of Multistage Sheet Metal Forming Analysis Method [J]. J. Materials Shaping Technology, 1988, 6(1): 41-54.
    [1] Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary [J]. Computers and Graphics, 2002, 26: 677–686.
    [2] Sederberg T W, Gao P, Wang G, Mu H. 2-D shape blending: an intrinsic solution to the vertex path problem [C]. ACM Computer Graphics (Proc. SIGGRAPH’93), 1993: 15–18.
    [3]兰箭.钣料成形的有限元逆算法研究[D].华中科技大学博士学位论文, 2001.
    [4]徐国艳.板料冲压成形一步法有限元分析系统研究与实现[D].北京航空航天大学博士学位论文, 2003.
    [5]王昱皓,徐国艳,施法中.板料冲压成形有限元反向分析中初始解确定方法的研究[J].塑性工程学报, 2005, 12 (4): 19-23.
    [6] Guo Y Q, Naceur H, Debray K, et al. Initial solution estimation to speed up inverse approach in stamping modeling [J]. Engineering Computations, 2003, 20: 810-834.
    [7]陆善彬,李威,那景新等.截面线展开法在一步成形中的应用[J].吉林大学学报(工学版), 2004, 34(1): 52-55.
    [8]唐炳涛.板料成形反向模拟法及其在拼焊板零件分析中的研究[D].上海交通大学博士学位论文, 2006.
    [9] Tang B T, Zhao Z, Hagenah H, et al. Energy based algorithms to solve initial solution in one-step finite element method of sheet metal stamping [J]. Comput. Methods Appl. Mech. Engrg., 2007, 196: 2187-2196.
    [10] Desbrun M, Meyer M, Alliez P. Intrinsic parameterization of surface meshes [J]. Computer Graphics Forum, 2002, 21(3): 209-218.
    [11] Floater M S. Parameterization and smooth approximation of surface triangulations [J]. Computer Aided Geometric Design, 1997, 14: 231-250.
    [12]董志涛.液压胀形汽车桥壳的试验研究与有限元模拟[D].燕山大学硕士学位论文, 2007.
    [13] Lei L P, Kima J, Kang S J, Kang B S. Rigid–plastic finite element analysis of hydroforming process and its applications [J]. Journal of Materials Processing Technology, 2003, 139: 187–194.
    [1] Wang S P, Nakamachi E. The inside-outside contact search algorithm for finite element analysis [J]. Int. J.Numer.Mech.Engng., 1997, 40:3665-3685.
    [2] Kim S H, Huh H. Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis [J]. Journal of Materials Processing Technology, 2002, 130–131: 482-489.
    [3] Liu Y Q, Liu J H. Numerical constraint disposal for boundary friction in sheet metal forming [J]. Journal of Materials Processing Technology, 2006, 176: 4-7.
    [4] Dong X H, Wang S P, Nakamachi E. Dynamic explicit finite element analysis-Mesoplasticity modeling and sheet metal forming simulation [R]. Nakamachi Lab. Report, Osaka: Osaka Institute of Technology, 1996.
    [5]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [6]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社, 2004.
    [7]张海明.板料成形模拟中关键技术的研究[D].华中科技大学博士学位论文, 2002.
    [1] Guo Y Q, Batoz J L. Finite element procedures for strain estimations of sheet metal forming parts [J]. International journal for numerical methods in engineering, 1990, 30:1385-1401.
    [2]沈启彧.金属板料成形的数值模拟技术及其在汽车覆盖件成形工艺设计中的应用研究[D].上海交通大学博士论文, 1999.
    [3]唐炳涛.板料成形反向模拟法及其在拼焊板零件分析中的研究[D].上海交通大学博士学位论文, 2006.
    [4] Naceur H, Guo Y Q, Batoz J L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process [J]. International Journal of Mechanical Sciences, 2001, 43: 2407-2434.
    [5] Hama T, Hatakeyama T, Asakawa M, et al. Finite-element simulation of the elliptical cup deep drawing process by sheet hydroforming [J]. Finite Elements in Analysis and Design, 2007,43: 234-246.
    [1] Nguyen Ba N, Johnson K I, Khaleel M A. Analysis of tube free hydroforming using an inverse approach with FLD-based adjustment of process parameters [J]. Journal of Engineering Materials and Technology, 2003, 125: 133-140.
    [2]张晓丽.铝合金型材零件高精度弯曲成形技术研究[D].北京:北京航空航天大学硕士论文, 2004.
    [3]金朝海.铝合金型材拉弯成形有限元仿真建模及成形过程模拟[R].北京:北京航空航天大学博士后论文, 2004.
    [4] Ray P, Mac Donald B J. Experimental study and finite element analysis of simple X- and T-branch tube hydroforming processes[J]. International Journal of Mechanical Sciences, 2005, 47:1498-1518.
    [5]董志涛.液压胀形汽车桥壳的试验研究与有限元模拟[D].燕山大学硕士学位论文, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700