用户名: 密码: 验证码:
黄、东海浮游植物功能群研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物是海洋中最主要的初级生产者,启动了海洋生态系统的能量流和物质流,开启了海洋食物链。973项目“我国近海生态系统食物产出的关键过程及其可持续机理”提出开展从食物网的原核生物-浮游植物到顶级生物从个体到粒径谱、功能群和营养层的全程(from end to end)食物网研究,并将生物功能群的食物网营养动力学作为拟解决的关键科学问题,因此需要对浮游植物功能群的组成和生态特征进行研究。
     本论文基于2006年4月至2008年6月在黄、东海进行的9次多学科综合外业调查,利用浮游植物群落资料,研究了该海域浮游植物功能群的组成及生物量的时空分布特征,分析了浮游植物功能群与环境因子的关系、以及关键物理过程对浮游植物功能群的影响。
     根据营养功能将浮游植物划分为12个功能群:微微型浮游植物(PicoPl)、微型硅藻(NanDiat)、微型自养鞭毛藻(NanAutFl)、小型自养甲藻(MAutFl)、小型混合营养甲藻(MMixFl)、小型异养甲藻(MHetFl)、小型单体硅藻(MUniDiat)、小型无刺群体硅藻(MHairDiat)、小型有刺群体硅藻(MBranDiat)、产毒浮游植物(ToxPl)、不可食浮游植物(InedPl)、其它浮游植物(Others)。
     浮游植物水柱生物量在南黄海春季高于秋季;春季高值区位于山东半岛近岸水域,秋季高值区位于济州岛附近水域。在长江口和东海水域夏季最高,春季次之,秋季较低,冬季最低;高值区多分布在长江口-浙江近岸水域,外海高盐区生物量较低。在垂直方向上,浮游植物生物量主要分布在浅层水体。
     黄、东海浮游植物功能群组成时空变化较大:南黄海春、秋季MHairDiat都是最优势的功能群;长江口邻近黄东海,春末以MHetFl为主的甲藻功能群在群落占优,ToxPl有较高的比例;夏中,硅藻取代甲藻,MHairDiat成为最优势功能群,MBranDiat也有较高的比例;夏末,硅藻功能群占群落比例超过95%;东海陆架区秋冬季均以硅藻功能群为主,MHairDiat > MUniDiat > MBranDiat;长江口及东海近岸区甲藻功能群占优,5月份MMixFl > MAutFl > MHetFl,6月份MHetFl取代MMixFl成为最优势功能群。
     MHairDiat春季在山东半岛东端的海槽区出现全年最高值;春末到夏末,长江口及东海近岸区水柱生物量逐渐升高;生物量从秋季到冬季持续下降,秋季黄海冷水团水域生物量极低。MUniDiat在春季的分布与MHairDiat类似;从夏中至夏末,长江口及东海近岸区生物量持续升高;秋季,生物量在东海陆架区高于南黄海;冬季,东海陆架区生物量略有下降,在长江口附近形成高值区。MBranDiat春季在长江口邻近黄海生物量较高,在东海少有分布,春末开始东海生物量升高,高值区分布在杭州湾外;秋季生物量下降,在黄海分布在近岸,东海分布在外海;冬季生物量低、分布范围小。MHetFl春季在山东半岛近岸、长江口-杭州湾外有很高的生物量;夏季开始,生物量显著降低,冬季仅在东海陆架外缘有分布。MMixFl春季在东海高于南黄海,春末生物量在长江口及东海近岸区上升,夏季开始降低;秋季在南黄海的分布与春季类似,高于东海;冬季,东海陆架区生物量很低。MAutFl春末在长江口邻近黄海出现全年最高值,高生物量从夏季开始衰退,秋、冬季生物量均很低。ToxPl在春夏季生物量较高,春季主要分布在南黄海中部、长江口和东海近岸区;夏中长江口邻近黄海出现全年最大值,到夏末消失。InedPl夏末在长江口邻近黄海出现全年最高值,其生物量在外海高盐水域较高。
     浮游植物关键种的演替明显:南黄海关键种主要为硅藻,春季为太平洋海链藻(Thalassiosira pacifica)、豪猪棘冠藻(Corethrom hystrix)等,秋季为斯氏几内亚藻(Guinardia striata)、圆筛藻(Coscinodiscus sp.)。长江口及东海水域,5、6月份关键种以甲藻为主,夜光藻(Noctiluca scientillans)、具齿原甲藻(Prorocentrum dentatum)、米氏凯伦藻(Karenia mikimotoi)等水华物种、柔弱伪菱形藻(Pseudo-nitzschia delicatissima)等产毒物种都有较高的生物量;夏季,甲藻式微,脆指管藻(Dactyliosolen fragilissimus)、旋链角毛藻(Chaetoceros curvisetus)、厚刺根管藻(Rhizosolenia crassipina)和环纹劳德藻(Lauderia annulata)等硅藻成为关键种;秋季,关键种为圆筛藻、圆海链藻(Thalassiosira rotula)、斯氏几内亚藻(Guinardia striata)等硅藻;冬季,关键种主要是圆筛藻等单体硅藻。夜光藻、具齿原甲藻、米氏凯伦藻春季在长江口附近水域易形成水华(赤潮),而太平洋海链藻等硅藻春季在南黄海也有爆发水华的可能。
     浮游植物功能群与环境因子的关系存在时空差异:MHairDiat在黄东海的分布主要受温度和盐度的影响,但春季在黄海、夏季在长江口及邻近黄东海可能受到营养盐的限制;MUniDiat的分布主要受营养盐影响,生物量在高营养盐水体较高,春季在南黄海主要受盐度影响;MBranDiat在春、夏季可能受营养盐限制,在夏末、秋季和冬季的分布主要受温度和盐度影响;MAutFl的分布春季在南黄海受磷酸盐影响,在长江口受铵盐影响,秋季在东海陆架区与营养盐密切相关,其它航次主要受温度和盐度影响;MMixFl的分布主要受温度或/和盐度的影响,春季在南黄海、秋季在长江口及东海陆架区的分布主要受氮盐的影响;MHetFl主要分布在近岸的表层水体,在外海高盐高温水体也能形成较高的生物量;ToxPl的分布与营养盐的关系在秋季不明显,春季在南黄海、夏季在长江口、冬季在东海陆架区主要受氮盐的影响;InedPl的分布主要受温度和盐度的影响,但秋、冬季在东海陆架区在高营养盐水体分布较多。
     黄海冷水团水域浮游植物生物量极低,温跃层的存在阻碍了营养盐向上输送,表层受营养盐特别是磷酸盐限制,仅适宜异养甲藻;底层受光限制,仅适宜底栖硅藻。长江冲淡水携带的大量营养盐支持了长江口水域的高生物量,生物量锋面出现在光和营养盐取得最佳权衡的水域。高盐、低营养盐的黑潮和台湾暖流控制区域,浮游植物难以形成高生物量。
     综合基于浮游植物功能群组成的聚类分析结果和群落生物量对黄、东海进行了生态区的划分:南黄海春季划分为4个生态区、秋季划分为3个生态区,长江口及邻近黄东海水域春末划分为2个生态区、夏季划分为4个生态区、夏末划分为3个生态区,东海陆架区秋、冬季均划分为2个生态区,长江口及东海近岸区春季划分为2个生态区、春末划分为3个生态区。
     春、秋季,基于浮游植物功能群对南黄海生态区的划分与基于浮游动物功能群的结果类似,但生物量分布模式不同;浮游植物功能群与中华哲水蚤的摄食、代谢、生殖行为有密切的关系。夏季,长江口外高生物量的MHairDiat和MBranDiat与底层的氧亏损有关。
     本文从生物量出发,报道了黄、东海浮游植物功能群、关键种的组成及时空分布,研究了各功能群与环境因子的关系,并基于浮游植物功能群对黄、东海进行了生态区的划分,这些结果为黄、东海食物产出关键过程的预测模型提供了基础数据。今后的研究需要综合多种分析方法,获取全粒径浮游植物资料,以全面分析浮游植物功能群结构;同时与高营养层次生物功能群进行整合研究,以更好的理解中国近海食物网的营养结构。
Phytoplankton is the main component of primary producers in the ocean, which triggers the energy flow and material flow of marine ecosystem, and initiates the pelagic food web. Food web from end to end is the core target of 973 key project―Key processes and sustainable mechanism of food output in Chinese coastal pelagic ecosystem‖. Trophic dynamics of plankton functional groups is one of the key scientific issues. Therefore, it is critical to study the composition and ecological characteristics of phytoplankton functional groups (PFGs) in the Yellow Sea (YS) and the East China Sea (ECS).
     From April 2006 to June 2008, nine cruises were conducted in the YS and the ECS. Based on phytoplankton data by Unterm?hl method, composition and ecological characteristics of PFGs were investigated. Relationships between PFGs and environmental factors were analyzed by CCA, and influences of hydrodynamic processes on PFGs were taken in account as well.
     According to trophic function, phytoplankton is divided into 12 functional groups, i.e. pico-phytoplankton (PicoPl), nano-diatom (NanDiat), autotrophic nano-flagellate (NanAutFl), autotrophic micro-dinoflagellate (MAutFl), mixotrophic micro-dinoflagellate (MMixFl), heterotrophic micro-dinoflagellate (MHetFl), unicellular micro-diatom (MUniDiat), hair-shaped micro-diatom (MHairDiat), branch-shaped micro-diatom (MBranDiat), toxic phytoplankton (ToxPl), inedible phytoplankton (InedPl), and other phytoplankton (Others).
     Phytoplankton integrated biomass in spring was much higher than that in autumn in the southern YS. High biomass distributed in the coastal water of Shandong Peninsula in spring, whereas, in the coastal water of Cheju Island in autumn. Phytoplankton integrated biomass showed evident seasonal variation in the Yangtze River Estuary (YRE) and its adjacent waters, i.e., in summer > in spring > in autumn > in winter. Biomass in the coastal waters of YRE and Zhejiang Province was much higher than that in off-shore sites with salinity > 31. Vertically, phytoplankton biomass decreased with depth from surface to bottom.
     Composition of PFGs varied spatially and temporally in the YS and the ECS. MHairDiat was the most dominant group in the southern YS in spring and autumn. MHetFl-dominant dinoflagellate groups were most important, in addition, ToxPl was also important in the YRE and its adjacent waters in late spring. Diatom groups replaced dinoflagellate, and MHairDiat and MBranDiat were dominant in the YRE and its adjacent waters in the middle of summer. Diatom groups accounted for 95% of phytoplankton biomass in the YRE and its adjacent waters in late summer. Diatom groups, MHairDiat > MUniDiat > MBranDiat, were dominant in the continental shelf water of ECS in autumn and winter. Dinoflagellate groups, MMixFl > MAutFl > MHetFl, were dominant in the YRE and the coastal ECS in May of 2007, while MHetFl > MMixFl > MAutFl in June of 2008.
     MHairDiat was most abundant in the YS Trough water near Shandong Peninsula in spring. Its biomass in the YRE and the coastal ECS increased from late spring to late summer, and decreased from autumn to winter. MHairDiat showed extremely low biomass in the Yellow Sea Cold Water Mass (YSCWM) area in autumn. Distribution of MUniDiat was similar to that of MHairDiat in spring. Its biomass in the YRE and the coastal ECS increased from August to October. MUniDiat was more abundant in the ECS than in the southern YS in autumn. MUniDiat biomass in winter was lower than that in autumn in the ECS, and was densely distributed near the YRE. In spring, MBranDiat was abundant in the YS water near the YRE, while scarce in the ECS. MBranDiat biomass increased from June to October, and decreased from autumn to winter in the ECS. Late spring peak value appeared in coastal water of Hangzhou Bay, while autumn peak value in the open sea. In autumn MBranDiat was densely distributed in the coastal water of YS. High density of MHetFl located in coastal water of Shandong Peninsula and the area near the YRE and Hangzhou Bay in spring. MHetFl biomass was much low in the YS and the ECS from summer to winter. MMixFl biomass was highest in late spring among four seasons, and its peak value occurred in the YRE and the coastal ECS. MMixFl biomass was higher in the ECS than in the YS in spring, while lower in the ECS than in the YS in autumn. MMixFl biomass was extremely low in the continental shelf water of ECS in winter. Maximum MAutFl biomass occurred in the YRE adjacent YS in late spring, and high biomass decreased in summer. MAutFl was in low abundance in the continental shelf water of ECS in autumn and winter. ToxPl was abundant in the middle of southern YS, in the YRE and the coastal ECS in spring, and showed peak biomass, which disappeared in late summer, in the YRE adjacent YS in the middle of summer. InedPl was most abundant in the YRE adjacent YS in late summer. Generally, its biomass was high in open sea.
     Succession of keystone species was evident in survey area. Keystone species were mainly diatoms in the southern YS. Keystone species were Thalassiosira pacifica and Corethrom hystrix in spring, and Guinardia striata and Coscinodiscus sp. in autumn. In the YRE and the ECS, dinoflagellates, such as Noctiluca scientillans, Prorocentrum dentatum, Karenia mikimotoi, became keystone species in May and June, besides toxic phytoplankton Pseudo-nitzschia delicatissima showed high biomass as well. Diatom, i.e. Dactyliosolen fragilissimus, Chaetoceros curvisetus, Rhizosolenia crassipina, Lauderia annulata, replaced dinoflagellate and became keystone species in summer. Diatoms, such as Coscinodiscus sp., Thalassiosira rotula, Guinardia striata, became keystone species again in autumn. Keystone species in winter was mainly unicellular diatom, such as Coscinodiscus sp.. Noctiluca scientillans, Prorocentrum dentatum, and Karenia mikimotoi could bloom in the YRE and its adjacent water in spring, so could Thalassiosira pacifica in the southern YS in spring.
     Correlations between PFGs and environmental factors were highly variable in spatial and temporal scale. MHairDiat was well correlated with salinity and temperature in survey area, however, it could be limited by nutrients during cruise LST-I and cruise QYQ-II. Distributions of MUniDiat were mainly influenced by nutrients, but also correlated with salinity during cruise LST-I. Distributions of MBranDiat could be influenced by nutrients in spring and summer, while by temperature and salinity in late summer, autumn and winter. Phosphate was the key factor that influenced the distributions of MAutFl during cruise LST-I, while ammonia in the Yangtze River Estuary, and nutrients during cruise ZLJ-I, and temperature and salinity during other cruises. MMixFl well correlated with temperature and salinity, whereas correlated with nitrogen during cruise LST-I and cruise ZLJ-I. MHetFl mainly distributed in upper layers of coastal waters, however, it could show high biomass in open sea as well. ToxPl was mainly influenced by nitrogen during cruise LST-I, cruise QYQ-II, and cruise ZLJ-II. Distributions of InedPl were mostly controlled by temperature and salinity, in addition, InedPl positively correlated with nutrient during cruise ZLJ-I and cruise ZLJ-II.
     Phytoplankton biomass was extremely low in the YSCWM in autumn, where the strong thermocline stopped the upward transport of nutrients from bottom water. There was mainly phosphate limitation in surface water, where MMixFl and MHetFl were dominant, and illumination limitation below surface, where MUniDiat was dominant. High phytoplankton biomass in the YRE was supported by rich nutrients transported by Yangtze River Dilute Water. Phytoplankton biomass front appeared in the waters where nutrients and illumination stroke a balance. Phytoplankton biomass was generally low in Kuroshio and Taiwan Warm Current, characteristic of high salinity and low nutrients.
     Cluster analysis of survey sites of every cruise was conducted based on PFGs composition. According to cluster analysis and phytoplankton biomass, the YS and the ECS were divieded into several provinces. The southern YS were divided into 4 provinces in spring, while 3 provinces in autumn. The YRE and its adjacent YS and ECS was divided into 2 provinces in late spring, and 4 provinces in the middle of summer, and 3 provinces in late summer. The continental shelf water of ECS was divided into 2 provinces in both autumn and winter. The YRE and the coastal ECS were divided into 2 provinces in spring and 3 provinces in late spring.
     PFGs provinces were similar to zooplankton functional groups provinces in the southern YS in spring and autumn, however, they were quiet different in distribution of biomass. Biomass and composition of PFGs was closely correlated with grazing, metabolism, and reproduction of Calanus sinicus. High biomass of MHairDiat and MBranDiat could be a key factor in formation of hypoxia in the YRE in summer.
     Based on carbon biomass, the composition and distributions of PFGs were reported in the YS and the ECS, so was the distribution of keystone species. Correlations between PFGs and environmental factors were analyzed, and PFGs provinces were divided as well. This dissertation provides for the food output model in the YS and the ECS. To understand the PFGs comprehensively, multi-method should be employed in the analysis of phytoplankton samples. Furthermore, interdisciplinarity study should be conducted to get insights into trophic structure of pelagic food web in the YS and the ECS.
引文
1.白洁,姜艳,孙军,何青.黄海冷水团邻近海域浮游植物的昼夜垂直变化[J].中国海洋大学学报, 2007, 37(6): 1013-1016.
    2.晁敏.应用流式细胞计研究超微型浮游植物在中国东、黄海典型水域的分布[D].上海:华东师范大学, 2002.
    3.陈洋.有害赤潮对海洋生态系统结构和功能影响的初步研究[D].青岛:中国科学院海洋研究所, 2005.
    4.丁昌玲,孙军,汪岷.春季东海产卵场及其邻近海域的束毛藻与网采浮游植物群落[J].渔业科学进展, 2009, 30(4): 50-56.
    5.邓春梅,于志刚,姚鹏,陈洪涛,薛春勇.东海、南黄海浮游植物粒级结构及环境影响因素分析[J].中国海洋大学学报, 2008, 28(5): 791-798.
    6.高生泉,林以安,金明明,高大伟.春、秋季东、黄海营养盐的分布变化特征及营养结构[J].东海海洋, 2004, 22(4): 38-50.
    7.郭炳火.黄海物理海洋学的主要特征[J].黄渤海海洋, 1993, 11(3): 7-18.
    8.郭玉洁.黄海角毛藻属区系的性质[J].海洋与湖沼, 1963, 5(4): 322-332.
    9.郭玉洁,杨则禹. 1976年夏季东海陆架区浮游植物生态的研究[J].海洋科学集刊, 1982, 19: 11-32.
    10.郭玉洁,杨则禹.长江口浮游植物的数量变动及生态分析[J].海洋科学集刊, 1992, 33: 167-189.
    11.费尊乐,李宝华.叶绿素a与初级生产力的相关关系[J].青岛海洋大学学报, 1990, 20(1): 73-79.
    12.傅明珠,王宗灵,孙萍,李艳,李瑞香. 2006年夏季南黄海浮游植物叶绿素a分布特征及其环境调控机制[J].生态学报, 2009, 29(10): 5366-5375.
    13.高亚辉,虞秋波,齐雨藻,等.长江口附近海域春季浮游硅藻的种类组成和生态分布[J].应用生态学报, 2003, 14(7): 1044-1048.
    14.顾新根,袁骐,杨蕉文,等.长江口羽状锋区浮游植物的生态研究[J].中国水产科学, 1995, 2(1): 1-15.
    15.韩君.黄海物理环境对浮游植物水华影响的数值研究[D].青岛:中国海洋大学, 2008.
    16.何青.长江口及东海陆架区浮游植物群集生态学研究[D].青岛:中国科学院海洋研究所, 2008.
    17.何青,孙军,栾青杉,宋书群,沈志良,王丹. 2005年冬季长江口及其邻近海域浮游植物群集[J].应用生态学报, 2007, 18(11): 2559-2566.
    18.贺志鹏,宋金明,张乃星.南黄海溶解有机碳的生物地球化学特征分析[J].海洋科学进展, 2006, 24(4): 477-488.
    19.胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析[J].海洋学报, 2004, 26(6): 74-88.
    20.黄邦钦,刘媛,陈纪新,王大志,洪华生,吕瑞华,黄凌峰,林以安,魏皓.东海、黄海浮游植物生物量的粒级结构及时空分布[J].海洋学报, 2006, 28(2): 156-164.
    21.霍元子.黄海浮游动物功能群的研究[D].青岛:中国科学院海洋研究所, 2008.
    22.金德祥,陈金环,黄凯歌.中国海洋浮游硅藻类[M].上海:科学技术出版社, 1965: 1-230.
    23.金海燕,林以安,陈建芳,等.黄、东海颗粒有机碳的分布特征及其影响因子分析[J].海洋学报, 2005, 27(5): 46-53.
    24.康元德.黄海浮游植物的生态特点及其与渔业的关系[J].海洋水产研究, 1986, 7: 103-107.
    25.李宝华,傅克忖,曾晓起.南黄海夏末叶绿素a的分布特征[J].海洋与湖沼. 1999, 30(3): 300-305.
    26.李超伦,栾凤鹤.东海春季真光层分级叶绿素a分布特点的初步研究[J].海洋科学, 1998, 4: 56-61.
    27.李道季,张经,黄大吉,吴莹,梁俊.长江口外氧的亏损[J].中国科学(D辑), 2002, 32(8): 686-694.
    28.李丽,张正斌,刘莲生,等.南黄海胶体有机碳和溶解有机碳的分布[J].青岛海洋大学学报, 1999, 29(2): 321-324.
    29.李瑞香,毛兴华.东海陆架区的甲藻[J].东海海洋, 1985, 3(1): 41-45.
    30.林金美.东海浮游甲藻类的分布[J].海洋学报, 1994, 16(2): 110-115.
    31.林金美,林加涵.南黄海浮游甲藻的生态研究[J].生态学报, 1997, 17(3): 252-257.
    32.林荣根,邹景忠.近海富营养化的结果与对策[J].海洋环境科学, 1997, 16(3): 71-75.
    33.刘子琳,宁修仁,蔡昱明.杭州湾-舟山渔场秋季浮游植物现存量和初级生产力[J].海洋学报, 2001, 23(2): 93-99.
    34.栾青杉.长江口及其邻接水域浮游植物群集生态学研究[D].青岛:中国海洋大学, 2007.
    35.栾青杉,孙军,宋书群,沈志良,俞志明.长江口夏季浮游植物群落与环境因子的典范对应分析[J].植物生态学报, 2007, 31 (3): 445~450.
    36.毛兴华,李瑞香.东海北部陆架区浮游甲藻的分布及其生态特征[J].海洋学报, 1984, 6(5): 672-677.
    37.宁修仁,史君贤,刘子琳.渤、黄东海初级生产力和潜在渔业生产量的评估[J].海洋学报, 1995,
    17(3): 72-84.
    38.宁修仁.微型生物食物环[J].东海海洋, 1997, 15(1): 60-64.
    39.宁修仁.微型和超微型浮游生物[M].当代海洋科学学科前沿(苏纪兰、秦蕴珊主编).北京:学苑出版社, 2000.
    40.宁修仁,史君贤,蔡昱明,刘诚刚.长江口和杭州湾海域生物生产力锋面及其生态学效应[J].海洋学报, 2004, 26(6): 96-106.
    41.钱树本,陈国蔚,汤庭耀.山东荣成县近海浮游植物的研究[J].山东海洋学院学报, 1981, 11(3): 53-68.
    42.钱树本,陈国蔚.长江口及济州岛邻近水域综合调查报告: I.浮游植物生态[J].山东海洋学院学报, 1986, 16(2): 26-55.
    43.钱树本,刘东艳,孙军.海藻学[M].青岛:中国海洋大学出版社, 2005, 53-461.
    44.秦蕴珊.黄海地质[M].北京:海洋出版社, 1989, 1-2.
    45.沈国英,施并章.海洋生态学[M].北京:科学出版社, 2001, 173-177.
    46.宋洪军.南黄海夏冬两季超微型浮游植物初步研究[D].青岛:国家海洋局第一海洋研究所, 2007
    47.宋书群,孙军,俞志明.长江口及其邻近水域叶绿素a的垂直格局及成因分析[J].植物生态学报, 2009, 33(2): 369-379.
    48.山路勇.日本プランクトン図鑑[M].保育社(增补修订版), 1979: 1-128.
    49.苏纪兰.中国近海的环流动力机制研究[J].海洋学报, 2001, 23(3): 1-16.
    50.孙军,刘东艳,钱树本.一种海洋浮游植物定量研究分析方法-Uterm?hl方法的介绍及其改进[J].黄渤海海洋, 2002, 20(2): 105-112.
    51.孙军.海洋浮游植物细胞体积和表面积模型及其转换生物量[D].青岛,中国海洋大学, 2004.
    52.孙军,宋书群,徐兆礼,王宗灵,朱明远.东海米氏凯伦藻水华中中华哲水蚤的选择性摄食[J].海洋与湖沼, 2007, 38(6): 536-541.
    53.孙珊,刘素美,任景玲,张桂玲,程岩,谢亮,高磊.黄海鳀鱼产卵场和越冬场营养盐分布特征[J].海洋科学, 2008, 32(10): 45-50.
    54.孙晟.东黄海海洋蓝细菌(Synechococcus)生态学研究[D].青岛:中国科学院海洋研究所, 2002.
    55.唐启升,苏纪兰,孙松,张经,黄大吉,金显仕,仝龄.中国近海生态系统动力学研究进展[J].地球科学进展, 2005, 20(12): 1288-1299.
    56.田丽欣.东、黄海及海南近海有机碳的分布[D].上海:华东师范大学, 2009.
    57.王保栋.黄海和东海营养盐分布及其对浮游植物的限制[J].应用生态学报, 2003, 14(7): 1122-1126.
    58.王俊.黄海春季浮游植物的调查研究[J].海洋水产研究, 2001, 22(1): 56-61.
    59.王俊.黄海秋、冬季浮游植物的调查研究[J].海洋水产研究, 2003, 24(1): 15-23.
    60.王俊,左涛,陈瑞盛.黄海球石藻的种类组成[J].海洋水产研究, 2008, 29(5): 137-138.
    61.王世伟.黄海中华哲水蚤繁殖、种群补充和生活史研究[D].青岛:中国科学院海洋研究所, 2009.
    62.夏滨,吕瑞华,孙丕喜. 2000秋季黄、东海典型海区叶绿素a的时空分布及粒径组成特征[J].黄渤海海洋, 2001, 19(4): 37-42.
    63.相建海主编.中国海情[M].第一版.北京:开明出版社, 2002: 257-258.
    64.小久保青治著,华汝成译.浮游硅藻类[M].上海:上海科学技术出版社. 1960: 1-369.
    65.谢琳萍.南黄海有机碳的分布、变化特征及其影响因素[D].青岛:中国海洋大学, 2008.
    66.徐兆礼.长江口夜光藻(Noctiluca scintillans)年间变化和水域富营养化趋势[J].海洋与湖沼, 2009,
    40(6): 793-798.
    67.俞建銮,李瑞香.渤海、黄海浮游植物生态的研究[J].黄渤海海洋, 1993, 11(3): 52-59.
    68.俞建銮,张子云,程兆第.东海大陆架浮游硅藻的分布[J].海洋学报, 1983, 5(4): 519-525.
    69.张书文,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究[J].自然科学进展, 2002, 12(3): 315-319.
    70.张燕英,董俊德,王汉奎,王友绍,张偲,黄良民.海洋蓝藻束毛藻的研究进展[J].海洋科学, 2007, 31(3): 84-88.
    71.中国海湾志编撰委员会.中国海湾志(第十四分册) [M].北京:海洋出版社. 1998: 105-110.
    72.中国科学院中国孢子植物志编辑委员会.中国海藻志第五卷—硅藻门第一册(中心纲)[M].北京:科学出版社. 2003: 1-493.
    73.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学, 2001, 13(2): 54-59.
    74.周名江,朱明远.―我国近海有害赤潮发生的生态学、海洋学机制及预测防治‖研究进展[J].地球科学进展, 2006, 21(7): 673-681.
    75.朱根海,山本民次,大谷修司,松田治.浙江舟山群岛邻近海域微、小型浮游植物与赤潮生物研究[J].东海海洋, 2000, 18(1): 28-36.
    76.朱树屏,郭玉洁.烟台、威海鲐鱼渔场及其附近海区角毛硅藻属的研究, I.分类的研究[J].海洋与湖沼, 1957, 1(1): 27-94.
    77.朱树屏,郭玉洁.烟台、威海鲐鱼渔场及其附近海区角毛硅藻属的研究, II.分类的研究[J].海洋与湖沼, 1958, 1(2): 167-184.
    78.邹娥梅,熊学军,郭炳火,等.黄、东海温盐跃层的分布特征及其季节变化[J].黄东海海洋, 2001, 19(3): 8-18.
    79.邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨[J].海洋环境科学, 1983, 2(2): 41-54.
    80. Anderson T. Plankton functional type modeling: running before we can walk? [J] Journal of Plankton Research, 2005, 27: 1073–1081.
    81. Besiktepe S, et al.. Coupling of ingestion and defecation as a function of diet in the clanoid copepod Acartia tonsa [J]. Marine Ecology Progress Series, 2002, 229: 151-164.
    82. Boyd PW, Newton PP. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic province? [J] Deep-Sea Research I, 1999, 46: 63-91.
    83. Buck KR, Newton J. Fecal pellet flux in Dabob Bay during a diatom bloom: contribution of microzooplankton [J]. Limnology and Oceanography, 1995, 40: 306-315.
    84. Bulter NM, Suttle CA, Neill WE. Discrimination by fresh-water zooplankton between single algal cells differing in nutritional status [J]. Oecologia, 1989, 78: 368-372.
    85. Buesseler KO. The decoupling of production and particulate export in the surface ocean [J]. Global Biogeochemical Cycles, 1998, 12: 297-310.
    86. Calbet A. Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems [J]. Limnology and Oceanography, 2001,46: 1824-1830.
    87. Chan YF, Tsai AY, Chiang KP, Hsieh CH. Pigmented Nanoflagellates grazing on Synechococcus: Seasonal variations and effect of flagellate size in the coastal ecaosystem of Subtropical Western Pacific [J]. Environmantal Microbiology, 2009, 58: 548-557.
    88. Chen Lee YL, Chen HY, Chung CW. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea [J]. Deep-Sea Research II, 2007, 54: 1617-1633.
    89. Chisholm SW. Phytoplankton size [M]. In: Falkowski PG, Woodhead AD (Eds.), Primary Production and Biogeochemical Cycles in the sea. Plenum, New-York, 1992, pp: 213-237.
    90. Eppley RW, Reid FMH, Strickland JDH. Estimates of phytoplankton crop size, growth rate and primary production [M]. In: Strickland JDH. (ed) The ecology of the plankton off La Jolla, California, in the period April Through September 1967, Bulletin of the Scripps Institution of Oceanography, 1970, 17:33-42.
    91. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR. The evolution of modern eukaryotic phytoplankton [J]. Science, 2004, 305: 354-360.
    92. Flynn KJ. Reply to Horizons article ?Plankton functional type modeling: running before we can walk‘Anderson (2005): II. Putting trophic functionality into plankton functional types [J]. Journal of Plankton Research, 2006, 28: 873-875.
    93. Gasol JM, Giorgio, PAD. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacteria communities [J]. Scientia Marina, 2000, 64(2): 197-224.
    94. Gulati RD, Demott WR. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities [J]. Freshwater Biology, 1997, 38: 753-768.
    95. Hansen B, Bjornsen PK, Hansen PJ. The size ratio between planktonic predators and their prey [J]. Linmology and Oceanography, 1994, 39(2): 395-403.
    96. Hansen PJ, Calado AJ. Phagotrophy mechanisms and prey selection in free-living dinoflagellates [J]. Journal of Eukaryotic Microbiology, 1999, 46: 382-389.
    97. Harris RP. Zooplankton grazing on the coccolithophore Emilliania huxleyi and its role in inorganic carbon flux [J]. Marine Biology, 1994, 119: 431-439.
    98. Harris RP, Irigoien X, Head RN, Rey C and 5 others. Feeding, growth and reproduction in the genus Calanus [J]. ICES Journal of Marine Science, 2000, 57: 1708-1726.
    99. Hood RR, Coles VJ, Capone DG. Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean [J]. Journal of Geophysical Research, 2004, 109: 1-25.
    100. Hood RR, Laws EA, Armstrong RA, et al.. Pelagic functional group modeling: Progress, challenges and prospects [J]. Deep-Sea Research II, 2006, 53: 459-512.
    101. Intergovernmental Oceanographic Commission of UNESCO. IOC taxonomic reference list of toxic algae [J/OL]. http://ioc.unesco.org/hab/data4taxlist, 2002.
    102. Irigoien X, et al.. The influence of diatom abundance on the egg production rate of Calanus helgolandicus in the English Channel [J]. Limnology and Oceanography, 2000, 45(6): 1433-1439.
    103. Jacobson DM, Anderson DM. Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms [J]. Journal of Phycology, 1986, 22: 249-258.
    104. Jin X, Gruber N, Dunne JP, Sarmiento JL, Armstrong RA. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions [J]. Global Biogeochemical Cycles, 2006, 20: 1-17.
    105. Ki?rboe T, Nielsen TG. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods [J]. Limnology and Oceanography, 1994, 39: 493-507.
    106. Laabir M, et al.. Effect of diet on levels of amino acids during embryonic and naupliar development of the copepod Calanus helgolandicus [J]. Marine Biology, 1999, 134: 89-98.
    107. Laabir M, et al.. Effect of specific dinoflagellate and diatom diet on gamete ultrastructure and fatty acid profiles of the copepod Temora stylifera [J]. Marine Biology, 2001, 138: 1241-1250.
    108. Landry MR, Constantinou J, Latasa M, Brown SL, Bidigara RR, Ondrusek ME. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing [J]. Marine Ecology Progress Series, 2000, 207: 57-72.
    109. Le QuéréC, Harrison SP, Prentice IC, et al. Ecosystem dynamics based on plankton functional types for global biogeochemistry models [J]. Global Change Biology, 2005, 11: 2016-2040.
    110. Letelier RM, Karl DM. Role of Trichodesmium spp. in the productivity of the subtropical North Pacific ocean [J]. Marine Ecology Progress Series, 1996, 133: 263-273.
    111. Levasseur M, Michaud S, Egge J, Cantin G, Nejstgaard JC, Sanders R, Fernandez E, Soberg PT, Heimdal B, Gosselin M. Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing [J]. Marine Biology, 1996, 126: 609-618.
    112. Lincoln JA, et al.. Feeding, egg production, and egg hatching success of the copepods Acartia tonsa and Temora longicornis on diets of the toxic diatom Pseudo-nitzschia multiseries and non-toxic diatomPseudo-nitzschia pungens [J]. Hydrobiologia, 2001, 453(1-3): 107-120.
    113. Litchman E, Klausmeier CA, Yoshiyama K. Contrasing size evolution in marine and freshwater diatoms [J]. PNAS, 2009, 106(8): 2665-2670.
    114. Malej A, et al.. Inhibition of copepod grazing by diatom exudates-a factor in the development of mucus aggregeats [J]. Marine Ecology Progress Series, 1993, 96: 33-42.
    115. Mann DG. The species concept in diatoms [J]. Phycologia, 1999, 38: 437-495.
    116. Marie D, Simon N, Guillou L, Partensky F, Vaulot D. Flow cytometry analysis of marine picoplankton [M]. In Diamond and DeMaggio (Eds.), In living color: Protocols in flow cytometry and cell sorting. Springer-Verlag Berlin Heldelberg, New York, 2000.
    117. Miralto A, et al.. The insidious effect of diatoms on copepod reproduction. Nature, 1999, 402:173-176.
    118. Moore KJ, Doney SC, Kleypas JA, Glover DM and Fung IY. An intermediate complexity marine ecosystem model for the global domain [J]. Deep-Sea Research II, 2002, 49: 403-462.
    119. Moore KJ, Doney SC, and Lindsay K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model [J]. Global Biogeochemical Cycles, 2004, 18, GB4028, doi: 10.1029/2004/ GB002220.
    120. Nejstgaard JC, Gismervik I, Solberg PT. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi [J]. Marine Ecology Progress Series, 1997, 147: 197– 218.
    121. Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. Production and dissolution of biogenic silica in the ocean. Revised global estimates, comparison with regional data and relationship to biogenic sedimentation [J]. Global Biogeochemical Cycles, 1995, 9: 359-372.
    122. Ogawa H, Usuui T, Koike I. Distribution of dissolved organic bcabon in the East China Sea [J]. Deep-Sea Research II, 2003, 50(2): 353-366.
    123. Pahlow M, Riebesell U, Wolf-Gladrow DA. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms [J]. Limnology and Oceanography, 1997, 42(8): 1660-1672.
    124. Sarthou G, Timmermans KR, Blain S, Tregure P. Growth physiology and fate of diatoms in the ocean: a review [J]. Journal of Sea Research, 2005, 53: 25-42.
    125. Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food web [J]. Antonie Leeuwenhoek, 2002, 81: 293-308.
    126. Sherr EB, Sherr BF. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea [J]. Marine Ecology Progress Series, 2007, 352: 187-197.
    127. Shunway SE, Cucci TL, Nowell RC, et al.. Particle selection, ingestion, and absorption in filter-feeding bivalves [J]. Journal of Experimental Marine Biology and Ecology, 1985, 91: 77-92.
    128. Shunway SE. A review of the effects of algal blooms on shellfish culture [J]. Journal of the World Aquaculture Society, 1990, 21: 65-104.
    129. Smetacek V. Diatoms and the ocean carbon cycle [J]. Protist, 1999, 150: 25-32.
    130. Steele JH. The Structure of Marine Ecosystems [M]. London: Blackwell Scientific Publication, 1974.
    131. Storm SL. Bacterivory: interactions between bacteria and their grazers [M]. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, 2000: 351-386.
    132. Storm SL. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea [J]. Hydrobiologia, 2002, 480: 41-54.
    133. Sun J, Liu DY. Geometric models for calculating cell biovolume and surface area for phytoplankton [J]. Journal of Plankton Research, 2003, 25 (11): 1331-1346.
    134. Suzuki K, Tsuda A, Kiyosawa H, Takeda S, Nishioka J, Saino T, Takahashi M, Wong CS. Grazing impact of microzooplankton on a diatom bloom in a mesocosm as estimated by pigment-specific dilution technique [J]. Journal of Experimental Marine Biology and Ecology, 2002, 271: 99-120.
    135. Tang Q. Effects of long-term physical and biological perturbation on the contemporary biomass yields of the Yellow Sea ecosystem [M]. In Sherman, K. et al. (ed.) Large Marine Ecosystems: stress mitigation and sustainability. AAAS press, 1993.
    136. Totterdell IJ, Armstrong RA, Drange H, Parslow JS, Powell TM, Taylor AH. Trophic resolution [M]. In: Evans GT, Fasham MJR (Eds.), Towards a Model of Ocean Biogeochemical Process. Springer, Berlin, 1993, pp. 317-339.
    137. Tréguer P, Nelson DM, van Bennekom JV, DeMaster DJ, Leynaert A, Quéguiner B. The silica balance in the world Ocean: a reestimate [J]. Science, 1995, 268: 375-379.
    138. Tréguer P, Pondaven P. Silica control of carbon dioxide [J]. Nature, 2000, 406: 358-359.
    139. Turner JT, Roff JC. Trophic levels and tropho-species in marine plankton: lessons from the microbial food web [J]. Aquatic Ecology, 1993, 7: 225-248.
    140. Vasas V, C Lancelot, V Rousseau, F Jordán. Eutrophication and overfishing in temperate nearshore pelagic food webs: a network perspective [J]. Marine Ecology Progress Series, 2007, 336: 1-14.
    141. Valderrama JC. The simultaneous analysis of total nitrogen and total phosphorus in natural waters [J]. Marine Chemistry, 1981, 10: 109-122.
    142. Wang BD, Zhang R, Xu MD. Molar rations of C, N, P of particulate matter and their certical fluxes in the Yellow Sea [J]. Chinese Journal of Oceanology and Limnology, 2002, 20(1): 91-96.
    143. Yang TN, Wei KY, Chen MP, et al.. Summer and winter distribution and malformation of cocoolithophores in the East China Sea [J]. Micropaleontology, 2004, 50(s1): 157-170.
    144. Zhao JY, Ramin M, Cheng V, Arhonditsis GB. Competition patterns among phytoplankton functional groups: How useful are the complex mathematical models? [J] ACTA Oecologica, 2008, 33: 324-344.
    145. Zheng GX, Song JM, Dai JC, Wang YM. Distribution of chlorophyll a and carbon fixed strength of phytoplankton in autumn of the southern Huanghai Sea waters [J]. Acta Oceanologica Sinica, 2006, 25(3): 68-81.
    146. Zhu ZY, Zhang J, Wu Y, et al.. Bulk particulate organic carbon in the East China Sea: Tidal influence and bottom transport [J]. Progress in Oceanography, 2006, 69(1): 37-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700