用户名: 密码: 验证码:
兰州地区气溶胶辐射特性观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶通过直接效应、间接效应和半直接效应对区域和全球气候变化产生显著的影响,研究气溶胶辐射效应具有重要的现实意义,但也存在很大的不确定性,特别是沙尘气溶胶。在中国西北半干旱地区,由于特殊的地表下垫面特征,长期连续的气溶胶观测在气溶胶对气候变化的影响的研究中起支撑作用的一个关键环节。
     本文利用兰州大学半干旱气候与环境观测站微脉冲激光雷达CE370-2和偏振激光雷达L2S-SMⅡ观测资料,分析兰州地区气溶胶的垂直分布和时间演变特征。然后利用浑浊度仪、黑碳仪、PM10监测仪等地面观测资料研究了气溶胶散射系数、吸收系数和单次散射反照率等的变化特征。最后利用WRF+ABL+ LOWTRAN7数值模拟平台,对一次沙尘过程下兰州地区大气边界层特征和沙尘气溶胶的辐射特性进行了数值模拟。观测分析得到一些有价值的结果,可为气溶胶辐射效应数值模拟提供参考,有助于改进大气数值模式辐射参数化方案,具有重要的科学意义和应用价值。主要结论如下:
     (1)分析2005—2008年CE370-2观测资料,可知兰州地区11月和12月AOD最大,3月和4月的相对较大,且冬春AOD比夏秋的偏大,其主要由大气扩散条件和污染排放等因素决定。兰州地区AOD频数最大位于0.3。气溶胶集中分布在2km以下,且气溶胶消光系数随高度递减。
     (2)兰州地区沙尘气溶胶总体而言集中分布于2km以下,沙尘气溶胶消光系数随高度递减。个例分析表明:沙尘气溶胶层内,相对湿度和消光系数的变化趋势比较一致;沙尘过程中PM10浓度、气溶胶散射系数和消光系数间具有较好的线性相关性,PM10浓度和散射系数、PM10浓度和消光系数、消光系数和散射系数间的相关系数分别为0.98、0.94和0.96。
     (3)分析L2S-SMⅡ观测资料表明:云、冰晶和沙尘粒子的退偏振率较大,人为源气溶胶粒子的退偏振率较小;气溶胶粒子的退偏振率一般小于0.25,云和冰晶粒子的则为0.3左右。
     (4)利用2009年黑碳仪AE-31观测资料,分析了兰州地区黑碳气溶胶的变化特征。总体而言,黑碳气溶胶质量浓度呈双峰型日变化。夏秋和冬春上午的峰值时间略有差别,分别位于08:00和12:00,夜间均位于22:00,且谷值都位于16:00。七波段黑碳质量浓度变化趋势基本一致,且370nm的最大,950nm最小。月平均黑碳质量浓度呈U型分布,黑碳质量浓度自1月减小,3月和4月基本相当,于5月达到最小值,之后缓慢增大,6—8月和5月的差不多,9—12月急剧增大,最后于12月达到最大值。兰州地区冬春黑碳气溶胶质量浓度明显较夏秋偏大。黑碳气溶胶吸收系数的变化特征和黑碳质量浓度的比较一致。
     (5)利用2009年8—11月AE-31和MAAP5012观测资料,比较分析了两种黑碳仪的观测结果。AE-31 MAAP5012_135和MAAP5012_136观测结果具有较好的线性相关性。MAAP5012_135和MAAP_136观测结果的相关系数可达0.96, MAAP5012_135和AE-31观测结果的相关系数为0.91, MAAP5012_136和AE-31观测结果的相关系数为0.92。
     (6)利用2008年中美沙尘暴联合观测实验数据,分析了兰州和张掖地区SSA分布特征。兰州地区450和550nm的SSA频数分布较一致且最大值位于0.7,700nm则位于0.5。张掖地区三波段SSA频数分布相似,频数最大位于0.8。
     (7)利用WRF+ABL+LOWTRAN7数值模拟平台模拟分析了2007年3月27日—3月29日沙尘条件下兰州地区大气边界层特征和沙尘气溶胶辐射效应。
     沙尘过程盛行偏西风,局部地区偏北风,沙尘初期模拟区域北部地区存在上升运动,随着沙尘过程的发展下沉运动逐渐占据主导。
     位温的空间分布和地形分布比较接近,位温高值区位于地势较高处,谷地的位温相对较小。谷地的相对湿度较高地势处的偏大。
     沙尘气溶胶的辐射效应在日间表现为增温效应且使风速增大,增温幅度平均约为0.39-C,风速增幅约为0.57m/s;夜间,lkm以下表现为冷却效应并使风速减小,温度平均减小约为0.4-C,风速平均减小约0.56m/s,1km以上为增温效应并使风速增大,温度增幅平均约为0.35℃,风速增幅约为0.47m/s。
The atmospheric aerosol plays a crucial role in the global and regional climate change by its direct, indirect, and semi-direct effect. Due to the inhomogeneous temporal and spatial distribution of aerosol it has significant uncertainties in the research of aerosol radiative effect, especially for the dust aerosol, but it has no doubt that the study of aerosol radiative properties makes significant scientific senses, In the semiarid area of northwest China with special surface underlying, the aerosol observation in long-term and continuity is one of the key and fundamental elements in the study of the aerosol impacts on climate change.
     The vertical distribution and temporal evolution of aerosol over Lanzhou are analyzed using the data of micropulse lidar CE370-2 and depolarization lidar L2S-SMⅡat the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). Then the thesis presents the variation properties of aerosol scattering coefficient, absorption coefficient, and single scattering albedo using the measurements of nephelometer, aethalometer, multi-angle absorption photometer, PM10 particulate monitor et al.. Finally, a numerical simulation of the atmospheric boundary meteorological conditions and dust aerosol radiative properties over Lanzhou during a dust storm is carried out using the WRF+ABL+LOWTRAN7 models system. In all, some valuable results are retrieved, which would be the references for the numerical simulation of aerosol radiative effect and improve the radiation schemes in the atmospheric numerical models. The work surely has important scientific senses and values. The main results are as follows.
     (1) Statistic analysis of micropulse lidar CE370-2 observation since 2005 to 2008 shows that the maximum aerosol optical depth (AOD) appears in November and December, and AOD in March and April are some bit large, AOD is larger in winter and spring than in summer and fall, which is mainly determined by the conditions of local atmospheric diffusion and pollution emissions. The frequency analysis presents that the AOD mostly ranges around 0.3. As to the vertical distribution of aerosol over Lanzhou, it is mainly concentrated below 2 km height, and the aerosol extinction coefficient decreases with height.
     (2) The dust aerosol is mostly distributed under 2 km height, and the dust aerosol extinction coefficient decreases with height. The case study shows:In the dust aerosol layer, the aerosol extinction coefficient and relative humidity have the similar variation trends; It has linear correlations among PM10 concentration, aerosol scattering and extinction coefficients, and the correlation coefficient between PM10 concentration and aerosol scattering coefficient, between PM10 concentration and extinction coefficient, between extinction coefficient and scattering coefficient is 0.98 0.94 and 0.96 respectively.
     (3) Using the data of depolarization lidar L2S-SMⅡ, the depolarization ratios of aerosol and cloud are analyzed. The depolarization ratios of cloud, ice, and dust aerosol are larger than anthropogenic aerosol. The aerosol depolarization ratio is below 0.25, while that of the cloud and ice mostly range around 0.3.
     (4) The black carbon (BC) mass concentration and absorption coefficient are analyzed using the measurement of aethalometer AE-31 in 2009. The BC mass concentration at 7 wavelengths have the similar variation trends, and the BC mass concentration of 370 nm is largest, while the BC mass concentration of 950 nm is the smallest. As to the diurnal evolution of BC mass concentration, the maximum appears at 08:00 and 12:00 respectively in the daytime of summer and fall, and winter and spring,22:00 in nighttime. The minimum appears at 16:00. The monthly average of BC concentration's variation shows the U distribution. It decreases since January till the minimum in May, then increases and reaches the maximum in December. It also presents that the BC mass concentration is larger in winter and spring than in summer and fall. As to the BC absorption coefficient, it has the similar variation trend with that of BC mass concentration.
     (5) Using the data of aethalometer AE-31 and multi-angle absorption photometer (MAAP) 5012 since August to November 2009, the comparison between two measurements presents a good linear correlation. The correlation coefficient between the retrievals of MAAP5012_135 and MAAP5012_136, between the retrievals of MAAP5012_135 and AE-31, and between the retrievals of MAAP5012_136 and AE-31 is 0.96,0.91 and 0.92 respectively.
     (6) The frequency distribution analysis of single scattering albedo (SSA) over Lanzhou and Zhangye are carried out using the data of 2008 China-US joint dust storm observation experiment. Over Lanzhou, the SSA of 450 and 550 nm have the similar frequency distributions, and the maximums frequency of SSA at 450 and 550 nm appear at 0.7, while 0.5 for the SSA of 700 nm. As to the SSA frequency distributions over Zhangye, they show similar frequency distributions at 450,50, and 700 nm, and the maximums appear at 0.8.
     (7) Using the numerical simulation platform of WRF+ABL+LOWTRAN7, the atmospheric boundary meteorological conditions and dust aerosol radiative properties are presented. During the dust storm, the west wind is prevailing in most simulation distract. In the north of simulation area, it has upward motion, as the development of dust storm the downward motion is dominated.
     The distribution of potential temperature has a good agreement with that of terrain, higher potential temperature is located on higher terrain and the lower seats on the valley. As to the relative humidity, it is opposite to that of potential temperature.
     The dust aerosol has warming effect in daytime, the temperature increases by 0.39℃. In nighttime, it presents cooling effect under 1 km, and the temperature decreases by 0.4℃,and in the layer above 1 km the dust aerosol has warming effect, the temperature increases by 0.35℃. As to the wind conditions, the dust aerosol increases the wind speed by 0.57 m/s in daytime. In nighttime, the wind speed decreases by 0.56 m/s below 1 km, and increases by 0.47 m/s above 1 km.
引文
[1]王明星,张仁健.大气气溶胶研究的前沿问题[J],气候与环境研究,2001,6(1):119—124.
    [2]McCormick, R. A. and Ludwig, J. H.:Climate modification by atmospheric aerosols, Science,156(3780),1358-1359,1967.
    [3]Charlson, R. J. and Pilat, M. J.:Climate:The influence of aerosols, Journal of Applied Meteorology,8(6),1001-1002,1969.
    [4]Atwater, M. A.:Planetary albedo changes due to aerosols, Science,170(3953), 64-66,1970.
    [5]Coakley Jr., J. A., Cess, R. D., and Yurevich, F. B.:The effect of tropospheric aerosols on the earth's radiation budget:a parameterization for climate models, Journal of Atmospheric Sciences,40(1),116-138,1983.
    [6]Twomey, S.. Atmospheric aerosols[J], Elevier,1977, New York,279—287.
    [7]Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E.,& Hofmann, D. J.. Climate forcing by anthropogenic aerosols [J], Science,1992,255 (5043):423—430.
    [8]Albrecht, B. A.:Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923),1227-1230,1989.
    [9]Grassl, H.:Albedo reduction and radiative heating of clouds by absorbing aerosol particles, Contributions to Atmospheric Physics,48,199-210,1975.
    [10]Hansen, J., Sato, M., and Ruedy, R.:Radiative forcing and climate response, Journal of Geophysical Research,102(D6),6831-6864,1997.
    [11]Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.:Reduction of tropical cloudiness by soot, Science,288(5468), 1042-1047,2000.
    [12]Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.:Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science,303(5662), 1342-1345,2004.
    [13]Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher,O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T.,& Zhou, M.. A review of measurement-based assessments of the aerosol direct radiative effect and forcing [J], Atmospheric Chemistry and Physics,2006,6:613—666.
    [14]石广玉,王标,张华,赵剑琦,檀赛春,温天雪.大气气溶胶的辐射与气候效应[J],大气科学,2008,32(4):826—840.
    [15]罗云峰,周秀骥,李维亮.大气气溶胶辐射强迫及气候效应的研究现状[J],地球科学进展,1998,13(6):572—581.
    [16]付培健,王世红,陈长和.探讨气候变化的新热点:大气气溶胶的气候效应[J],地球科学进展,1998,13(4):387—392.
    [17]Iorga, G., Stefan, S.,& Olaru, A.. Influence of sulfate aerosol particles on radiative properties of clouds[J], Romanian Reports in Physics,2003,55(3):287 —302.
    [18]毛节泰,李成才.气溶胶辐射特性的观测研究[J],气象学报,2005,63(5):622—635.
    [19]高丽洁,王体健,徐永福,阂锦忠.中国硫酸盐气溶胶及其辐射强迫的模拟[J],高原气象,2004,23(5):612—619.
    [20]Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B.,& Warren, S. G.. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols[J], Tellus,1991,43AB:152—163.
    [21]马晓燕,石广玉,郭裕福,张立盛.硫酸盐气溶胶辐射强,迫的数值模拟研究[J],气候与环境研究,2004,9(3):454—494.
    [22]马晓燕,石广玉,郭裕福,王喜红.温室气体和硫酸盐气溶胶的辐射强迫作用[J],气象学报,2005,63(1):41—48.
    [23]田华,马建中,李维亮,刘洪利.中国中东部地区硫酸盐气溶胶直接辐射强迫及期货效应的数值模拟[J],应用气象学报,2005,16(3):322—333.
    [24]胡荣明,石广玉.中国地区气溶胶的辐射强迫及其气候响应试验[J],大气科学,1998,22(6):919—925.
    [25]王娜,张镭.沙尘气溶胶辐射特性及其观测方法初步评述[J],干旱气象, 2007,25(4):68—73.
    [26]钱云,符淙斌,王淑瑜.沙尘气溶胶与气候变化[J],地球科学进展,1999,14(4):391—394.
    [27]吴涧,蒋维楣,王卫国,姚克亚,袁仁民.我国春季大气沙尘气溶胶分布和短波辐射效应的数值模拟[J],中国科学技术大学学报,2004,34(1):116—125.
    [28]刘红年,蒋维楣.沙尘表面非均相滑雪过程的气候效应的初步模拟研究[J],地球物理学报,2004,47(3):417—422.
    [29]成天涛,吕达仁,徐永福.浑善达克沙地沙尘气溶胶的辐射强迫[J],高原气象,2005,24(6):920—926.
    [30]Weaver, C. J., Ginoux, P., Hsu, N. C., Chou, Ming-Dah,& Joiner, J.. Radiative forcing of Saharan dust:GOCART model simulations compared with ERBE data [J], Journal of the Atmospheric Sciences,2002,59:736—747.
    [31]王宏,石广玉,Aoki, T.,王标,Zhao, T..2001年春季东亚-北太平洋地区沙尘气溶胶的辐射强迫[J],科学通报,2004,49(19):1993—2000.
    [32]张美根,徐永福,张仁建,韩志伟.东亚地区春季黑碳气溶胶源排放及其浓度发布[J],地球物理学报,2005,48(1):46—51.
    [33]IPCC, Third Assessment Report, Climate Change 2001:The Scientific Basis [J], New York, Cambridge University Press,2001.
    [34]许黎,王亚强,陈振林,罗勇,任万辉.黑碳气溶胶研究进展Ⅰ:排放、清除和浓度[J],地球科学进展,2006,21(4):352—360.
    [35]夏祥鳌,王明星.气溶胶吸收及气候效应研究的新进展[J],地球科学进展,2004,19(4):630—635.
    [36]吴涧,符淙斌.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究[J],大气科学,2005,29(1):111—119.
    [37]汤洁,温玉璞,周凌晞,祁栋林,郑明,Trivett, N.,& Wallgren, E..中国西部大气清洁地区黑碳气溶胶的观测研究[J],应用气象学报,1999,10(2):160—170.
    [38]杨溯,张武,韩晶晶,李丽,史晋森.上海市浦东新区秋冬季黑碳气溶胶特 性[J],兰州大学学报(自然科学版),2008,44(4):66—70.
    [39]夏俊荣,张镭.Mie散射激光雷达探测大气气溶胶的进展[J],2006,24(4):68—72.
    [40]邱金恒,郑斯平,黄其荣,夏其林,杨理权,王文明,潘继东,孙金辉.北京地区对流层中上部云和气溶胶的激光雷达探测[J],大气科学,2003,27(1):1—7.
    [41]胡欢陵,吴永华,谢晨波,阎逢祺,翁宁泉,范爱媛,徐赤东,纪玉峰,虞统,任阵海.北京地区夏冬季颗粒物污染边界层的激光雷达观测[J],环境科学研究,2004,17(1):59—73.
    [42]袁松,辛雨,周军.合肥市郊低层大气的激光雷达探测研究[J],大气科学,2005,29(3):387—395.
    [43]杨辉,刘文清,陆亦怀,谢品华,徐亮,赵雪松,虞统,于建华.北京城区大气边界层的激光雷达观测[J],光学技术,2005,31(2):221—226.
    [44]杨辉,刘文清,刘建国,陆亦怀,韩道文,虞统.激光雷达监测北京城区夏季边界层气溶胶[J],中国激光,2006,33(9):1255—1259.
    [45]孙金辉,夏其林,邱金恒,吕达仁.激光雷达探测南极平流层云[J],南极研究(中文版),1995,7(1):44—49.
    [46]吴永华,胡欢陵,周军,胡顺星,张民.L625激光雷达探测平流层气溶胶[J],光学学报,2001,21(8):1012—1015.
    [47]王志恩,胡欢陵,周军.双差分吸收激光雷达:一种能有效减小气溶胶对臭氧测量影响的方法[J],气象学报,1996,54(4):437—445.
    [48]刘小勤,张寅超,胡欢陵,谭锟,杨高潮,邵石生.车载差分吸收激光雷达对SO2的测量[J],光电子·激光,2004,15(11):1352—1356.
    [49]胡顺星,胡欢陵,周军,吴永华.差分吸收激光雷达测量对流层臭氧[J],激光技术,2001,25(6):406—408.
    [50]董云升,刘文清,陆亦怀,刘建国,谢品华,赵雪松,张天舒,刘增东,黄书华.双通道扫描偏振激光雷达的研制及应用[J],光学技术,2009,35(2):261—264.
    [51]徐赤东,纪玉峰.偏振微脉冲激光雷达对一次沙尘过程的探测分析[J],中国 粉体技术,2009,15(2):75—77.
    [52]白宇波,石广玉,田村耕一,岩坂泰信.拉萨上空大气气溶胶光学特性的激光雷达探测[J],大气科学,2000,24(4):559—567.
    [53]Sugimoto, N., Matsui, I., Shimizu, A., Uno, I., Asai, K., Endoh, T.& Nakajima, T.. Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai [J], Geophysical Research Letter,2002,29(19),1901, doi: 10.1029/2002GL015112.
    [54]谢晨波,周军,岳古明,戚福弟,范爱媛.新型车载式拉曼激光雷达测量对流层水汽[J],光学学报,2006,26(9):1281—1286.
    [55]李陶,戚福弟,岳古明,金传佳,胡欢陵,周军.大气中水汽混合比的Raman激光雷达探测[J],大气科学,2000,24(6):843—854.
    [56]吴永华,李陶,周军,胡欢陵,岳古明,戚福弟,金传佳.Raman激光雷达探测对流层中上部大气温度分布[J],大气科学,2002,26(5):702—708.
    [57]刘玉丽,张寅超,苏嘉,岳古明,周军,胡欢陵.探测低空大气温度分布的转动拉曼激光雷达[J],光电工程,2006,33(10):43—48.
    [58]杨国韬,刘炳模,王嘉珉,傅利平,徐寄遥,程学武,万卫星,龚顺生.根据激光雷达观测结果研究中国武汉地区钠层的分布[J],地球物理学报,2003,46(5):577—583.
    [59]王刚,王仕璠.大气温度的激光雷达实测方法[J],激光杂志,2004,25(2):52—54.
    [1]http://climate.lzu.edu.cn/about/index_cn.asp.
    [2]Operation Manual of CLOUD AND AEROSOL MICRO-LIDAR CAMLTM. CIMEL Electronique, France,2005.
    [3]User Manual SunPhotometer Version 4.6, CIMEL Electronique, France,2001.
    [4]Profiler Operator's Manual of TP/WVP-3000, Radiometrics Corporation, USA, 2005.
    [5]M9003 Integrating Nephelometer Operation Manual Version 3.2, ECOTECH, Australia,2005.
    [6]Service Manual of TEOM Series 1400a Ambient Particulate (PM-10) Monitor, Rupprecht & Patashnick Corporation, USA,2001.
    [7]Klett, J. D.. Stable analytical inversion solution for processing lidar returns [J], Applied Optics,1981,2(2):211—220.
    [8]Klett, J. D.. Lidar inversion with variable backscatter/extinction ratios [J], Applied Optics,1985,24(11):1638—1643.
    [9]Fernald, F. G.. Analysis of atmospheric lidar observations:some comments [J], Applied Optics,1984,23(5):652—653.
    [10]夏俊荣.利用激光雷达探测兰州大气气溶胶辐射特性[D].兰州大学硕士学位论文,2006.
    [11]韩霄.激光雷达观测分析兰州城郊大气气溶胶辐射特性[D].兰州大学硕士学位论文,2007.
    [12]Larcheveque, G., Balin, L., Nessler, R., Quaglia, P., Simeonov, V., Bergh, H. V. D., and Calpini, B.. Development of a mulitiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland [J], Applied Optics,2002,41(15):2781—2790.
    [13]He, Q. S., Li, C. C., Mao, J. T., Lau, A. K. H., and Li, P. R.. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong [J], Atmospheric Chemistry and Physics,2006,6: 3243—3256.
    [14]Haenel, G.. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air [J], Advances in Geophysics, Academic Press,1976,19:73—188.
    [15]Ansmann, A., Riebesell, Wandinger, M., U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio [J], Applied Physics B,1992,55:18—28.
    [16]Balis, D. S., Amiridis, V., Nickovic, S., Papayannis, A., and Zerefos, C.. Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece [J], Geophysical Research Letters,2004,31, L13104, doi:10. 1029/2004GL019881.
    [17]Pappalardo, G., Amodeo, A., Amoruso, S., Mona, L., Pandolfi, M., Cuomo, V.. One year of tropospheric lidar measurements of aerosol extinction and backscatter [J], Annals of Geophysics,2003,46(2):401—413.
    [18]Liu, Z., Sugimoto, N., Murayama, T.. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar [J], Applied Optics,2002,41(15):2760—2767.
    [19]Chiang, C.W., Das, S. K., Nee, J. B.. An iterative calculation to derive extinction-to-backscatter ratio based on lidar measurements [J], Journal of Quantitative Spectroscopy & Radiative Transfer,2008,109:1187—1195.
    [20]Immler, F., and Schrems, O.. Vertical profiles, optical and microphysical properties of Saharan dust layers determined by a ship-borne lidar [J], Atmospheric Chemistry and Physics,2003,3:1353—1364.
    [21]Schneider, J., and Eixmann, R.. Three years of routine Raman lidar measurements of tropospheric aerosols:backscattering, extinction, and residual layer height [J], Atmospheric Chemistry and Physics,2002,2:313—323.
    [22]Ackermann, J.:The extinction-to-backscatter ratio of tropospheric aerosols:a numerical study [J], Journal of Atmospheric and Oceanic Technology,1998,15: 1043—1050.
    [1]Huang, J. P., Zhang, W., Zuo, J. Q., Bi, J. R., Shi, J. S., Wang, X., Chang, Z. L., Huang, Z. W., Yang, S., Zhang, B. D., Wang, G. Y., Feng, G. H., Yuan, J. Y, Zhang, L., Zuo, H. C., Wang, S. G., Fu, C. B., and Chou, J. F.. An overview of the semi-arid climate and environment research observatory over the Loess Plateau, Advances in Atmospheric Sciences,25(6):906-921,2008.
    [2]Murayama, T., Sugimoto, N., Uno, I., Kinoshita, K., Aoki, K., Hagiwara, N., Liu, Z. Y., Matsui, L., Sakai, T., Shibata, T., Arao, K., Sohn, B. J., Won, J. G., Yoon, S. C., Li, T., Zhou, J., Hu, H. L., Abo, M., Iokibe, K., Koga, R., and Iwasaka, Y. Ground-based network observation of Asian dust events of April 1998 in east Asia, Journal of Geophysical Research,106(D16):18345-18359,2001.
    [3]Huang, J. P., Huang, Z. W., Bi, J. R., Zhang, W., and Zhang, L.. Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau, Atmospheric and Oceanic Science Letters,1(1):8-11,2008.
    [4]Feingold, G and Morley, B.. Aerosol hygroscopic properties as measured by lidar and comparision with in situ measurements, Journal of Geophysical Research, 108(D11),4327, doi:10.1029/2002JD002842,2003.
    [5]Pahlow, M., Feingold, G., Jefferson, A., Andrews, E., Ogren, J. A., Wang, J., Lee, Y.-N., Ferrare, R. A., and Turner, D. D.. Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement site, Journal of Geophysical Research,111, D05s15, doi:10.1029/2004JD005646,2006.
    [6]Meier, J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Bruggemann, E., Herrmann, H., Min, H., and Wiedensohler, A.. Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime:a comparison of three experimental methods, Atmospheric Chemstry and Physics, 9:6865-6880,2009.
    [7]Massling, A., Leinert, S., Wiedensohler, A., and Covert, D.. Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia, Atmospheric Chemstry and Physics,7:3249-3259,2007.
    [1]Scholand, R. M., Sassen, K., and Stone, R.. Observations by lidar of linear depolarization ratios for hydrometers [J], Journal of Applied Meteorology,1971, 10:1011—1017.
    [2]Bohren, C. F., and Huffman, D. R.. Absorption and scattering of light by small particles, John Wiley & Sons,1983,530.
    [3]Sassen, K.. Lidar backscatter depolarization technique. Light scattering by nonspherical particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Academic Press,2000,393—416.
    [4]Sassen, K.. The polarization lidar technique for cloud research:a review and current assessment [J], Bulletin of the American Meteorological Society,1991, 72:1848—1866.
    [5]刘东,戚福弟,金传佳,岳古明,周军.合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测[J],大气科学,2003,27(6):1093—1100.
    [6]徐赤东,纪玉峰.偏振微脉冲激光雷达对一次沙尘过程的探测分析[J],中国粉体技术,2009,15(2):75—77.
    [7]Sugimoto, N., Matsui, I., Shimizu, A., Uno, I., Asai, K., Endoh, T.& Nakajima, T.. Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai [J], Geophysical Research Letter,2002,29(19),1901, doi:10.1029/2002GL015112.
    [8]Gobbi, G. P., Barnaba, F., Dingenen, R. Van, Putaud, J. P., Mircea, M., and Facchini, M. C.. Lidar and in situ observations of continental and Saharan aerosol:closure analysis of particles optical and physical properties [J], Atmospheric Chemistry and Physics,2003,3:2161—2172.
    [9]Murayama, T., Okamoto, H., Kaneyasu, N., Kamataki, H., and Miura, K.. Application of lidar depolarization measurement in the atmospheric boundary layer:Effects of dust and sea-salt particles [J], Journal of Geophysical Research, 1999,104(D24):31781—31792.
    [10]Chen, W., Tsai, F., Chou, C. C.-K., Chang, S. Y., Chen, Y., and Chen, J.. Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan [J], Atmospheric Environment,2007,41:7698—7714.
    [11]董旭辉,祁辉,任立军,王雁鹏,狄一安,陈岩,杉本伸夫,坂本和彦,王青跃.偏振激光雷达在沙尘暴观测中的数据解析[J],环境科学研究,2007,20(2):106—111.
    [1]张美根,徐永福,张仁建,韩志伟.东亚地区春季黑碳气溶胶源排放及其浓度发布[J],地球物理学报,2005,48(1):46—51.
    [2]Zhang, M. G., Xu, Y. F., Zhang, R. J., Han, Z. W.. Emissions and concentration distributions of black carbon aerosol in east Asia during the springtime [J], Chinese Journal of Geophysics,2005,48(1):55—61.
    [3]Suresh Babu, S. and Krishna Moorthy, K.. Anthropogenic impact on aerosol black carbon mass concentration at a tropical coastal station:A case study [J], Current Science,2001,81(9):1208—1214.
    [4]IPCC, Third Assessment Report, Climate Change 2001:The Scientific Basis, New York, Cambridge University Press,2001.
    [5]许黎,王亚强,陈振林,罗勇,任万辉.黑碳气溶胶研究进展Ⅰ:排放、清除和浓度[J],地球科学进展,2006,21(4):352—360.
    [6]吴涧,符淙斌.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究[J],大气科学,2005,29(1):111—119.
    [7]Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y, Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T., Dubovik, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen, T., Kirkevag, A., Klimont, Z., Koudo, Y., Krol, M., Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G, Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland,(?), Stier, P., Takegawa, N., Takemura, T., Textor, C., Van Aardenne, J. A., Zhao, Y.. Evaluation of black carbon estimations in global aerosol models [J], Atmospheric Chemistry and Physics,2009,9:9001—9026.
    [8]Ramanathan, V. and Carmichael, G..Global and regional climate changes due to black carbon[J], Nature Geoscience,2008,1:221—27.
    [9]Moteki, N. and Kondo, Y..Effects of mixing state on black carbon measurements by laser-induced incandescence [J], Aerosol Science and Technology,2007,41: 398—417.
    [10]Bond, T. C., Habib, G., Bergstrom, R. R.. Limitations in the enhancement of visible light absorption due to mixing state [J], Journal of Geophysical Research, 2006,111.D20211, doi:10.1029/2006JD007315.
    [11]夏祥鳌,王明星.气溶胶吸收及气候效应研究的新进展[J],地球科学进展,2004,19(4):630—635.
    [12]Chameides, W. L. and Bergin, M.. Soot takes center stage [J], Science,2002,297: 2214—2215.
    [13]Derimian, Y., Karnieli, A., Kaufman, Y. J., Andreae, M. O., Andreae, T. W., Dubovik, O., Maenhaut, W., Koren, I.. The role of iron and black carbon in aerosol light absorption [J], Atmospheric Chemistry and Physics,2008,8:3623 —3637.
    [14]Pakkanen, T. A., Makela, T., Hillamo, R. E., Virtanen, A., Ronkko, T., Keskinen, J., Pirjola, L., Parviainen, H., Hussein, T., Hameri, K.. Monitoring of black carbon and size-segregated particle number concentrations at 9-m and 65-m distances from a mojor road in Helsinki [J], Boreal Environment Research,2006, 11:295—309.
    [15]Jarvi, L., Junninen, H., Karppinen, A., Hillamo, R., Virkkula, A., Makela, T., Pakkanen, T., Kulmala, M.. Black carbon concentration trends in Helsinki during 1996—2005 [J], Atmospheric Chemistry and Physics Discussions,2007,7: 14265—14294.
    [16]Artaxo, P., Fernandes, E. T., Martins, J. V., Yamasoe, M. A., Hobbs, P. V., Maenhaut, W., Longo, K. M., Castanho, A.. Large-scale aerosol source apportionment in Amazonia [J], Journal of Geophysical Research,1998, 103(D24),31837—31847.
    [17]Gadhavi, H. and Jayaraman, A.. Absorbing aerosols:concentration of biomass burning and implications for radiative forcing [J], Annales Geophysicae,2010, 28:103—111.
    [18]Badarinath, K. V. S., Kharol, S. K., Reddy, R. R., Gopal, K. R., Narasimhulu, K. Reddy, L. S. S., Kumar, K. R.. Black carbon aerosol mass concentration variation in urban and rural environments of India-a case study [J], Atmospheric Science Letters,2009,10:29—33.
    [19]Novakov, J. and Hansen, J. E.. Black carbon emissions in the United Kingdom during the past four decades:an empirical analysis [J], Atmospheric Environment,2004,38:4155—4163.
    [20]Wang, G C., Bai, J. H., Kong, Q. X., Emilenko, A.. Black carbon particles in the urban atmosphere in Beijing [J], Advances in Atmospheric Sciences,2005,22(5): 640—646.
    [21]汤洁,温玉璞,周凌晞,祁栋林,郑明,Trivett, N.,& Wallgren, E..中国西部大气清洁地区黑碳气溶胶的观测研究[J],应用气象学报,1999,10(2):160—170.
    [22]杨溯,张武,韩晶晶,李丽,史晋森.上海市浦东新区秋冬季黑碳气溶胶特性[J],兰州大学学报(自然科学版),2008,44(4):66—70.
    [23]Liousse, C., Cachier H., Jennings, S. G..Optical and thermal measurements of black carbon aerosol content in different environments:Variation of the specific attenuation cross-section, sigma (σ) [J], Atmospheric Environment,1993,27: 1203—1211.
    [24]Petzold, A., Kopp, C., Niessner, R.. The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size [J], Atmospheric Environment,1997,31:661—672.
    [25]Sharma, S., Brook, J. R., Cachier, H., Chow, J., Gaudenzi, A., Lu, G. Light absorption and thermal measurements of black carbon in different regions of Canada [J], Journal of Geophysics Research,107(D24),4771, doi:10.1029/2002JD002496.
    [1]McCormick, R. A., Ludwig, J. H.. Climate modification by atmospheric aerosols [J],Science,1967,156(3780):1358—1389.
    [2]Twomey, S.. Atmospheric aerosols [J], Elevier,1977, New York:279—287.
    [3]Grassl, H.. Albedo reduction and radiative heating of clouds by absorbing aerosol particles[J], Contributions to Atmospheric Physics,1975,48:199—210.
    [4]邵振艳,周涛,史培军,龚道溢.大气污染对中国重点城市地面总辐射影响的时空特征[J],高原气象,2009,25(5):1105—1114.
    [5]奚晓霞,权建农,陈长和,赵秀娟.兰州市城关区冬季TSP的监测分析及其与辐射的关系[J],高原气象,2002,21(4):427—431.
    [6]胡波,张武,张镭,陈长和,冯广泓.兰州市西固区冬季大气气溶胶粒子的散射特征[J],高原气象,2003,22(4):354—360.
    [7]胡波,张婕,张武,陈长和,张镭.应用积分浑浊度仪研究兰州城市冬季大气气溶胶[J],兰州大学学报(自然科学版),2005,41(3):19—25.
    [8]孟昭阳,将晓明,颜鹏,张怀德,王雁,林伟立,闫世明.太原冬季大气气溶胶的散射特征[J],气候变化研究进展,2007,3(5):255—259.
    [9]徐敬,张小玲,颜鹏,丁国安,徐晓峰.2006年春季沙尘天气下背景地区大气气溶胶光学特性的观测研究[J],气象科技,2008,36(6):679—685.
    [10]章秋英,牛生杰,沈建国,王英舜,武魁,王敏,张凯霞.半干旱区气溶胶散射特性研究[J],中国沙漠,2008,28(4):755—761.
    [11]延昊,矫梅燕,赵琳娜,张志刚,牛若芸.中国北方气溶胶散射和PM1o浓度特征[J],高原气象,2008,27(4):852—858.
    [12]黄世鸿,李子华,杨军.中国地区边界层大气气溶胶辐射吸收特性[J],高原气象,2000,19(4):487—494.
    [13]章秋英,牛生杰,沈建国,王英舜,武魁,王敏,张凯霞.半干旱区冬春季黑碳气溶胶吸收特性的观测研究[J],中国沙漠,2009,29(1):183—188.
    [14]陶俊,朱李华,韩静磊,张涛,张来国,许振成.广州城区冬季黑碳气溶胶污染特征及其来源初探[J],中国环境监测,2009,25(2):53—56.
    [15]高枞亭,张仁建,苏丽欣.长春秋冬季大气黑碳气溶胶的特征分析[J],高原 气象,2009,28(4):803—807.
    [16]庄炳亮,王体健,李树.中国地区黑碳气溶胶的第一间接辐射强迫与气候效应[J],高原气象,2009,28(5):1095—1104.
    [17]王志立,张华,郭品文.南亚地区黑碳气溶胶对亚洲夏季风的影响[J],高原气象,2009,28(2):419—424.
    [18]Bond, T. C., Anderson, T. L., Campbell., D.. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols [J], Aerosol Science and Technology,1999,30:582—600.
    [19]Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G J., Wiedensohler, A., Ahlquist, N. A., Bates, T. S.. Performance characteristics of a high-sensitivity, three-wavelength total scatter/backscatter nephelometer [J], Journal of Atmospheric and Oceanic Technology,1996,13:967—986.
    [20]Anderson, T. L., Ogren, J. A.. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer [J], Aerosol Science and Technology,1998, 29:57—69.
    [21]Moosmuller, H., Arnott, W. P.. Angular truncation errors in integrating nephelometry [J], Reviews of Scientific Instruments,2003,74(7):3492—3501.
    [22]Virkkula, A., Ahlquist, N. C., Covert, D. S., Arnott, W. P., Sheridan, P. J., Quinn, P. K., Coffman, D. J.. Modification, calibration and a field test of an instrument for measuring light absorption by particles [J]. Aerosol Science and Technology, 2005,39:68—83.
    [1]张镭.城市大气气溶胶与边界层相互作用研究[D],兰州大学博士学位论文,2001.
    [2]缪国军.利用WRF模式模拟复杂地形城市边界层的数值试验[D],兰州大学硕士学位论文,2005.
    [3]胡向军.利用激光雷达资料模拟气溶胶辐射效应的大气边界层响应[D],兰州大学硕士学位论文,2006.
    [4]王娜.利用激光雷达资料模拟研究沙尘气溶胶的长波辐射效应及其边界层影响[D],兰州大学硕士学位论文,2007.
    [5]邓涛.高云和气溶胶辐射强迫及其边界层响应的数值模拟[D],兰州大学硕士学位论文,2007.
    [6]陈敏.利用激光雷达和黑碳仪观测资料模拟研究气溶胶辐射效应与影响[D],兰州大学博士学位论文,2008.
    [7]见 http://www.mmm.ucar.edu/wrf/users/wrfv3.1/wrf_model.html.
    [8]Weather Research & Forecasting Version 3 Modeling System User's Guide,2009.
    [9]Skamarock, W. C., Klemp, J. B., Dudbhia, J., Gill, D. O., Barker, D. M., Wang, W., Powers, J. G.. A description of the Advanced Research WRF Version 2, NCAR Technical Note,2007.
    [10]Laprise, R.. The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable [J], Monthly Weather Review,1992,120:197—207.
    [11]Kessler, E.. On the distribution and continuity of water substance in atmospheric circulation [J], Meteorological Monographs,1969,10(32), American Meteorological Society,84pp.
    [12]Lin Y. L., Farley, R. D., Orville, H. D.. Bulk parameterization of the snow field in a cloud model [J], Journal of Applied Meteorogy,1983,22(6),1065—1092.
    [13]Rutledge, S. A. and Hobbs, P. V..The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅶ:A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands [J], Journal of the Atmospheric Sciences,1984,41(20):2949—2972.
    [14]Tao, W. K.. An ice-water saturation adjustment [J], Monthly Weather Review, 1989,117:231—235.
    [15]Hong, S. Y. and Chen, S. H.. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation [J], Monthly Weather Review,2004,132:103—120.
    [16]Kain, J. S. and Fritsch, J. M.. A one-dimensional entraining/detraining plume model and its application in convective parameterization [J], Journal of the Atmospheric Sciences,1990,47(23):2784—2802.
    [17]Kain, J. S. and Fritsch, J. M.. Convective parameterization for mesoscale models: the Kain-Fritsch scheme,1993, the representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond, Eds., American Meteorological Society,165—170.
    [18]Janjic, Z. I.. The step-mountain eta coordinate model:further developments of the convection, viscous sublayer and turbulence closure schemes [J], Monthly Weather Review,1994,122:927—945.
    [19]Janjic, Z. I.. Comments on "Development and evaluation of a convection scheme for use in climate models" [J], Journal of the Atmospheric Sciences,2000,57: 3686.
    [20]Betts, A. K.. A new convective adjustment scheme. Part I:Observational and theoretical basis [J], Quarterly Journal of the Royal Meteorological Society,1986, 112:677—691.
    [21]Betts, A. K. and Miller, M. J.. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets [J], Quarterly Journal of the Royal Meteorological Society,1986,112:693— 709.
    [22]Grell, G. A. and Devenyi, D.. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques [J], Geophysical Research Letters,2002,29(14),1693, doi:10.1029/2002GL015311.
    [23]Janjic, Z. I.. The step-mountain coordinate:physical package [J], Monthly Weather Review,1990,118:1429—1443.
    [24]Janjic, Z. L. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model, NCEP office note,2002, No.437,61.
    [25]Mellor, G. L. and Yamada, T.. Development of a turbulence closure model for geophysical fluid problems [J], Reviews of Geophysics and Space Physics,1982, 20(4):851—875.
    [26]Hong, S. Y. and Pan, H. L.. Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J],1996, Monthly Weather Review,124,2322— 2339.
    [27]Chen, F. and Dudhia, J.. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I:Model description and implementation [J], Monthly Weather Review,2001,129:569—585.
    [28]Smirnova, T. G, Brown, J. M., Benjamin, S. G.. Performance of different soil model configurations in simulating ground surface temperature and surface fluxes [J], Monthly Weather Review,1997,125:1870—1884.
    [29]Smirnova, T. G., Brown, J. M., Benjamin, S. G., Kim, D.. Parameterization of cloud season processes in the MAPS land-surface scheme [J], Journal of Geophysical Research,2000,105(D3):4077—4086.
    [30]Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A.. Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave [J], Journal of Geophysical Research,1997, 102(D14):16663—166682.
    [31]Dudhia, J.. Numerical study of convection observed during the witer monsoon experiment using a mesoscale two-dimensional model [J], Journal of the Atmospheric Sciences,1989,46:3077—3107.
    [32]Stephens, G L.. Radiation profiles in extended water clouds. Part Ⅱ Parameterization schemes [J], Journal of the Atmospheric Sciences,1978,35: 2123—2132.
    [33]Lacis, A. A. and Hansen, J. E.. A parameterization for the absorption of solar radiation in the earth's atmosphere [J], Journal of the Atmospheric Scieces,1974, 31:118—133.
    [34]Chou, M. D. and Suarez, M. J.. An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Technical Memorandum,1994,104606,3,85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700