账户: 密码:
青藏高原中东部地区的现今地壳形变研究
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
中国是全球大陆地震最强的地区之一,是一个多地震和强地震的国家。位于其西南的青藏高原是我国地震活动水平最高、强度最大的地区。青藏高原是全球最大的陆-陆碰撞带,内部地质构造复杂,断裂带的构造活动至今依然十分活跃,地壳变形十分强烈,是研究现代板块运动理论、板内变形和板内地震最理想的地区之一
     以GPS (Global Positioning System)为代表的空间大地测量技术的迅猛发展和广泛应用,提供了大量的大范围、高精度、准实时的观测数据,也为大地测量反演的发展和应用开辟了广阔的前景。GPS资料的空间尺度从区域到全球,时间尺度从数秒、数小时到数十年,长基线相对定位精度可达10-9的量级。所以,GPS手段所获得的高精度、高时空分辨率的现今构造变形的定量运动图像是研究大陆动力学的重要基础数据。因此,本文利用GPS数据来研究青藏高原中东部地区的地壳运动及变形。
     本文利用武汉大学在青藏高原布设的监测站的六期复测数据,通过高精度GPS数据处理获得了青藏高原的现今地壳运动速度场。采用自洽、统一的参考框架方法对武汉大学在青藏高原布设的监测站的1993、1995、1997、2000、2002及2007年的六期观测数据进行了处理,获得了各监测站的三维运动速率,并根据监测站位置,求得了喜马拉雅块体和西藏块体的运动速率及应变参数。结果显示喜马拉雅块体的南北向缩短速率、东西向伸张速率及隆起速率分别为(19.0±0.5)mm/a、(10.8±0.3)mm/a和(3.6±0.4)mm/a,并以N(33.8±3.3)0E达(-26.6±3.8)×10-9/a的挤压为主,同时兼有(9.4±0.9)×10-9/a的拉伸;西藏块体的南北向缩短速率、东西向伸张速率及隆起速率分别为(9.1±0.6)mm/a、(8.5±0.7)mm/a和(3.3±0.3)mm/a,并以N(55.8±4.3)。E达(-11.4±2.9)×10-9/a的挤压为主,同时兼有(6.2±1.0)×10-9/a的拉伸。分析表明:青藏高原现今地壳运动仍以南北向挤压、东西向拉伸、垂直隆升、东向逃逸为主要特征。
     本文利用川滇地区的GPS速度场和地震矩张量联合反演了川滇地区的现今地壳运动与形变。在详细划分川滇地区内的各个活动块体的基础上,利用来自中国地壳观测网络在1998-2004年间以华南板块为参考的GPS速度值及来自哈佛大学全球地震中心矩张量目录在1903-2003年间的地震矩张量,考虑了两类数据的权比因子联合反演了川滇地区各活动块体的运动及变形特征:藏东块体、川西块体、滇中块体和印支块体的优势运动方向和速率分别为N97.10E,22.3mm/a、N127.90E,17.9mm/a、N146.70E,15.8mm/a、N167.00E,9.7mm/a。并采用速度剖面法求得各活动断层的错动速率,其中鲜水河断裂的走滑速率和挤压速率分别为(10.0±1.0)mm/a和(2.2±1.0)mm/a,金沙江断裂带和红河断裂带的右旋走滑速率分别为(3.7±1.2)mm/a和(7.3±0.9)mm/a。在此基础上,讨论了川滇地区的变形模式,认为青藏高原的东西挤出速率远小于“大陆逃逸”理论模型所预测的运动速率,而与稳定的华南板块的速度差主要通过川滇地区的顺时针旋转运动和内部的变形运动予以调节和吸收。
     本文利用汶川地区震后的GPS连续观测资料获得了汶川地震的震后形变场。通过时间序列分析处理了中国地震局以及武汉大学在汶川地震后在沿断层两侧布设的16个连续GPS观测站的观测资料,求得汶川地震震后松弛时间约为38天,并获得了汶川地震的震后形变场,显示了汶川地区震后的地壳运动情况,其中上盘有垂向隆升以及东南向的水平位移。以GPS连续观测站所获得的震后形变场作为约束,采用汶川地震同震研究中得到的断层模型,利用PSGRN/PSCMP程序对由粘弹性松弛引起的震后变形进行模拟,反演出汶川地区地壳的弹性层最佳厚度约为45km,粘弹性层的最佳粘滞系数为1.8×1019Pa·s。
China is a region with the strongest earthquakes in the global continent, and a country with many and strong earthquakes. The Qinghai-Tibetan Plateau, lies in the Southwest region of China, with the highest and strongest seismicity. It is a product of the ongoing collision be-tween Indian and Eurasian plates, with complex geological structures,active faults and strong curst motion. It becomes an ideal region for studying on the intra-plate crustal deformation and seismic mechanism.
     With the rapid development and widespread use of space geodesy techniques, repre-sented by Global Positioning System, it provides many data with large scale, high accuracy and quasi-realtime for the development and application the geodetic inversion. The space scale of GPS data vary from region to the global, and its time scale vary from seconds to years. Its precision of relative positioning for long baseline can reach the magnitude of 10-9. The quantitative image of crust motion with high precision and space-time resolution by GPS, is the important basic data for research on continental dynamics. Therefore, GPS data is used for research on crustal movement and deformation in central and east Qinghai-Tibet Plateau in this thesis.
     With high precision data process of six repeated GPS observation data, which were col-lected in 1993,1995,1997,2000,2002, and 2007 separately, the present-day 3D crustal move-ment in the Qinghai-Tibetan Plateau is obtained. According to the location of the monitoring sites, the crust motion and strain parameters of the Himalayan sub-block and the Tibetan sub-block are obtained. It shows that the rates of crust motion in the Himalayan sub-block are (19.0±0.5)mm/a, (10.8±0.3)mm/a and (3.6±0.4)mm/a in SN, EW and vertical direction, sep-arately. The Himalayan sub-block is mainly under compressing strain, and the maximum compressing rate is (-26.6±3.8)×10-9/a and with the extension rate of (9.4±0.9)×10-9/a in the direction of N(33.8±3.3)0E. The rates of crust motion in the Tibetan sub-block are (9.1±0.6)mm/a, (8.5±0.7)mm/a and (3.3±0.3)mm/a in SN, EW and vertical direction, sepa-rately. The Tibetan sub-block is mainly under compressing strain, and the maximum com-pressing rate is (-11.4±2.9)×10-9/a and with the extension rate of (6.2±1.0)x10-9/αin the direction of N(55.8±4.3)0E. It also shows that present 3D crustal movement in the Qinghai-Tibetan Plateau is characterized by compression in NS direction, extension in EW direction, and vertical uplift.
     On the basis of plotting sub-blocks in Sichuan-Yunnan area, by using GPS velocity ob- servations, collected from the Crustal Motion Observation Network of China between 1998 and 2004, and seismic moment tensors, collected from the Harvard centroid moment tensor between 1903 and 2003, the parameters of crust motion in these sub-blocks are inverted. It shows that the predominant direction of crust motion in East-Zang sub-block is N97.10E at the rate of 22.3mm/a, and N127.90E,17.9mm/a in West-Chuan sub-block, N146.70E,15.8mm/a in Mid-Dian sub-block, N167.00E,9.7mm/a in Yinzhi sub-block, separately. Slip rates of some active faults are calculated by velocity profiles. It shows that the slip rate and shortening rate of Xianshuihe fault are (10.0±1.0)mm/a, (2.2±1.0)mm/a separately. And the right slip rates of Jinshajiang fault and Red river fault are (3.7±1.2)mm/a, (7.3±0.9)mm/a separately. Furthermore, the mode of curst deformation in Sichuan-Yunnan area is discussed. The extru-sion velocity of the Qinghai-Tibetan Plateau in EW direction is far slower than the velocity predicted by the continental extrusion model, but adopted by clockwise rotation and inner deformation of the crust in Sichuan-Yunnan area.
     Using the method of time series analysis, the data of GPS continual observation sites in the zone of Wenchuan Earthquake is processed, and the postseismic displacement of these sites is obtained. The result shows that the relax time of postseismic deformation is about 38 days, and the hanging wall is with the vertical uplift and horizontal movement in south-east direction. Furthermore, adopting the coseismic dislocation model by others'study, using PSGRN/PSCMP procedure, the postseismic deformation caused by the viscoelastic relaxation is simulated. The result shows that the best thickness of the elastic layer is about 45 km, and the best coefficient of viscosity is about 1.8×1019 Pa·s in the zone of Wenchuan Earthquake.
引文
[1]Agnew DC, The time-domain behavior of power-law noises, Geophys. Res. Lett.,1992,19(4), 333-336.
    [2]Armijo R., P. Tapponnier, JL Mercier, and TL Han, Quaternary extension in southern Tibet: Field observations and tectonic implications, J. Geophys. Res.,1986,91(B14):13803-13872.
    [3]Armijo R., P. Tapponnier, and TL Han, Late Cenozoic right-lateral faulting in southern Tibet, J. Geophys. Res.,1989,94:2787-2838.
    [4]Avouac JP, and P. Tapponnier, Kinematic model of active deformation in Central Asia, Geophys. Res. Lett.,1993,20:895-898.
    [5]Blewitt G., An automatic editing algorithm for GPS data, Geophys. Res. Lett.,1990,17:199-202.
    [6]Blewitt G., MB Heflin, FH Webb, et al., Global coordinates with centimeter accuracy in the International Terrestrial Reference Frame using GPS, Geophys. Res. Lett.,1992,19(9):853-856.
    [7]Bosman ER, and K. Kubik, The computation of geodetic networks with simultaneous estimation of the weights of the measured quantities, Bull. Geod.,1971,102:441-449.
    [8]Burgmann R., S. Ergintav, P. Seggall, et al., Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture, Bull. Seismol. Soc. Am.,2002,92:126-137.
    [9]蔡宏翔,宋成骅,刘经南,青藏高原1993和1995年地壳运动与形变的GPS监测结果分析,中国科学(D辑),1997,27(3):233-238.
    [10]蔡学林,曹家敏,朱介寿,程先琼,龙门山岩石圈地壳三维结构及汶川大地震成因浅析,成都理工大学学报(自然科学版),2008,35(4):357-365.
    [11]Chen QZ, Freymueller JT, Yang ZQ, et al, Spatially variable extension in southern Tibet based on GPS measurements, J. Geophys. Res.,2004,109, doi:10.1029/2002JB002350.
    [12]陈化然,陈连旺,马宏生,等,川滇地区应力场演化与强震间相互作用的三维有限元模拟,地震学报,2004,26(6):567-575.
    [13]陈俊勇,GPS现代化和Galileo运行准备的进展,测绘通报,2005,3:1-5.
    [14]陈俊勇,国际地球参考框架2000 (ITRF2000)的定义及其参数,武汉大学学报(信息科学版),2005,30(9):753-756.
    [15]陈俊勇,全球导航卫星系统进展及其对导航定位的改善,大地测量与地球动力学,2009,29(2):1-3.
    [16]陈俊勇,王泽民,庞尚益,等,论珠穆朗玛峰地区地壳运动,中国科学(D辑),2001,31(4):265-271.
    [17]陈连旺,张培震,陆远忠,等,川滇地区强震序列库仑破裂应力加卸载效应的数值模拟,地球物理学报,2008,51(5):1411-1421.
    [18]陈智梁,刘宇平,张选阳,等,全球定位系统测量与青藏高原东部流变构造,第四纪研究,1998(3):262-270.
    [19]陈智梁,张选阳,沈凤,等,中国西南地区地壳运动的GPS监测,科学通报,1999,44(8):851-854.
    [20]迟效国,青藏高原现今岩石圈的三维应变,吉林大学学报(地球科学版),2004,34(2):182-186.
    [21]邓起东,张培震,冉勇康,等,中国活动构造基本特征,中国科学(D辑),2002,32(12):1020-1030.
    [22]Dong D., P. Fang, Y. Bock, et al., Anatomy of apparent seasonal variations from GPS derived site position time series, J. Geophys. Res.,2002,107, doi:10.1029/2001JB000573.
    [23]独知行,刘经南,利用GPS位移和主应力方向观测资料进行川滇地区边界力的联合反演研究,武汉大学学报(信息科学版),2003,28(2):162-166.
    [24]England P., and G. Houseman, Finite strain calculations of continental deformation:2. Com-parison with the India-Asia collision zone, J. Geophys. Res.,1986,91:3664-3676.
    [25]England P., and P. Molnar, Active deformation of Asia:From kinematics to dynamics, Science, 1997,278:647-650.
    [26]England P., and P. Molnar, The field of crustal velocity in Asia calculated from quaternary rates of slip on faults, Geophy. J. Int.,1997,130:551-582.
    [27]方颖,江在森,张晶,等,川滇地区断层形变模型与应变积累分析,大地测量与地球动力学,2006,26(2):48-52.
    [28]符养,中国大陆现今地壳形变与GPS坐标时间序列分析,中国科学院上海天文台博士论文,2002.
    [29]Flesch LM, AJ Haines, and WE Holt, Dynamics of the India-Eurasia collision zone, J. Geophys. Res.,2001,106:16,435-16,460.
    [30]Flesch LM, WE Holt, PG Silver, et al., Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data, Earth Plan. Sci. Lett.,2005, 238:248-268.
    [31]Freed AM, and J. Lin, Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature,2001,411:180-183.
    [32]Freed AM, R. Burgmann, E. Calais, et al., Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology, J. Geophys. Res.,2006,111 (B01401), doi:10.1029/2005JB003894.
    [33]Freymueller JT, Comparison of baseline results for the TI-4100 and Trimble 4000SDT geodetic GPS receivers, Bull. Geod.,1992,66:272-280.
    [34]Gahalaut VK, S. Jade, JK Catherine, et al., GPS measurments of postseismic deformation in the Andaman-Nicobar region following the giant 2004 Sumatra-Andaman earthquake, J. Geophys. Res.,2008,113(B08041), doi:10.1029/2007JB005511.
    [35]Gan WJ, Zhang PZ, Shen ZK, et al., Present-day crustal motion within the Ti-betan Plateau inferred from GPS measurements, J. Geophys. Res.,2007,112(B08416), doi:10.1029/2005 JB004120.
    [36]Gourmelen N., and F. Amelung, Postseismic mantle relaxation in the central Nevada seismic belt, Science,2005,310:1473-1476.
    [37]Gregorius T., GIPSY-OASIS Ⅱ:A User's Guide,1996, University of Newcastle, Newcastle.
    [38]韩英,符养,GPS高程数据时间序列分析,武汉大学学报(信息科学版),2003,28(4):425-428.
    [39]Haines AJ, and Holt WE, A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J. Geophys. Res.,1993, 98:12,057-12,082.
    [40]Harris RA, and RW Simpson, The 1999 Mw 7.1 Hector Mine, California earthquake-A test of the stress shadow hypothesis? Bull. Seismol. Soc. Am.,1998,4:1497-1512.
    [41]Harris RA, and RW Simpson, Suppression of large earthquakes by stress shadows:A compari-son of Coulomb and rate-and-state failure, J. Geophys. Res.,2002,103:24439-24452.
    [42]Heflin M., W. Bertiger, G. Blewitt, et al., Global Geodesy Using GPS without Fiducial Sites, Geophys. Res. Lett.,1992,19:131-134.
    [43]Holt WE, and AJ Haines, Velocity fields in deformation Asia from the inversion of earthquake-released strains, Tectonics,1993,12(1):1-20.
    [44]Holt WE, and AJ Haines, The kinematics of northern South Island, New Zealand, determined from geologic strain rates, J. Geophys. Res.,1995,100(B9):17991-18010.
    [45]Holt WE, N. Chamot-Rooke, XL Pichon, et al., Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations, J. Geophys. Res.,2000,105(B8): 19185-19209.
    [46]Honda S., and T. Seno, Seismic moment tensors and source depths determined by the simulta-neous inversion of body and surface waves, Phys. Earth planet. Inter.,1989,57:311-329.
    [47]Houseman G., and England P., Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geophys. Res.,1993,98:12233-12249.
    [48]Hsu YJ, P. Segall, SB Yu, et al., Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int.,2007,169:367-379.
    [49]黄立人,GPS基准站时间序列的噪声特性分析,大地测量与地球动力学,2006,26(2):31-33.
    [50]黄立人,符养,GPS连续观测站的噪声分析,地震学报,2007,29(2):197-202.
    [51]姜卫平,周晓惠,刘经南,许才军,青藏高原地壳运动与应变的GPS监测研究,测绘学报,2008,37(3):285-292.
    [52]江在森,武艳强,方颖,等,汶川8.0级地震前区域地壳运动与应变场动态特征,地震,2009,29(1):68-76.
    [53]Jonsson S., P. Segall, R. Pedersen, et al., Post-earthquake ground movements correlated to porepressure transients, Nature,2003,424:179-183.
    [54]阚荣举,张四昌,宴风桐,我国西南地区现代构造应力场与现代构造活动特征的探讨,地球物理学报,1977,20(2):96-107.
    [55]King GCP, RS Stein, and J. Lin, Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am.,1994,84:935-953.
    [56]King RW, F. Shen, BC Burchfiel, et al., Geodetic measurement of crustal motion in southwest China, Geology,1997,25:179-182.
    [57]Kostrov VV, Seismic moment, energy of earthquakes, and the seismic flow of rock, Izv. Acad. Sci. USSR Phys. Solid Earth, Engl. Transl.,1974,10:23-44.
    [58]Kreemer C., WE Holt, S. Goes, and R. Govers, Active deformation in the eastern Indonesia and Philippines from GPS and seismicity data, J. Geophys. Res.,2000,105:663-680.
    [59]赖锡安,黄立人,徐菊生,等,中国大陆现今地壳运动,2004,北京:地震出版社,175-189.
    [60]Langbein J., Noise in two-color electronic distance meter measurements revisited, J. Geophys. Res.,2004,109, doi:10.1029/2003JB002819.
    [61]Langbein J., and H. Johnson, Correlated errors in geodetic time series:Implications for time-dependent deformation, J. Geophys. Res.,1997,102(B1):592-603.
    [62]Larson KM, JT Freymueller, and S. Philipsen, Global plate velocities from the Global Position-ing System, J. Geophys. Res.,1997,102:9961-9981.
    [63]李国河,王思敬,尚彦军,等,川滇交界地区地壳构造及现代地壳活动模式,地质力学学报,2000,6(2):82-91.
    [64]Lisowski M., WH Prescott, JC Savage, and MJ Johnston, Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California earthquake, Geophys. Res. Lett.,1990,17:1437-1440.
    [65]刘经南,施闯,许才军,姜卫平,利用局域复测GPS网研究中国大陆块体现今地壳运动速度场,武汉大学学报(信息科学版),2001,26(3):189-195.
    [66]刘经南,许才军,宋成骅,等,青藏高原中东部地壳运动的GPS测量分析,地球物理学报,1998,41(4):518-524.
    [67]刘经南,许才军,宋成骅,等,精密全球卫星定位系统多期复测研究青藏高原现今地壳运动与应变,科学通报,2000,45(24):2658-2663.
    [68]李勇,黄润秋,周荣军,等,龙门山地震带的地质背景与汶川地震的地表破裂,工程地质学报,2009,17(1):3-16.
    [69]Li ZC, and Xu CJ, An improved method of joint inversion using GPS and gravity observation data, Geo-spatial Information Science,2005,8(3):225-229.
    [70]李志才,许才军,赵少荣,等,基于地壳分层的唐山地震断层震后变形分析,地球物理学进展,2005,20(4):961-968.
    [7l]李志才,许才军,赵少荣,等,基于地壳分层的震后变形分析,武汉大学学报(信息科学版),2006,31(3):203-208.
    [72]李志才,张鹏,金双根,等,基于GPS观测数据的汶川地震断层形变反演分析,测绘学报,2009,38(2):108-113.
    [73]吕江宁,沈正康,王敏,川滇地区现代地壳运动速度场和活动块体模型研究,地震地质,2003,25(4):543-554.
    [74]Manabu Hashimoto, M. Enomoto, and Y. Fukushima, Coseismic deformation from the 2008 Wenchuan, China, Earthquake derived from ALOS/PALSAR images, Tectonophysics,2009, doi:10.1016/j.tecto.2009.08.034.
    [75]Mao A., CGA Harrison, and TH Dixon, Noise in GPS coordinate time series, J. Geophys. Res., 1999,104(B2):2797-2816.
    [76]马宗晋,陈鑫连,叶叔华,等,中国大陆区现今地壳运动的GPS研究,科学通报,2001,46(13):11 18-1120.
    [77]Marone CJ, CH Scholtz, and R. Bilham, On the mechanics of earthquake afterslip, J. Geophys. Res.,1991,96:8441-8452.
    [78]Meade B., Present-day kinematics at the India-Asia collision zone, Geology,2007,35:81-84.
    [79]Mikumo T., Y. Yagi, SK Singh, and MA Santoyo, Coseismic and postseismic stress changes in a subducting plate:possible stress interaction between large interplate thrust and intraplate norml-faulting earthquake, J. Geophys. Res.,2002,107, doi:10.1029/2001JB000446.
    [80]Molnar P., and QD Deng, Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia, J. Geophys. Res.,1984,89(B7):6203-6227.
    [81]Molnar P., and P. Tapponnier, Cenozoic tectonics of Asia:Effects of a continental collision, Science,1975,189:419-426.
    [82]Nikolaidis R., Observation of geodetic and seismic deformation with the Global Positioning System, Ph.D. dissertaion,2002, Univ. of Calif. San Diego.
    [83]Okada Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc.Am.,1985,75:1135-1154.
    [84]Parsons T., Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis, J. Geophys. Res.,2002,107, doi:10.1029/2001JB001051.
    [85]Pathier E., EJ Fielding, TJ Wright, et al., Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery, Geophys. Res. Lett.,2006,33(L20310), doi:10.1029/2006GL027193.
    [86]Pollitz FF, Postseismic relaxation theory on the spherical earth, Bull. Seismol. Soc. Am.,1992, 82:422-453.
    [87]Pollitz FF, R. Burgmann, and P. Segall, Joint estimation of afterslip rate and postseismic relax-ation following the 1989 Loma Prieta earthquake, J. Geophys. Res.,1998,103:26975-26992.
    [88]Pollitz FF, Viscoelastic shear zone model of a strike-slip earthquake, J. Geophys. Res.,2001, 106:26541-26560.
    [89]Pollitz FF, C. Wicks, and W. Thatcher, Mantle flow beneath a continental strike-slip fault:post-seismic deformation after 1999 Hector Mine earthquake, Nature,2001,293:1814-1818.
    [90]Pollitz FF, Post-seismic relaxation theory on a lateraly heterogeneous viscoelastic model, Geo-phys. J. Int.,2003,155:57-58.
    [91]Pollitz F, M. Nyst, and T. Nishimura, Coseismic slip distribution of the 1923 Kanto earthquake, Japan, J. Geophys. Res.,2005,110(B11408), doi:11410.11029/12005JB003638.
    [92]Pollitz F., R. Burgmann, and P. Banerjee, Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth, Geophys. J. Int.,2006, 167:397-420.
    [93]Pollitz F., P. Banerjee, K. Grijalva, et al., Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M=9.2 Sumatra earthquake, Geophys. J. Int.,2008,173:189-204.
    [94]Parsons T., and D. Dreger, Static-stress impact of the 1992 Landers earthquake sequences on nucleation and slip at the site of the 1999 M=7.1 Hector Mine earthquake, southern California, Geophys. Res. Lett.,2000,27:1949-1952.
    [95]Peltzer G., P. Rosen, F. Rogze, et al., Postseismic rebound in fault step-overs caused by pore fluid flow, Science,1996,273:1202-1204.
    [96]Peltzer G., P. Rosen, and F. Rogze, Poro-elastic rebound along the Landers 1992 earthquake surface rupture, J. Geophys. Res.,1998,103:30131-30145.
    [97]乔学军,王琪,吴云,等,中国大陆GPS基准站的时间序列特征,武汉大学学报(信息科学版),2003,28(4):413-416.
    [98]乔学军,王琪,杜瑞林,川滇地区活动地块现今形变特征,地球物理学报,2004,47(5):805-811.
    [99]Reid HF, The mechanism of the earthquake, in The California Earthquake of April 18,1906, Re-port of the State Earthquake Investigation Commission, vol.2,1992, Washington, DC:Carnegie Institution.
    [100]Reilinger RE, S. Ergintav, S. McClusky, et al., Coseismic and postseismic fault slip for the 17 August 1999, M=7.5, Izmit, Turkey earthquake, Science,2000,289:1519-1523.
    [101]任金卫,WE Holt,申屠炳明,中亚及东南亚变形运动学及其动力学问题,活动断裂研究,1997,109-146.
    [102]Rice JR, and JC Gu, Earthquake after effects and triggered seismic phenomena, Pure Appl. Geophys.,1983,121:187-219.
    [103]Roeloffs E., Poroelastic techniques in the study of earthquake-related hydrological phenomena, Adv. Geophys.,1996,37:135-195.
    [104]Ruina A., Slip instability and state variable friction laws, J. Geophys. Res.,1983,88:10359-10370.
    [105]Ryder I., B. Parson, T. Wright, et al, Post-seimic motion following the 1997 Manyi (Tibet) earthquake:InSAR observation and modelling, Geophys. J. Int.,2007,169:1009-1027.
    [106]Replumaz A., R. Lacassin, P. Tapponnier, et al., Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China), J. Geophys. Res.,2001,106,819-836.
    [107]Replumaz A., and P. Tapponnier, Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks,J. Geophys. Res.,2003,108(B6),2285, doi:10.1029/2001JB000661.
    [108]Satake K., Depth distribution of coseimic slip along the Nanki Trough, Japan, from joint inver-sion of geodetic and tsunamic data, J. Geophys. Res.,1993,98(B3):4553-4565.
    [109]Savage JC, M. Lisowski, and JL Svarc, Postseismic deformation following the 1989 (M=7.1) Loma Prieta, California, earthquake,J. Geophys. Res.,1994,99:13757-13765.
    [110]Savage JC, and JL Svarc, Postseismic deformation associated with the Mw=7.3 Landers earth-quake, southern California, J. Geophys. Res.,1997,102:7565-7577.
    [111]Scholtz CH, The Mechanics of Earthauakes and faulting,2nd edn.,2002, Cambridge University Press.
    [112]Segall P., and M. Matthews, Time Dependent Inversion of Geodetic Data,J. Geophys. Res., 1997,102:22391-22409.
    [113]Segall P., R. Burgmann, and M. Matthews, Time-dependent triggered afterslip following the 1989 Loma Prieta earthquake, J. Geophys. Res.,2000,105:5615-5634.
    [114]Segall P., Integrating geological and geodetic estimates of slip rate on the San Andreas fault system, Int. Geol. Rev.,2002,44:62-82.
    [115]劭志刚,傅容珊,薛霆,黄建华,以Burgers体模型模拟震后粘弹性松弛效应,大地测量与地球动力学,2007,27(5):31-37.
    [116]劭志刚,傅容珊,薛霆,黄建华,昆仑山Ms8.1级地震震后变形场数值模拟与成因机理探讨,地球物理学报,2008,51(3):805-816.
    [117]劭志刚,傅容珊,薛霆,查显杰,震后短期和长期形变模拟-以1960年智利Mw9.5地震为例,地震学报,2008,30(4):405-415.
    [118]Shen-Tu B., WE Holt, and AJ Haines, Contemporary kinematics of the western United States determined from earthquake moment tensors, very long baseline interferometry, and GPS ob-servations, J. Geophys. Res.,1998,103:18087-18117.
    [119]Shen-Tu B., and WE Holt, Deformation kinematics in the western United States determined from Quaternary fault slip rates and recent geodetic data, J. Geophys. Res.,1999,104:28927-28955.
    [120]Shen ZK, DD Jackson, Y Feng, et al., Postseismic deformation following the Landers earth-quake, California,28 June 1992, Bull. Sesimol. Soc. Am.,1994,84:780-791.
    [121]沈正康,王敏,甘卫军,张祖胜,中国大陆现今构造应变率场及其动力学成因研究.地学前缘,2003,10(特刊):93-100.
    [122]Shen ZK, J. Lii, M. Wang, et al., Contemporary crustal deformation around southeast border-land of the Tibetan Plateau, J. Geophys. Res.,2005,110(B11409), doi:10.1029/2004JB003421.
    [123]Shen Zk, J. Sun, P. Zhang, et al., Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake, Nature Geosci.,2009, doi:10.1038/ngeo636.
    [124]石耀霖,朱守彪,利用GPS观测资料划分现今地壳活动地块的方法,大地测量与地球动力学,2004,24(2):1-5.
    [125]Smith DE, R. Kolenkiewicz, PJ Dunn, et al., Tectonic motion and determination from satellite laser ranging to LAGEOS, J. Geophys. Res.,1990,95:22013-22041.
    [126]宋方敏,汪一鹏,俞维贤,等,小江活动断裂带,1998,北京:地震出版社,209-232.
    [127]Steketee JA, On Volterra's dislocation in a semi-infinite elastic medium, Can. J. Phys.,1958, 36:192-205.
    [128]孙建中,施顺英,利用地震矩张量反演鲜水河断裂带现今运动学特征,地壳形变与地震,1994,14(4):9-15.
    [129]苏有锦,秦嘉政,川滇地区强震活动与区域新构造活动的关系,中国地震,2001,17(1):24-34.
    [130]谭凯,王琪,王晓强,等,震后形变的解析模型和时空分布特征,大地测量与地球动量学,2005,25(4):23-26.
    [131]谭凯,李杰,王琪,大地测量约束下的阿尔泰山岩石圈流变结构,地球物理学报,2007,50(6):1713-1718.
    [132]Tapponnier P., G. Peltzer, AY Le Dain, et al., Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine, Geology,1982,10:611-616.
    [133]Tapponnier P., Xu ZQ, Roger F., et al., Oblique stepwise rise and growth of the Tibet plateau, Science,2001,294:1671-1677.
    [134]Thatcher W., Nonlinear strain buildup and the earthquake cycle on the San Andras fault, J. Geophys. Res.,1983,88:5893-5902.
    [135]Thatcher W., and JB Rundle, A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquaes at subduction zones, J. Geophys. Res.,1984,89:7631-7640.
    [136]Thatcher W., Microplate model for the present-day deformation of Tibet, J. Geophys. Res., 2007,112(B01401), doi:10.1029/2005JB004244.
    [137]田云峰,沈正康,GPS坐标时间序列中非构造噪声的剔除方法研究进展,地震学报,2009,31(1):68-81.
    [138]Tinnon MJ, Holt WE, and Haines AJ, Velocity gradients in the northern Indian Ocean inferred form earthquake moment tensors and relative plate velocities, J. Geophys. Res.,1995,100(B12): 24315-24329.
    [139]To A., R. Burgmann, and F. Pollitz, Postseismic deformation and stress changes following the 1819 Rann of Kachchh, India earthquake:Was the 2001 Bhuj earthquake a triggered event?, Geophys. Res. Lett.,2004,31(L13609), doi:10.1029/2004GL020220.
    [140]Tse ST, and JR Rice, Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res.,1986,91:9452-9472.
    [141]vanDam TM, G. Blewitt, and MB Heflin, Atmospheric pressure loading effects on Global Posi-tioning System coordinate determinations, J. Geophys. Res.,1994,99(B12):23939-23950.
    [142]vanDam TM, JM Wahr, PCD Milly, et al., Crustal displacements due to the continental water loading, Geophys. Res. Lett.,2001,28(4):651-654.
    [143]王琪,用GPS监测中国大陆现今地壳运动:变形速度场与构造解释,武汉大学博士论文,2004.
    [144]Wang Q., Zhang PZ, Freymueller JT, et al., Present-day crustal deformation in China con-strained by global positioning system measurements, Science,2001,294:574-577.
    [145]Wang Q., Zhang PZ, Niu ZJ, et al, Present-day crustal movement and tectonic deformation in China continent, Science in China (D),2002,45(10):865-874.
    [146]Wang R., Lorenzo-Martri F, and Roth F., A semi-analytical software PSGRN/PSCMP for cal-culating co-and post-seismic deformation on a layered viscoelastic-gravitational half-space, Computers and Geosciences,2006,32:527-541.
    [147]王二七,BC Burchfiel,季建清,东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据,中国科学(D辑),2001,31(1):l-9.
    [148]王华,利用InSAR研究青藏高原地区若干同震与震间形变,武汉大学博士论文,2007.
    [149]王敏,沈正康,牛之俊,等,现今中国大陆地壳运动与活动块体模型,中国科学(D辑),2003,33(增刊):21-31.
    [150]王琪,中国大陆现今地壳运动研究,地震学报,2003,25(5):453-464.
    [151]王琪,游新兆,王文颖,杨志强,跨喜马拉雅的GPS观测与地壳形变,地壳形变与地震,1998,18(3):43-50.
    [152]王琪,张培震,牛之俊,等,中国大陆现今地壳运动与构造变形,中国科学(D辑),2001,31(7):529-536.
    [153]王阎昭,王恩宁,沈正康,等,基于GPS资料约束反演川滇地区主要断裂现今活动速率,中国科学(D辑),2008,38(5):582-597.
    [154]温扬茂,许才军,联合GPS与重力资料反演分析川滇地区现今地壳形变,武汉大学学报(信息科学版),2009,34(5):568-572.
    [155]Williams CR, T. Arnadottir, and P. Segall, Coseismic deformation and dislocation models of the 1989 Loma Prieta earthquake derived from Global Positioning System measurements, J. Geophys. Res.,1993,98(B3):4567-4578.
    [156]Williams SDP, The effect of coloured noise on the uncertainties of rates estimated from geodetic time series, J. Geodesy,2003,76:483-494.
    [157]Williams SDP, Y. Bock, P. Fang, et al., Error analysis of continuous GPS position time series, J. Geophys. Res.,2004,109, doi:10.1029/2003JB002741.
    [158]Williams SDP, and Willis P., Error analysis of weekly station coordinates in the DORIS network, J. Geodesy,2006,80:525-539.
    [159]武艳强,黄立人,时间序列处理的新插值方法,大地测量与地球动力学,2004,24(4):43-47.
    [160]向宏发,虢顺民,徐锡伟,等,川滇南部地区活动地块划分与现今运动特征初析,地震地质,2000,22(3):253-264.
    [161]熊熊,滕吉文,郑勇,中国大陆地壳运动的GPS观测及相关动力学研究,地球物理学进展,2004,19(1):16-25.
    [162]许才军,用大地测量资料检验青藏高原隆升的两种构造演化模式,武汉测绘科学大学学报,1995,20(2):163-167.
    [163]Xu CJ, KH Ding, JQ Cai, and EW Grafarend, Methods of determing weight scaling factors for geodetic-geophysical joint inversion, J. Geodyn.,2009,47(1):39-46.
    [164]许才军,刘洋,温扬茂,利用GPS资料反演汶川Mw7.9级地震滑动分布,测绘学报,2009,38(3):195-201.
    [165]许才军,温扬茂,活动地块运动和应变模型辨识,大地测量与地球动力学,2003,23(3):50-55.
    [166]徐锡伟,闻学泽,郑荣章,等,川滇地区活动块体最新构造变动样式及其动力来源,中国科学(D辑),2003,33(增刊):151-162.
    [167]Xu XW, Wen XZ, Yu GH, et al, Co-seismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China, Geology,2009,37:515-518.
    [168]许雅儒,集集地震之震前、同震及震后变形模式研究,台湾中央大学博士论文,2004.
    [169]Xu Y., Li ZW, Huang RQ, and Xu Y, Seismic structure of the Longmen Shan region from S-wave tomography and its relationship with the Wenchuan Ms 8.0 earthquake on 12 May 2008, southwestern China, Geophys. Res. Lett.,37(L02304), doi:10.1029/2009GL041835.
    [170]杨强,党亚明,秘金钟,基于IGS连续跟踪站的GPS高程时间序列分析,测绘科学,2007,32(3):55-56.
    [171]姚宜斌,施闯,IGS测站的非线性变化研究,武汉大学学报(信息科学版),2007,32(5):423-426.
    [172]袁林果,丁晓利,陈武,等,香港GPS基准站坐标时间序列特征分析,地球物理学报,2008,51(5):1372-1384.
    [173]Zeng Y., Viscoelastic stress-triggering of the 1999 Hector Mine earthquake by the 1992 Landers earthquake, Geophys. Res. Lett.,2001,28:3007-3010.
    [174]Zhang J., Y. Bock, H. Johnson, et al., Southern California permanet GPS gedetic array:Error analysis of daily position estimates and site velocities, J. Geophys. Res.,1997,102:18035-18055.
    [175]Zhang PZ, Shen ZK, Wang M., et al, Continuous deformation of the Tibetan Plateau from global positioning system data, Geology,2004,32:809-812.
    [176]Zhang ZJ, Wang YH, Chen Y, et al., Crustal structure across Longmenshan fault belt from pas-sive source seismic profiling, Geophys. Res. Lett.,36(L17310), doi:10.1029/2009GL039580.
    [177]张赤军,许大欣,高喜马拉雅中段近期的地壳运动-大地测量最新结果及其解释,地壳形变与地震,1998,18(3):36-42.
    [178]张晁军,曹建玲,石耀霖,从震后形变探讨青藏高原下地壳粘滞系数,中国科学,2008,38(10):1250-1257.
    [179]张鹏,蒋志浩,秘金钟,等,我国GPS跟踪站数据处理与时间序列特征分析,武汉大学学报(信息科学版),2007,32(3):251-254.
    [180]张培震,沈正康,王敏,甘卫军,青藏高原及周边现今构造变形的运动学,地震地质,2004,26(3):367-377.
    [181]张培震,甘卫军,沈正康,王敏,中国大陆现今构造作用的地块运动和连续变形耦合模型,地质学报,2005,79(6):749-755.
    [182]张培震,王琪,马宗晋,青藏高原现今构造变形特征与GPS速度场,地学前缘,2002,(2):442-450.
    [183]张强,朱文耀,中国地壳各构造地块运动模型的初建,科学通报,2005,(9):967-972.
    [184]张西光,吕志平,ITRF2005的实现与改进,测绘通报,2007,7:16-18.
    [185]张忠杰,陈,田小波,青藏高原东缘地壳上地幔结构及其动力学意义,地质科学,2009,44(4):1136-1150.
    [186]Zhao SR, Joint inversion of observed gravity and GPS baseline changes for the detection of the active fault segment at the Red River fault zone, Geophys. J. Int.,1995,122:70-88.
    [187]钟大赉,丁林,青藏高原的隆起过程及其机制探讨,中国科学(D辑),1996,26(4):289-295.
    [188]钟锴,徐鸣洁,王良书,等,利用航磁、重力资料研究川滇地区大陆变形特征,地球科学进展,2005,20(10):1089-1094.
    [189]周荣军,何玉林,杨涛,等,鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错,中国地震,2001,17(3):253-262.
    [190]周伟,李延兴,张静华,等,川滇地区现今构造变形分析,大地测量与地球动力学,2008,28(2):22-27.
    [191]朱文耀,程宗颐,熊永清,等,利用GPS技术监测青藏高原运动的初步结果,中国科学(D辑),1997,27(5):385-389.
    [192]朱文耀,符养,李彦,GPS高程导出的全球高程振荡运动及季节变化,中国科学,2003,33(5):470-481.
    [193]中国地震局,http://www.cea.gov.cn.
    [194]IGS,http://www.igs.org/network/complete.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700